首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Distribution coefficients (K D·Fe ++ –Mg) calculated for orthopyroxene-clinopyroxene pairs from 12 basic granulites of the Quairading district, Western Australia, range from 1.87 for magnesian pyroxenes (Opx Mg value=78.1) to 1.70 for iron-rich varieties (Opx Mg value 37.7). Field and petrographic evidence indicates that these pyroxenes have probably reached equilibrium within a narrow temperature range. In order to account for the observed variation of K D values it is suggested that one (or both) of the pyroxene structures is not the ideal Fe++-Mg solution proposed in the thermodynamic model of the pyroxene equilibrium exchange. After consideration of the geometry of the pyroxene cation sites, the relative bond energies of each site (especially crystal field stabilization energy) and structural ordering a model is proposed to explain the non-ideal behaviour of Fe++-Mg in the pyroxene system. The distribution pattern in low-iron pyroxenes will probably show Fe++ favouring the M 2·Opx site; competing unfavourably with Mg++ for the M 1·Cpxsite; and probably excluded by Mg++ from the M 1·Opxsite. As the iron content of the system increases the M 2·Opxsite will begin to become saturated with Fe++ and this ion will enter the M 1·Opx site. Further increases in the iron content of the system will cause the Fe++-Mg distribution to depend increasingly on the relative attraction of the M 1 sites of both pyroxenes. Of these sites Fe++ should show preference to the more distorted M 1·Cpxsite. The distribution coefficient reflects this swing towards a relative enrichment of Fe++ in the clinopyroxene by decreasing regularly with increasing iron content. It is likely that this downward trend will not become evident until the iron content of the M 2·Opx site reaches saturation. This would explain why the K D values for the magnesian pyroxenes remain practically unchanged until the orthopyroxene Mg value is approximately 60; from here on the iron-rich pyroxenes show a rapid decrease in K D value with increasing iron content.The Ca content of the pyroxenes is also significant since the Quairading pyroxenes show a marked increase in mutual solubility with increasing iron content. Calcium taken into the orthopyroxene structure will enter the M 2 site ahead of Fe++ so that this site will reach Fe++ saturation at a lower iron content than when the orthopyroxene is Ca-free.The application of K D values to the regional study of basic granulites, particularly when establishing relative temperature zones on the basis of K D variation, should only be attempted when pyroxenes which extend over a wide range of Fe-Mg content are available.  相似文献   

2.
The crystal structure and site preference of Co2+ in a synthetic Co1.10Mg0.90SiO4 olivine have been determined from single crystal X-ray diffraction data collected on an automatic diffractometer. The R factor is 0.044 for 612 reflections. The site occupancies are: Ml site: Co 0.730±0.006; Mg 0.270; M2 site: Co 0.370, Mg 0.630. The Gibbs free energy change, ΔG° for the ion-exchange reaction between M1 and M2 sites is ?4.06 kcals/mole, assuming ideal mixing at each set of sites. This energy may be called ‘site preference energy’ of Co2+ in olivine. The strong preference of Co2+ for the M1 site can be quantitatively explained by two competing forces: preference of ions larger than Mg2+ for the M2 site and stronger covalent bonding of transition metal ions at the M1 site. For Fe2+, Mg2+, these two effects nearly neutralize each other, explaining the lack of considerable cation-ordering in Fe-Mg olivines.  相似文献   

3.
A thermodynamic solution model is developed for minerals whose compositions lie in the two binary systems Mg2SiO4-Fe2SiO4 and Mg2Si2O6-Fe2Si2O6. The formulation makes explicit provision for nonconvergent ordering of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxenes and non-zero Gibbs energies of reciprocal ordering reactions in both olivine and orthopyroxene. The calibration is consistent with (1) constraints provided by available experimental and natural data on the Fe-Mg exchange reaction between olivine and orthopyroxene ± quartz, (2) site occupancy data on orthopyroxenes including both crystallographic refinements and Mössbauer spectroscopy, (3) enthalpy of solution data on olivines and orthopyroxenes and enthalpy of disordering data on orthopyroxene, (4) available data on the temperature and ordering dependence of the excess volume of orthopyroxene solid solutions, and (5) direct activity-composition determinations of orthopyroxene and olivine solid solutions at elevated temperatures. Our analysis suggests that the entropies of the exchange [Mg(M2)Fe(M1)Fe(M2)Mg(M1)] and reciprocal ordering reactions [Mg(M2)Mg(M1)+ Fe(M2)Fe(M1)Fe(M2)Mg(M1)+Mg(M2)Fe(M1)] cannot differ significantly (± 1 cal/K) from zero over the temperature range of calibration (400°–1300° C). Consideration of the mixing properties of olivine-orthopyroxene solid solutions places tight constraints on the standard state thermodynamic quantities describing Fe-Mg exchange reactions involving olivine, orthopyroxene, pyralspite garnets, aluminate spinels, ferrite spinels and biotite. These constraints are entirely consistent with the standard state properties for the phases-quartz,-quartz, orthoenstatite, clinoenstatite, protoenstatite, fayalite, ferrosilite and forsterite which were deduced by Berman (1988) from an independent analysis of phase equilibria and calorimetric data. In conjunction with these standard state properties, the solution model presented in this paper provides a means of evaluating an internally consistent set of Gibbs energies of mineral solid solutions in the system Mg2SiO4-Fe2SiO4-SiO2 over the temperature range 0–1300° C and pressure interval 0.001–50 kbars. As a consequence of our analysis, we find that the excess Gibbs energies associated with mixing of Fe and Mg in (Fe, Mg)2SiO4 olivines, (Fe, Mg)3Al2Si3O12 garnets, (Fe, Mg)Al2O4 and (Fe, Mg)Fe2O4 spinels, and K(Mg, Fe)3AlSi3O10(OH)2 biotites may be satisfactory described, on a macroscopic basis, with symmetric regular solution type parameters having values of 4.86±0.12 (olivine), 3.85±0.09 (garnet), 1.96±0.13 (spinel), and 3.21±0.29 kcals/gfw (biotite). Applications of the proposed solution model demonstrate the sensitivity of petrologic modeling to activity-composition relations of olivine-orthopyroxene solutions. We explore the consequences of estimating the activity of silica in melts forming in the mantle and we develop a graphical geothermometer/geobarometer for metamorphic assemblages of olivine+orthopyroxene+quartz. Quantitative evaluation of these results suggests that accurate and realistic estimates of silica activity in melts derived from mantle source regions,P-T paths of metamorphism and other intensive variables of petrologic interest await further refinements involving the addition of trace elements (Al3+ and Fe3+) to the thermodynamic formulation for orthopyroxenes.  相似文献   

4.
Crystal-plastic olivine deformation to produce subgrain boundaries composed of edge dislocations is an inevitable consequence of asthenospheric mantle flow. Although crystal-plastic deformation and serpentinization are spatio-temporally decoupled, we identified compositional readjustments expressed on the micrometric level as a striped Fe-enriched ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.24 ± 0.02 (zones); 0.12 ± 0.02 (bulk)) or Fe-depleted ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.10 ± 0.01 (zones); 0.13 ± 0.01 (bulk)) zoning in partly serpentinized olivine grains from two upper mantle sections in Norway. Focused ion beam sample preparation combined with transmission electron microscopy (TEM) and aberration-corrected scanning TEM, enabling atomic-level resolved electron energy-loss spectroscopic line profiling, reveals that every zone is immediately associated with a subgrain boundary. We infer that the zonings are a result of the environmental Fe2+Mg−1 exchange potential during antigorite serpentinization of olivine and the drive toward element exchange equilibrium. This is facilitated by enhanced solid-state diffusion along subgrain boundaries in a system, which otherwise re-equilibrates via dissolution-reprecipitation. Fe enrichment or depletion is controlled by the silica activity imposed on the system by the local olivine/orthopyroxene mass ratio, temperature and the effect of magnetite stability. The Fe-Mg exchange coefficients K\textD\textAtg/\textOl K_{\text{D}}^{{{\text{Atg}}/{\text{Ol}}}} between both types of zoning and antigorite display coalescence toward exchange equilibrium. With both types of zoning, Mn is enriched and Ni depleted compared with the unaffected bulk composition. Nanometer-sized, heterogeneously distributed antigorite precipitates along olivine subgrain boundaries suggest that water was able to ingress along them. Crystallographic orientation relationships gained via electron backscatter diffraction between olivine grain domains and different serpentine vein generations support the hypothesis that serpentinization was initiated along olivine subgrain boundaries.  相似文献   

5.
 An olivine grain from a peridotite nodule 9206 (Udachnaya kimberlite, Siberia) was investigated by TEM methods including AEM, HRTEM, SAED and EELS techniques. A previous study of the 9206 olivine sample revealed OH absorption bands in the IR spectrum and abundant nanometer-sized OH-bearing inclusions, of hexagonal-like or lamellar shape. Inclusions, which are several hundred nm in size, consist of 10 ? phase, talc and serpentine (chrysotile and lizardite). The lamellar (LI) and hexagon-like small inclusions of several ten nm in size (SI) are the topic of the present paper. AEM investigations of the inclusions reveal Mg, Fe and Si as cations only. The Mg/Si and Fe/Si atomic ratios are lower in the inclusions than in the host olivine. The Si concentration in the olivine host and both lamellar inclusions and small inclusions is the same. A pre-peak at 528eV was observed in EEL spectra of LI and SI, which is attributed to OH or Fe3+. From these data it is concluded that there is a OH- or Fe3+-bearing cation-deficient olivine-like phase present. HRTEM lattice fringe images of LI and SI exhibit modulated band-like contrasts, which are superimposed onto the olivine lattice. Diffraction patterns (Fourier-transforms) of the HREM images as well as SAED patterns show that the band-like contrasts in HRTEM images of the inclusions are caused by periodic modulations of the olivine lattice. Three kinds of superperiodicity in the olivine structure such as 2a, 3a and 3c, were observed in SAED patterns. The corresponding olivine supercells labelled here as Hy-2a, Hy-3a and Hy-3c were derived. The M1-vacancies located in the (100) and (001) octahedral layers of the olivine lattice are suggested to form ordered arrays of planar defects (PD), which cause the band-like contrasts in HRTEM patterns as well as the superperiodicity in the SAED patterns. The vacancy concentrations as well as the chemical composition of Hy-2a, Hy-3a and Hy-3c olivine supercells were calculated using crystal chemical approaches, assuming either {(OH)< O−V" Me−(OH)< O}, or {F e < Fe H Me } or {2F e < Fe V Me "} point defect associates. The calculated theoretical compositions Mg1.615Fe+2 0.135v0.25SiO4H0.5 (Hy-2a) and Mg1.54Fe2+ 0.12v0.33SiO4H0.66 (Hy-3a and Hy-3c) are in a good agreement with the AEM data on inclusions. Hy-2a, Hy-3a and Hy-3c are considered to be a hydrous olivine with the extended chemical formula (Mg1-yFe2+ y)2−xvxSiO4H2x. The crystal structure of hydrous olivine is proposed to be a modular olivine structure with Mg-vacant modules. The crystal chemical formula of hydrous olivines in terms of a modular structure can be written as [MgSiO4H2] · 3[Mg1.82Fe0.18SiO4] for Hy-2a, [MgSiO4H2] · 2[Mg1.82Fe0.18SiO4] for Hy-3a and Hy-3c. Hydrous olivine is suggested to be exsolved from the olivine 9206, which has been initially saturated by OH-bearing point defects. The olivine 9206 hydration as well as the following exsolution of hydrous olivine inclusions is suggested to occur at high pressure-high temperature conditions of the upper mantle. Received: 15 January 2001 / Accepted: 2 July 2001  相似文献   

6.
The thermoelastic behaviour of a natural gedrite having the crystal-chemical formula ANa0.47 B(Na0.03 Mg1.05 Fe0.862+ Mn0.02 Ca0.04) C(Mg3.44 Fe0.362+ Al1.15 Ti0.054+) T(Si6.31 Al1.69)O22 W(OH)2 has been studied by single-crystal X-ray diffraction to 973 K (Stage 1). After data collection at 973 K, the crystal was heated to 1,173 K to induce dehydrogenation, which was registered by significant changes in unit-cell parameters, M1–O3 and M3–O3 bond lengths and refined site-scattering values of M1 and M4 sites. These changes and the crystal-chemical formula calculated from structure refinement show that all Fe2+ originally at M4 migrates into the ribbon of octahedrally coordinated sites, where most of it oxidises to Fe3+, and there is a corresponding exchange of Mg from the ribbon into M4. The resulting composition is that of an oxo-gedrite with an inferred crystal-chemical formula ANa0.47 B(Na0.03 Mg1.93 Ca0.04) C(Mg2.56 Mn0.022+ Fe0.102+ Fe1.223+ Al1.15 Ti0.054+) T(Si6.31 Al1.69) O22 W[O1.122− (OH)0.88]. This marked redistribution of Mg and Fe is interpreted as being driven by rapid dehydrogenation at the H3A and H3B sites, such that all available Fe in the structure orders at M1 and M3 sites and is oxidised to Fe3+. Thermoelastic data are reported for gedrite and oxo-gedrite; the latter was measured during cooling from 1,173 to 298 K (Stage 2) and checked after further heating to 1,273 K (Stage 3). The thermoelastic properties of gedrite and oxo-gedrite are compared with each other and those of anthophyllite.  相似文献   

7.
A detailed crystal chemical study of coexisting olivine, orthopyroxene, clinopyroxene and spinel from selected Victorian (Australia) lherzolite suites was carried out by means of single crystal x-ray diffraction and electron probe microanalysis to obtain actual site occupancies. The aim of this study was primarily to characterise the intracrystalline configurations and related cation ordering on sites in major mantle constituents. The results demonstrate that cation ordering on sites is subject to distinctive crystallographic controls which depend on the petrological evolution of the suite. Mg-Fe2+ ordering in M1–M2 pyroxene sites depends on variations of the smaller cations, mainly Alvi, Ti4+, Fe3+, and related configurations of M 1. Pressuresensitive Alvi is crucial to Fe2+, the more ordered clinopyroxene showing high Alvi configurations which tend to exclude the larger bivalent cations and yield small polyhedral volumes for M 1, M 2, T sites and the unit cell. Conversely, the coexisting orthopyroxene, characterised by lower Alvi configuration and higher M 1 and unit cell volumes, is relatively more disordered. Olivine is consistent with the coexisting clinopyroxene, the more disordered crystals coexisting with more disordered clinopyroxene, while Al-Mg order in the coexisting spinel shows the reverse relationship. Estimated temperatures of apparent equilibration based on current geothermometers are not considered realistic. Assumptions of ideal cation mixing on sites in pyroxene and spinel are not supported.  相似文献   

8.
In order to explore possible quantitative relations between crystal field stabilization energy, CFSE, and partitioning behaviour of the 3d6-configured Fe2+ ion, a suite of 29 paragenetic rock-forming minerals from 12 high-grade metamorphic rock samples of the Ukrainian shield, including the parageneses garnet/orthopyroxene/clinopyroxene (2x), orthopyroxene/clinopyroxene, garnet/clinopyroxene, garnet/orthopyroxene/biotite, garnet/biotite, garnet/cordierite, garnet/cordierite/biotite, garnet/orthopyroxene/clinopyroxene/Ca-amphibole, Ca-amphibole/biotite (retrograde), was studied by electron microprobe analysis to obtain the respective K D Fe2+ (Ph1/Ph2) values and by polarized single crystal electronic absorption spectroscopy to evaluate the respective CFSEFe2+ values. Other than in the case of Cr3+, a clear quantitative relation between K D (Ph1/Ph2) and the ΔCFSE(Ph1/Ph2) was only observed when geometrical factors, mainly the volume of crystallographic sites and ionic radii of ions competing in the partitioning process, are similar in the respective two paragenetic phases to within 15–20%. In such cases, the ΔCFSEFe2+ contribution to K D (Ph1/Ph2) amounts to 0.1 to 0.2 log K D per 100 cm−1ΔCFSE. The conclusion is that ΔCFSEFe2+ plays only a secondary role after geometrical factors, in the partitioning behaviour of Fe2+. The reason for this is seen in the facts that, compared to the 3d  3-configured Cr3+ ion, CFSE of the 3d6-configured Fe2+ amounts only to 20–25%, and that the former ion enters only octahedral sites with similar geometrical properties in the paragenetic mineral phases. Received: 17 November 1998 / Accepted: 28 June 1999  相似文献   

9.
The Xiadong Alaskan-type complex shares much in common with typical Alaskan-type complexes worldwide, while showing some unique features in terms of mineral compositions. Olivine from the Xiadong dunites is characterized by extremely high Fo component of 91.7–96.7 and anomalously negative correlation of Fo with NiO, while chromite is featured by high 100 × Fe3+/(Fe3+ + Cr + Al) (>70), high 100 × Fe2+/(Fe2+ + Mg) (>70), high 100 × Cr/(Cr + Al) (>90), low MnO (<0.6 wt%) and TiO2 contents (<0.5 wt%). To investigate these particular features, we conducted petrographic observation and mineral composition analyses for the Xiadong dunite. A number of Fe and/or Ni sulfides and alloys occurring as inclusions in olivine and chromite indicate that base metal mineral segregation took place prior to crystallization of olivine and chromite and probably induced Fe and Ni depletions in olivine. The FeO and MgO variations in profile analyses from chromite to adjacent olivine are compatible with Fe-Mg exchange. The diffusion mechanism of Fe from olivine to chromite and Mg from chromite to olivine may have elevated both Fo of olivine and 100 × Fe2+/(Mg + Fe2+) ratio of chromite and further enhanced the decoupling of Fo and NiO in olivine. We thus suggest that base metal mineral segregation and Fe-Mg exchange play important roles in the extreme compositions of the Xiadong dunite. The Ni depletion of olivine and degree of Fe-Mg exchange between olivine and chromite may be used as indicators of mineralization in mafic-ultramafic intrusions.  相似文献   

10.
This paper reports experiments carried out at 1-atm under conditions of controlled oxygen fugacity, using natural andesites and andesite mixed with augite+synthetic pigeonite or augite+orthopyroxene. The experimental results are used (1) to investigate the controls of Mg# (Mg/[Mg+Fe2+]) and temperature on low-Ca pyroxene stability (pigeonite vs orthopyroxene), (2) to quantify the effects of variations in bulk composition on the position of multiple saturation boundaries in mineral component projection schemes and (3) to develop a thermodynamic model for silica activity for melts saturated with olivine and pyroxene. Over the Mg# range of 0.80–0.30 the minimum temperature of pigeonite stability in natural compositions is equivalent to the Lindsley (1983) boundary determined for pure Ca-Mg-Fe pigeonites. For the low variance, 5-phase assemblage oliv-aug-low-Ca pyroxene-plag-liquid, expressions involving liquid (Na2O+K2O)/(Na2O+K2O+CaO),Mg# and TiO2 content predict temperature and the movement of multiple saturation boundaries in pseudoternary projections in response to changing melt composition. The equilibrium for the low pressure melting of low-Ca pyroxene to olivine+liquid is formulated as a geothermometer and monitor of silica activity. Equilibrium constants estimated from thermochemical data and activities calculated for experimentally produced olivine and pyroxenes are used to develop a model for silica activity in liquid.  相似文献   

11.
The equilibrium intracrystalline distribution coefficient, k D *, of Fe* (i.e. Fe2+ + Mn) and Mg between the M1 and M2 sites of three natural nearly binary Fe2+-Mg orthopyroxene crystals (Fs14, Fs15 and Fs49) were determined by annealing experiments at several temperatures between 550 and 1000 °C and single crystal X-ray structure refinements. In addition, the X-ray data of an orthopyroxene crystal (Fs23), which were collected earlier by Molin et al. (1991) between 700 and 1000 °C, were re-refined. The data were processed through two different refinement programs (SHELXL-93 and RFINE90) using both unit and individual weights and also both ionic and atomic scattering factors. The calculated site occupancies were found to agree within their estimated standard errors. However, the use of ionic scattering factors led to significantly better goodness of fit and agreement index, and smaller standard deviations of the site occupancies than those obtained from the use of atomic scattering factors. Furthermore, the weighted refinements yielded significantly smaller standard deviations of the site occupancies than the unweighted refinements even when the same set of reflections was used in the two procedures. The site occupancy data from this study were combined with selected published data to develop expressions of k D * as a function of temperature and composition. Calculation of the excess configurational entropy, ΔS XS, suggests that orthopyroxene should be treated as a two parameter symmetric solution instead of as a “simple mixture”. The calculated ΔS XS values and the excess Gibbs free energy of mixing suggested by available cation exchange data lead to a slightly negative enthalpy of mixing in the orthopyroxene solid solution. Received: 25 August 1998 / Accepted: 10 March 1999  相似文献   

12.
In the system FeO-MgO-Al2O3-SiO2 (FMAS), the equilibrium Al-content of orthopyroxene coexisting with olivine and spinel was reversed in 18 experiments at 1 340° C and 11 or 18 kbar, using graphite capsules and PbO flux. In the CFMAS system (+CaO), the Al-contents of ortho- and clinopyroxene coexisting with olivine and spinel were reversed in 5 experiments at 1 340° C and 18 kbar. The Al-content of clinopyroxene remains constant, while the Al-content of orthopyroxene increases with increasing Fe-content. The Ca-content of clinopyroxene is independent of the Al-content. The data were used to describe the Fe-Mg site distribution in the aluminous orthopyroxene. The Fe-Mg partitioning among orthopyroxene, olivine, spinel and garnet, combined with the Al-content of orthopyroxene, was used to calculate orthopyroxene based thermobarometers in the FMAS, CFMAS and NCFMAS (+Na2O) systems. The thermobarometers were applied to the Adirondack metagabbros, which gave equilibration temperatures of 700–800° C and pressures 7.4–10.3 kbar.  相似文献   

13.
The finding of ilmenite rods in olivine from orogenic peridotites has sparked a discussion about the processes of incorporation and exsolution of titanium in olivine. We have experimentally investigated the solubility of Ti in olivine as a function of composition, temperature and pressure in the synthetic TiO2–MgO–SiO2 system. Experiments at atmospheric pressure in the temperature range 1,200–1,500°C showed that the highest concentration of TiO2 is obtained when olivine coexists with spinel (Mg2TiO4). The amount of TiO2 in olivine in the assemblages olivine + spinel + periclase and olivine + spinel + ilmenite at 1,500°C was 1.25 wt.%. Changes in the coexisting phases and decreasing temperature result in a significant reduction of the Ti solubility. Olivine coexisting with pseudobrookite (MgTi2O5) and a Ti–Si-rich melt at 1,500°C displays a fourfold lower TiO2 content than when buffered with spinel. A similar decrease in solubility is obtained by a decrease in temperature to 1,200°C. There is a negative correlation between Ti and Si and no correlation between Ti and Mg in Ti-bearing olivine. Together with the established phase relations this suggests that there is a direct substitution of Ti for Si at these temperatures, such that the substituting component has the stoichiometry Mg2TiO4. The unit cell volume of olivine increases systematically with increasing TiO2 content demonstrating that the measured TiO2 contents in olivine are not caused by micro-inclusions but by incorporation of Ti in the olivine structure. Least squares fitting of 20 olivine unit cell volumes against the Ti content yield the relation: V3)=290.12(1) + 23.67(85) NTi. The partial molar volume of end-member Mg2TiO4 olivine (NTi=1) is thus 47.24±0.13 cm3. The change of the Ti solubilty in olivine coexistent with rutile and orthopyroxene with pressure was investigated by piston cylinder experiments at 1,400°C from 15 to 55 kbar. There is no increase in TiO2 contents with pressure and in all the experiments olivine contains ~0.2 wt.% TiO2. Moreover, a thermodynamic analysis indicates that Ti contents of olivine coexisting with rutile and orthopyroxene should decrease rather than increase with increasing pressure. These data indicate that the ilmenite exsolution observed in some natural olivine does not signify an ultra-deep origin of peridotite massifs.  相似文献   

14.
The compositional variation of chromite and associated olivine in chromite-rich and chromitepoor cumulus layers of the Panton Sill is described and a diffusion-controlled crystallization mechanism is proposed to explain this variation. By this mechanism, chromite initially precipitates with a fairly uniform composition, irrespective of the relative proportions of coprecipitating olivine and chromite, and is modified by continued growth during the postcumulus stage. The effect of postcumulus overgrowth of chromite, K d =(Mg/Fe2+)liquid/(Mg/Fe2+) chromite6, is to deplete the surrounding magma in chromium and decrease Fe2+ relative to Mg such that a chemical gradient exists between the overlying magma, through which the cumulus grains settled, and the magma in contact with settled chromite grains near the magma/crystal pile interface. Postcumulus equilibration of olivine and chromite with the surrounding magma results in higher Mg/(Mg + Fe2+) ratios of both olivine and chromite and higher Al content of chromite. The extent of this postcumulus modification is directly related to the proportion of chromite to olivine in a particular layer. This model can be extended to stratiform intrusions elsewhere in which chromite coprecipitates with olivine, orthopyroxene or plagioclase and displays similar compositional trends.  相似文献   

15.
Consideration of experimental data on the distribution of Mg2+ between olivine and silicate liquid clearly demonstrates that the distribution coefficient (KMg) is dependent upon variations in temperature, pressure and melt composition, largely because these variables control the solubility of Mg2+ in the melt phase. Attempts to minimize composition dependence of KMg, utilizing various activity-composition models for silicate melts, have been partially successful. Composition-related effects do not appear to be large, however, for melts of restricted range in composition (e.g., tholeiitic or lunar basalts) as long as the contents of alkalis and the alkali/alumina ratio are relatively small (on a molar basis). For such melts, KMg may be used as a reliable geothermometer. By analogy, these conclusions can be extended to the distribution of other divalent cation such as Fe2+, Mn2+, Ni2+ and Co2+.  相似文献   

16.
OH in zoned amphiboles of eclogite from the western Tianshan,NW-China   总被引:1,自引:0,他引:1  
Chemically-zoned amphibole porphyroblast grains in an eclogite (sample ws24-7) from the western Tianshan (NW-China) have been analyzed by electron microprobe (EMP), micro Fourier-transform infrared (micro-FTIR) and micro-Raman spectroscopy in the OH-stretching region. The EMP data reveal zoned amphibole compositions clustering around two predominant compositions: a glaucophane end-member ( B Na2 C M2+ 3 M3+ 2 T Si8(OH)2) in the cores, whereas the mantle to rim of the samples has an intermediate amphibole composition ( A 0.5 B Ca1.5Na0.5 C M 2+ 4.5 M 0.53+ T Si7.5Al0.5(OH)2) (A = Na and/or K; M 2+ = Mg and Fe2+; M 3+ = Fe3+ and/or Al) between winchite (and ferro-winchite) and katophorite (and Mg-katophorite). Furthermore, we observed complicated FTIR and Raman spectra with OH-stretching absorption bands varying systematically from core to rim. The FTIR/Raman spectra of the core amphibole show three lower-frequency components (at 3,633, 3,649–3,651 and 3,660–3,663 cm−1) which can be attributed to a local O(3)-H dipole surrounded by M(1) M(3)Mg3, M(1) M(3)Mg2Fe2+ and M(1) M(3) Fe2+ 3, respectively, an empty A site and T Si8 environments. On the other hand, bands at higher frequencies (3,672–3,673, 3,691–3,697 and 3,708 cm−1) are observable in the rims of the amphiboles, and they indicate the presence of an occupied A site. The FTIR and Raman data from the OH-stretching region allow us to calculate the site occupancy of the A, M(1)–M(3), T sites with confidence when combined with EPM data. By contrast M(2)- and M(4) site occupancies are more difficult to evaluate. We use these samples to highlight on the opportunities and limitations of FTIR OH-stretching spectroscopy applied to natural high pressure amphibole phases. The much more detailed cation site occupancy of the zoned amphibole from the western Tianshan have been obtained by comparing data from micro-chemical and FTIR and/or Raman in the OH-stretching data. We find the following characteristic substitutions Si(T-site) (Mg, Fe)[M(1)–M(3)-site] → Al(T-site) Al[M(1)–M(3)-site] (tschermakite), Ca(M4-site)□ (A-site) → Na(M4-site) Na + K(A-site) (richterite), and Ca(M4-site) (Mg, Fe) [M(1)–M(3)-site] → Na(M4-site) Al[M(1)–M(3)-site] (glaucophane) from the configurations observed during metamorphism.  相似文献   

17.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

18.
The electrical conduction in synthetic, dry polycrystalline, iron-bearing olivine (Fo90) was investigated as a first-order approach to the electrical conductivity in the upper mantle. This fundamental study is of great importance to better understand the charge-transport mechanisms seen in olivine. Conduction processes in synthetic samples are not influenced by a complex geological history in contrast to conductivity in natural olivine. The experiments show that the apparent activation energy for conductivity for Fo90 is 230 kJ mol−1. In currently accepted defect modeling, natural and synthetic olivine requires a mechanism involving small polaron formation (Fe· Mg and magnesium vacancies (V Mg) as the dominant diffusing species to explain a fO21/6 relation to electrical conduction. Here, Fo90 shows no contribution of small polarons to conductivity at temperatures between 1,000 and 1,200°C and almost no dependence on fO2. Instead, under reducing conditions magnesium vacancies (and electrons) appear to be the major charge carriers.  相似文献   

19.
20.
We have investigated the effect of Fe on the stabilities of carbonate (carb) in lherzolite assemblages by determining the partitioning of Fe and Mg between silicate (olivine; ol) and carbonates (magnesite, dolomite, magnesian calcite) at high pressures and temperatures. Fe enters olivine preferentially relative to magnesite and ordered dolomite, but Fe and Mg partition almost equally between disordered calcic carbonate and olivine. Measurement of K d (X Fe carb X Mg ol /X Fe ol X Mg carb ) as a function of Fe/ Mg ratio indicates that Fe–Mg carbonates deviate only slightly from ideality. Using the regular solution parameter for olivine W FeMg ol of 3.7±0.8 kJ/mol (Wiser and Wood 1991) we obtain for (FeMg)CO3 a W FeMg carb of 3.05±1.50 kJ/mol. The effect of Ca–Mg–Fe disordering is to raise K d substantially enabling us to calculate W CaMg carb -W CaFe carb of 5.3±2.2 kJ/mol. The activity-composition relationships and partitioning data have been used to calculate the effect of Fe/Mg ratio on mantle decarbonation and exchange reactions. We find that carbonate (dolomite and magnesian calcite) is stable to slightly lower pressures (by 1 kbar) in mantle lherzolitic assemblages than in the CaO–MgO–SiO2(CMS)–CO2 system. The high pressure breakdown of dolomite + orthopyroxene to magnesite + clinopyroxene is displaced to higher pressures (by 2 kbar) in natural compositions relative to CMS. CO2. We also find a stability field of magnesian calcite in lherzolite at 15–25 kbar and 750–1000°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号