首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the hydrodynamic characteristic of a synthetic jet steered underwater vehicle is studied. The steering motion studied is the lateral motion and the yaw motion. The lateral motion is induced through the in-phase work of this two actuators and the yaw motion is realized through the out-of-phase work. The vehicle studied is REMUS AUV with synthetic jet actuator mounted inside. The hydrodynamic characteristic of the vehicle under different cruising speed is studied. The driving parameters of the SJ actuator keep invariant in different cases. When the two actuators work in phase, the average steering force is smaller than the thrust of the isolated actuator and keeps nearly invariant under different cruising speed. When the two actuators work out of phase, the average steering moment also keeps invariant with cruising speed. The mathematical model of the additional drag of the vehicle, the thrust of the actuator, the steering force as well as the steering moment is given. The velocity distribution is also given to assistant the analysis in this paper. From the analysis given it can be known the steering method based on SJ is realized through position control other than velocity control.  相似文献   

2.
The paper addresses the problem of autonomous underwater vehicle (AUV) modelling and parameter estimation as a means to predict the dynamic performance of underwater vehicles and thus provide solid guidelines during their design phase. The use of analytical and semi-empirical (ASE) methods to estimate the hydrodynamic derivatives of a popular class of AUVs is discussed. A comparison is done with the results obtained by using computational fluid dynamics to evaluate the bare hull lift force distribution around a fully submerged body. An application is made to the estimation of the hydrodynamic derivatives of the MAYA AUV, an autonomous underwater vehicle developed under a joint Indian-Portuguese project. The estimates obtained were used to predict the turning diameter of the vehicle during sea trials.  相似文献   

3.
PETREL,a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle).It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile.In this paper,theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration.In addition,due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes,the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced,and the tailored dynamic equations of the hybrid glider are formulated.Moreover,the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.  相似文献   

4.
A theoretical methodology to determine the open-loop directional stability of a near-surface underwater vehicle is presented. It involves a solution of coupled sway and yaw equations of motion in a manner similar to that carried out for surface ships. The stability derivatives are obtained numerically through simulation of motions corresponding to planar motion mechanism (PMM) model tests. For the numerical simulation, a boundary-integral method based on the mixed Lagrangian-Eulerian formulation is developed. The free-surface effect on the vehicle stability is determined by comparing the results with that obtained for vehicle motion in infinite fluid. The methodology was used to determine the stability of the Florida Atlantic University’s Ocean EXplorer (OEX) AUV. The presence of the free surface, through radiation damping, is found to suppress unsteady oscillations and thereby enhance the directional stability of the vehicle. With effects of free surface, forward speed, location and geometry of rudders, location of the center of gravity etc. all being significant factors affecting stability, a general conclusion cannot be drawn on their combined effect on the vehicle stability. The present computational methodology is therefore a useful tool to determine an underwater vehicle’s stability for a given configuration and thus the viability of an intended mission a priori.  相似文献   

5.
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the determination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the kω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle's autopilot system.  相似文献   

6.
Recent advances in autonomous underwater vehicle (AUV) and underwater communication technology have promoted a surge of research activity within the area of signal and information processing. A new application is proposed herein for capturing and processing underwater video onboard an untethered AUV, then transmitting it to a remote platform using acoustic telemetry. Since video communication requires a considerably larger bandwidth than that provided by an underwater acoustic channel, the data must be massively compressed prior to transmission from the AUV. Past research has shown that the low contrast and low-detailed nature of underwater imagery allows for low-bit-rate coding of the data by wavelet-based image-coding algorithms. In this work, these findings have been extended to the design of a wavelet-based hybrid video encoder which employs entropy-constrained vector quantization (ECVQ) with overlapped block-based motion compensation. The ECVQ codebooks were designed from a statistical source model which describes the distribution of high subband wavelet coefficients in both intraframe and prediction error images. Results indicate that good visual quality can be achieved for very low bit-rate coding of underwater video with our algorithm  相似文献   

7.
A hydrodynamic model of a two-part underwater manoeuvrable towed system is proposed in which a depressor is equipped with active horizontal and vertical control surfaces, and a towed vehicle is attached to the lower end of a primary cable. In such a system the towed vehicle can be manoeuvred in both vertical and horizontal planes when it is towed at a certain velocity and the coupling effect of excitations at the upper end of the primary cable and disturbances of control manipulations to the towed vehicle can be reduced. In the model the hydrodynamic behavior of an underwater vehicle is described by the six-degrees-of-freedom equations of motion for submarine simulations. The added masses of an underwater vehicle are obtained from the three-dimensional potential theory. The control surface forces of the vehicle are determined by the wing theory. The results indicate that with relative simple control measures a two-part underwater manoeuvrable towed system enables the towed vehicle to travel in a wide range with a stable attitude. The method in this model gives an effective numerical approach for determining hydrodynamic characteristics of an underwater vehicle especially when little or no experimental data are available or when costs prohibit doing experiments for determining these data.  相似文献   

8.
System identification provides an effective way to predict the ship manoeuvrability. In this paper several measures are proposed to diminish the parameter drift in the parametric identification of ship manoeuvring models. The drift of linear hydrodynamic coefficients can be accounted for from the point of view of dynamic cancellation, while the drift of nonlinear hydrodynamic coefficients is explained from the point of view of regression analysis. To diminish the parameter drift, reconstruction of the samples and modification of the mathematical model of ship manoeuvring motion are carried out. Difference method and the method of additional excitation are proposed to reconstruct the samples. Using correlation analysis, the structure of a manoeuvring model is simplified. Combined with the measures proposed, support vector machines based identification is employed to determine the hydrodynamic coefficients in a modified Abkowitz model. Experimental data from the free-running model tests of a KVLCC2 ship are analyzed and the hydrodynamic coefficients are identified. Based on the regressive model, simulation of manoeuvres is conducted. Comparison between the simulation results and the experimental results demonstrates the validity of the proposed measures.  相似文献   

9.
A method for dynamics investigation and coupling detection between velocities of autonomous underwater vehicles (AUVs) is presented in this paper. The method is based on transformation of equations of motion, which are usually used for an underwater vehicle, into equations with a diagonal mass matrix. The obtained equations contain quasi-velocities and allow one to give a further insight into the AUV dynamics especially for an underactuated system. Some advantages of the proposed approach are discussed, too. An analytical example for a 3-DOF AUV shows possible application of the transformed equations. Moreover, the given approach is validated via simulation on a 6-DOF vehicle.  相似文献   

10.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

11.
月池内流体存在活塞和晃荡两类振荡现象。基于线性势流理论,推导了波浪斜向入射下,直墙前矩形月池辐射和绕射问题的解析解。通过分离变量法和特征函数展开法求解了速度势函数,根据边界条件来确定速度势函数中的未知系数,由速度势函数计算斜向波与矩形月池相互作用的水动力系数和波浪激励力,对它们的变化规律进行了分析讨论,研究了底部开口大小、波浪入射角度对矩形月池水动力特性的影响以及直墙远近对波浪力的影响。结果表明,月池底部开口大小对流体水平作用的影响较小,而对流体垂直作用的影响较大;波浪入射角度的变化对矩形月池横荡和横摇运动时的水动力特性有一定的影响;在一定条件下,直墙的存在会使得月池在水平方向所受到的波浪力比开敞水域中的要大。  相似文献   

12.
Extensive use of autonomous underwater vehicles (AUVs) in oceanographic applications necessitates investigation into the hydrodynamic forces acting over an AUV hull form operating under deeply submerged condition. This paper presents a towing tank-based experimental study on forces and moment on AUV hull form in the vertical plane. The AUV hull form considered in the present program is a 1:2 model of the standard hull form Afterbody1. The present measurements were carried out at typical speeds of autonomous underwater vehicles (0.4-1.4 m/s) by varying pitch angles (0-15°). The hydrodynamic forces and moment are measured by an internally mounted multi-component strain gauge type balance. The measurements were used to study variation of axial, normal, drag, lift and pitching moment coefficients with Reynolds number (Re) and angle of attack. The measurements have also been used to validate results obtained from a CFD code that uses Reynolds Average Navier-Stokes equations (ANSYS™ Fluent). The axial and normal force coefficients are increased by 18% and 195%; drag, lift and pitching moment coefficients are increased by 90%, 182% and 297% on AUV hull form at α=15° and Rev=3.65×105. These results can give better idea for the efficient design of guidance and control systems for AUV.  相似文献   

13.
This paper introduces an underwater docking procedure for the test-bed autonomous underwater vehicle (AUV) platform called ISiMI using one charge-coupled device (CCD) camera. The AUV is optically guided by lights mounted around the entrance of a docking station and a vision system consisting of a CCD camera and a frame grabber in the AUV. This paper presents an image processing procedure to identify the dock by discriminating between light images, and proposes a final approach algorithm based on the vision guidance. A signal processing technique to remove noise on the defused grabbed light images is introduced, and a two-stage final approach for stable docking at the terminal instant is suggested. A vision-guidance controller was designed with conventional PID controllers for the vertical plane and the horizontal plane. Experiments were conducted to demonstrate the effectiveness of the vision-guided docking system of the AUV.  相似文献   

14.
The hydrodynamic interaction and mechanical coupling effects of two floating platforms connected by elastic lines are investigated by using a time-domain multi-hull/mooring/riser coupled dynamics analysis program. Particular attention is paid to the contribution of off-diagonal hydrodynamic interaction terms on the relative motions during side-by-side offloading operation. In this regard, the exact method (CMM: combined matrix method) including all the vessel and line dynamics, and the 12×12 hydrodynamic coefficients in a combined matrix is developed. The performance of two typical approximation methods (NHI/No Hydrodynamic Interaction: iteration method between two vessels without considering hydrodynamic interaction effects; SMM/Separated Matrix Method: iteration method between two vessels with partially considering hydrodynamic interaction effects, i.e. ignoring off-diagonal cross-coupling terms in the 12×12 hydrodynamic coefficient matrix) is also tested for the same side-by-side offloading operation in two different environmental conditions. The numerical examples show that there exists significant discrepancy at sway and roll modes between the exact and the approximation methods, which means that the cross-coupling (off-diagonal block) terms of the full hydrodynamic coefficient matrix play an important role in the case of side-by-side offloading operation. Therefore, such approximation methods should be used with care. The fender reaction forces, which exhibit large force with contact but no force without contact, are also numerically modeled in the present time-domain simulation study.  相似文献   

15.
An experimental set-up is developed and proved to be effective for laboratory study of an underwater towed system. The experimental technique gives a practical method for monitoring the kinematic and dynamic performance of an underwater towed system in a ship towing tank. Both the theoretical and experimental results in the investigation indicate that the hydrodynamic response of a towed vehicle to the wave induced motion of a towing ship can be significantly reduced by applying a two-part tow method. A comparison of the numerical and experimental results in the investigation demonstrates that the numerical simulation results are close to the experimental data, overall agreement between experimental and theoretical results is satisfactory. The results qualitatively verify the mathematical model of a two-part underwater towed system proposed by Wu and Chwang [Wu, J., Chwang, A.T., 2000. A hydrodynamic model of a two-part underwater towed system. Ocean Engineering 27 (5), 455–472].  相似文献   

16.
This paper presents an experimental investigation on the manoeuvring characteristics of a pusher-barge system for deep (H/d>3) and shallow water (H/d=1.3) condition. Since, the operation of pusher-barge mainly concentrates on confined waters, there is a need to predict and analyze the manoeuvring characteristic of the system for a safe and acceptable performance. A time domain simulation programme was developed for this purpose. A series of model experiments were carried out to determine the hydrodynamic coefficients using a planar motion mechanism (PMM). The time domain simulation shows the manoeuvring characteristic in the form of turning circle trajectories and zig-zag manoeuvre based on the hydrodynamic coefficients, which were derived based on experimental results. The manoeuvring characteristics in shallow and deep water conditions were compared through the simulation results. A comparison of simulation results based on experimental and empirical driven coefficients for both conditions shows that the experimental coefficients gave better manoeuvring characteristics for both turning circle trajectories and zig-zag manoeuvre.  相似文献   

17.
针对水下机器人操纵性优化设计中水动力系数预报问题,在水下机器人水动力预报中引入艇体肥瘦指数概念,确定了水下机器人艇体几何描述的五参数模型。提出采用小波神经网络方法预报水下机器人水动力,确定了神经网络的结构,利用均匀试验设计方法,设计了神经网络的学习样本。研究结果表明,只要确定适当的输入参数,选择适当的学习样本和网络结构,利用小波神经网络方法对水下机器人水动力进行预报可以达到较好的精度。  相似文献   

18.
The sensitivity of the added mass coefficients of a typical autonomous underwater vehicle (AUV) to changes in geometric parameters was investigated. Qualitative deductions were made concerning the effect of geometric variations. Then the added mass coefficients for several configurations of body geometry were generated for the Canadian Self-Contained Off-the-shelf Underwater Testbed (C-SCOUT) vehicle using the computer program Estimate Submarine Added Mass (ESAM). The changes in the added mass coefficients have direct relationships to the varied parameter. The results presented here are specific to the C-SCOUT, but may be extended to similar axisymmetric bodies.  相似文献   

19.
A numerical method is proposed to predict the effective wake profiles of high speed underwater vehicles propelled by contra-rotating propellers (CRPs), in which the hydrodynamic effects of the CRPs are simulated by distributed body forces. First, Reynolds-averaged Navier-Stokes (RANS) simulations are conducted for identical body-force distributions in open-water and self-propulsion conditions. The effective wake profiles at the CRP disks are then obtained by subtracting the velocities induced by the body forces in the open water from those induced by the body forces in the self-propulsion condition. The effective wake profiles were then predicted for a generic underwater vehicle with an established CRP design. Next, the hydrodynamic performance of the CRPs in the effective wake was computed using an in-house vortex-lattice code. The potential-flow results agree well with those provided by the RANS simulation under the self-propulsion condition, indicating that the proposed method can predict the effective wake profiles for CRPs with reasonable accuracy. The influences of different wake components on the blade forces were investigated, determining that for CRPs, and especially for the aft propeller, the circumferential wake cannot be neglected in the design.  相似文献   

20.
The motion of an autonomous underwater vehicle (AUV) is controllable even with reduced control authority such as in the event of an actuator failure. In this paper we describe a technique for synthesizing controls for underactuated AUV's and show how to use this technique to provide adaptation to changes in control authority. Our framework is a motion control system architecture which includes both feed-forward control as well as feedback control. We confine ourselves to kinematic models and exploit model nonlinearities to synthesize controls. Our results are illustrated for two examples, the first a yaw maneuver of an AUV using only roll and pitch actuation, and the second a “parking maneuver” for an AUV. Experimental results for the yaw maneuver example are described  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号