首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Modified adaptive observer based backstepping control system for dynamic positioning of ship is proposed. As an improvement, the adaptive observer takes the first-order wave frequency model and the bias term which represent the slowly varying environmental disturbances and the unmodeled dynamics. Thus, the wave-frequency motions are filtered out, and only the reconstructed low-frequency motions are sent as inputs of the controller. Furthermore, as the ship dynamics parameters are unknown, the adaptive estimation law is designed for both the unknown ship dynamics and the unmeasured state variables. Based on the estimated states and parameters, backstepping controller considering the integral action is designed. Global exponential stability (GES) for the total system is proved using Lyapunov direct method. Simulation results show a good performance of the observer and control system.  相似文献   

2.
K. D. Do  J. Pan  Z. P. Jiang   《Ocean Engineering》2003,30(17):2201-2225
This paper addresses an important problem in ship control application—the robust stabilization of underactuated ships on a linear course with comfort. Specifically, we develop a multivariable controller to stabilize ocean surface ships without a sway actuator on a linear course and to reduce roll and pitch simultaneously. The controller adapts to unknown parameters of the ship and constant environmental disturbances induced by wave, ocean current and wind. It is also robust to time-varying environmental disturbances, time-varying change in ship parameters and other motions of the ship such as surge and heave. The roll and pitch can be made arbitrarily small while the heading angle and sway are kept to be in reasonably small bounds. The controller development is based on Lyapunov’s direct method and backstepping technique. A Lipschitz continuous projection algorithm is used to update the estimate of the unknown parameters to avoid the parameters’ drift due to time-varying environmental disturbances. Simulations on a full-scale catamaran illustrate the effectiveness of our proposed controller.  相似文献   

3.
China Ocean Engineering - In this paper, a new control system is proposed for dynamic positioning (DP) of marine vessels with unknown dynamics and subject to external disturbances. The control...  相似文献   

4.
As the capability of polar plots becomes better understood, improved dynamic positioning (DP) systems are possible since the control algorithms greatly depend on the accuracy of the aerodynamic and hydrodynamic models. The measurements and estimation of the environmental disturbances have an important role in the optimal design and selection of a DP system for a marine vessel. The main objective of this work is to present a new software program capable of estimating the environmental forces, thrusters capability calculations, and capability polar plots for marine vessels. A flowchart illustrating the logic and data flow of a developed software program, the Capability Polar Plot Program (CPPP), and the estimated results for two case studies for a scientific drilling vessel and a survey vessel are presented. It is obvious from the obtained results that the developed program has a future potential for the estimation of the Capability Polar Plots for marine vessels. Moreover, the developed software program would be considered as a marine tool for the thrusters' selection and their configuration for marine vessels and floating production units for the Oil and Gas industries.  相似文献   

5.
船舶机动定位技术及其实现方法   总被引:1,自引:0,他引:1  
为改善动力定位船舶在高海情下的定位能力,研究了机动定位的控制方式,并设计了一种机动定位模糊控制系统。其特点是模仿人类的航海技巧,通过充分利用环境力,实现船舶的定位与机动。仿真结果表明,在高海情下,机动定位方式可以实现较高精度的定位控制,并且其辅推功率消耗较小。  相似文献   

6.
This paper develops an adaptive course controller for time-varying parametric uncertain nonlinear ships with completely unknown time-varying bounded control coefficient. The proposed design method does not require any a priori knowledge of the sign of the unknown time-varying control coefficient. The designed adaptive autopilot can guarantee the regulation of the ship course to any prescribed accuracy and the global uniform ultimate boundedness of all signals in the closed-loop system. The effectiveness of the presented autopilot has been demonstrated in a simulation involving a ship of 45 m in length.  相似文献   

7.
Currently, both military and civilian operations that require at-sea cargo transfers are severely limited by environmental conditions and loading forces that induce vessel motions. To increase the robustness of at-sea cargo transfer to these environmental conditions and loading forces, efforts have recently been made toward an actively controlled, rapidly deployable stable platform (RDSP). The purpose of the research presented here is to implement an output feedback adaptive controller and adaptive disturbance rejection scheme that will mitigate the effect of environmental conditions and reject disturbances caused by various loading situations. Because of the controller's distinct ability to adapt to various operating conditions, anticipate and reject load disturbances of unknown magnitude, and adjust to stay within input saturation constraints, the framework is a good fit for the RDSP. Three missions are considered using a previously developed 3 degree of freedom simulation of a 1/10th scale RDSP prototype. Results show successful mitigation of load disturbances and a significant reduction in pitch motions using a control command that remains within the given amplitude and rate constraints. In the case of cargo transfer operations, the adaptive control system is able to significantly increase the cargo throughput by rejecting the disturbances before they are able to cause large pitching dynamics.  相似文献   

8.
This work demonstrates the feasibility of applying a sliding mode fuzzy controller to motion control and line of sight guidance of an autonomous underwater vehicle. The design method of the sliding mode fuzzy controller offers a systematical means of constructing a set of shrinking-span and dilating-span membership functions for the controller. Stability and robustness of the control system are guaranteed by properly selecting the shrinking and dilating factors of the fuzzy membership functions. Control parameters selected for a testbed vehicle, AUV-HM1, are evaluated through tank and field experiments. Experimental results indicate the effectiveness of the proposed controller in dealing with model uncertainties, non-linearities of the vehicle dynamics, and environmental disturbances caused by ocean currents and waves.  相似文献   

9.
Deep-sea mining (DSM) is an advanced concept. A simulation method of coupled vessel/riser/body system in DSM combined with dynamic positioning (DP) is proposed. Based on the three-dimensional potential flow theory, lumped mass method, and Morison’s equations the dynamic models of the production support vessel, riser and slurry pump are established. A proportion integration differentiation (PID) controller with a nonlinear observer and a thrust allocation unit are used to simulate the DP system. Coupled time domain simulation is implemented with the vessel operated in two DP modes. Results of the vessel and pump motions, riser tension, and thruster forces are obtained. It shows that the pump will be lifted by the riser when the vessel is chasing the next set point. Riser tension is influenced by the wave frequency motions of the vessel in positioning mode and low-frequency motions in tracking mode. The proposed simulation scheme is practical to study the DSM operation.  相似文献   

10.
K. D. Do  J. Pan  Z. P. Jiang 《Ocean Engineering》2004,31(16):1967-1997
This paper proposes a nonlinear robust adaptive control strategy to force a six degrees of freedom underactuated underwater vehicle with only four actuators to follow a predefined path at a desired speed despite of the presence of environmental disturbances and vehicle’s unknown physical parameters. The proposed controller is designed using Lyapunov’s direct method, the popular backstepping and parameter projection techniques. The closed loop path following errors can be made arbitrarily small. Interestingly, it is shown that our developed control strategy is easily extendible to situations of practical importance such as parking and point-to-point navigation. Numerical simulations are provided to illustrate the effectiveness of the proposed methodology.  相似文献   

11.
为了适应复杂海洋环境中多样性的观探测任务需求,本文提出了一种融合Argo浮标、水下滑翔机(Glider)和自治式水下机器人(Autonomous Underwater Vehicle,AUV) 3种工作模式的全姿态水下移动平台(All-attitude Multimode Underwater Vehicle,AMUV)。首先,基于3种水下移动平台的工作原理,建立了AMUV的六自由度动力学模型;然后,针对动力学模型中的非线性耦合特性及模式切换过程中的驱动位形变化等问题,基于比例、积分、微分控制器(Proportional Integral Derivative,PID)与模糊控制概念,设计了不依赖于数学模型的自适应模糊PID姿态控制器,实现了AMUV多模式切换过程中的姿态控制;最后,开展多模式切换控制仿真实验,将自适应模糊PID控制器与传统PID控制器仿真结果进行对比,并设计了全模式任务工况,仿真结果表明,本文提出的控制器能够精确和稳定地控制AMUV进行多种工作模式的相互切换。  相似文献   

12.
13.
科考船定点作业时会受到海洋风、涌、浪、流等外界环境因素影响,导致工作效率降低,原位测量精度下降,甚至影响作业安全。动力定位系统 (DP) 具有自动定位功能,能够抵抗外界环境因素的影响,可实现科考船高精度定点控位。 单波束测深仪不仅可以测量水深,也可反映水下设备深度信息,可以起到辅助监控水下设备功能。本文在介绍定点作业施工现状与局限性的基础上,分析 DP 系统与单波束测深仪工作原理,以“向阳红 01”船为载体,在定点作业时开启 DP 系统与单波束测深仪,发现该方法可以提高科考船定点作业工作效率、原位测量精度并保障作业安全,可为其他科考船定点作业提供参考。  相似文献   

14.
Dynamic positioning (DP) is an operation method whereby the position of a surface vessel is maintained in close proximity to a required position in the horizontal plane through the controlled application of forces and moments generated by purposely installed thrusters. When estimating thrust, this kind of conventional control system often uses many acceleration sensors, velocity sensors, environment sensors, and filters. Usually, these sensors have measured electrical errors. To reduce the number of sensors used and to decrease the measurement errors, this article presents an effective control system for estimating thrust and moment commands, which is based on energy and impulsemomentum principles. Donha and Brinati's example is followed to verify the feasibility of the present control system, which performs semisubmersible platform positioning using an LQG controller, and the results are feasible and economical. A simulated coring vessel marine positioning in southern Taiwan is presented, which can estimate the counterthrust and moment commands, and the complex environmental forces and moments are described. The results can provide a valuable control system for dynamically positioned vessels.  相似文献   

15.
Dynamic positioning (DP) is an operation method whereby the position of a surface vessel is maintained in close proximity to a required position in the horizontal plane through the controlled application of forces and moments generated by purposely installed thrusters. When estimating thrust, this kind of conventional control system often uses many acceleration sensors, velocity sensors, environment sensors, and filters. Usually, these sensors have measured electrical errors. To reduce the number of sensors used and to decrease the measurement errors, this article presents an effective control system for estimating thrust and moment commands, which is based on energy and impulsemomentum principles. Donha and Brinati's example is followed to verify the feasibility of the present control system, which performs semisubmersible platform positioning using an LQG controller, and the results are feasible and economical. A simulated coring vessel marine positioning in southern Taiwan is presented, which can estimate the counterthrust and moment commands, and the complex environmental forces and moments are described. The results can provide a valuable control system for dynamically positioned vessels.  相似文献   

16.
The tracking control problem of AUV in six degrees-of-freedom (DOF) is addressed in this paper. In general, the velocities of the vehicles are very difficult to be accurately measured, which causes full state feedback scheme to be not feasible. Hence, an adaptive output feedback controller based on dynamic recurrent fuzzy neural network (DRFNN) is proposed, in which the location information is only needed for controller design. The DRFNN is used to online estimate the dynamic uncertain nonlinear mapping. Compared to the conventional neural network, DRFNN can clearly improve the tracking performance of AUV due to its less inputs and stronger memory features. The restricting condition for the estimation of the external disturbances and network's approximation errors, which is often given in the existing literatures, is broken in this paper. The stability analysis is given by Lyapunov theorem. Simulations illustrate the effectiveness of the proposed control scheme.  相似文献   

17.
The offshore jacket platform is a complex and time-varying nonlinear system,which can be excited of harmful vibration by external loads.It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model.In this paper,an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform,and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method.Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory,RNN is utilized to identify the predictive inverse model of the offshore jacket platform system.Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads,and to deal with the delay problem caused by signal transmission in the control process.The numerical results show that the constructed novel RNN has advantages such as clear structure,fast training speed and strong error-tolerance ability,and the proposed method based on RNN can effectively control the harmfid vibration of the offshore jacket platform.  相似文献   

18.
Hyun-Sik Kim  Yong-Ku Shin   《Ocean Engineering》2007,34(8-9):1080-1088
Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system, it requires robustness, a continuous control input, and further, it has the speed dependency of controller parameters. To solve these problems, an expanded adaptive fuzzy sliding mode controller (EAFSMC), which is based on the decomposition method designed by using an expert knowledge and the decoupled sub-controllers and composition method designed by using the fuzzy basis function expansions (FBFEs), is proposed. To verify the performance of the EAFSMC, the depth control of UFV in various operating conditions is performed. Simulation results show that the EAFSMC solves all problems experienced in the UFV depth control system online.  相似文献   

19.
This paper presents a novel method for estimating the sea state parameters based on the heave, roll and pitch response of a vessel conducting station keeping automatically by a dynamic positioning (DP) system, i.e., without forward speed. The proposed algorithm finds the wave spectrum estimate from the response measurements by iteratively solving a set of linear equations, and it is computationally efficient. The main vessel parameters are required as input. Apart from this the method is signal-based, with no assumptions on the wave spectrum shape. Performance of the proposed algorithm is demonstrated on full-scale experimental DP data of a vessel in three different sea states at head, bow quartering, beam, stern quartering and following sea waves, respectively.  相似文献   

20.
This paper proposes an ant colony fuzzy neural network (ACFNN) controller for a cruising vessel on a river. The proposed controller comprises an ant colony (AC) algorithm, a fuzzy neural network (FNN) controller, and a switching law. The approximately optimal sailing line and short sailing time are obtained using the AC algorithm. First, the searching pattern of the AC algorithm is constructed using the data of the tidal current, river current, vessel velocity, and position of the coordinate. From a tracking error viewpoint, the switching law determines that the approximately optimal sailing line and the shorter sailing time are obtained using the AC algorithm, and that uncertain nonlinear factors are compensated by the FNN controller. The controller consists of an FNN identifier and a robust controller. The identifier is used to estimate the vessel velocity, and its parameters are tuned online by the adaptive law derived from the Lyapunov function. The robust controller is used to compensate for uncertainties of the tidal current and river current through the estimated law. The output of the ACFNN controller is the sum of the FNN identifier, the robust controller, and an auxiliary function. Finally, a simulation and a practical cruising vessel on a river are performed to verify the effectiveness of the presented controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号