首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在华北克拉通北缘大青山地区,广泛的深熔作用导致新太古代晚期石榴花岗岩发育.石榴花岗岩空间上与新太古代晚期大青山表壳岩(主要为石榴黑云母片麻岩)共生,渐变过渡.宏观上岩性具有不均一性,在包头哈德门沟一条实测地质剖面上可以观察到石榴混合闪长岩、石榴混合石英闪长岩和石榴混合花岗闪长岩等不同岩石类型.岩相学研究表明,石榴花岗岩...  相似文献   

2.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

3.
Orogenic compression-related fabrics (~340–335 Ma) were reworked during regional extensional deformation (~328–325 Ma) in a large anatectic crustal domain of the Central Vosges (NE France). The extension was first accommodated by brittle dilation affecting vertically anisotropic high-grade rocks associated with emplacement of subvertical granitic sheets. The AMS fabric of granitoids is consistent with highly partitioned transtensional deformation marked by alternations of flat and steep foliations and development of orthogonal lineations. This deformation passes to top-to-the-southwest ductile shearing expressed in southerly migmatitic middle crust. The AMS fabric revealed moderately west-dipping foliations bearing subhorizontal NNW–SSE-trending lineations and predominantly plane strain to prolate shapes. This fabric pattern is interpreted as a viscous response of stretched partially molten crust during continuous ductile extension. Vertical ascent of voluminous granites and stoping of the upper crust occurs further south. This gravity ascent triggered by extension leads to development of south-dipping AMS foliations, south-plunging lineations and oblate fabrics in various crustal granites. Vertical shortening related to ascent of these (~325 Ma) granitoids and persistent N–S stretching is responsible for reworking and remelting of originally vertical compression-related fabric in roof supracrustal granites (~340 Ma) and development of highly prolate fabrics in these rocks. This work shows that the finite shape of AMS fabric ellipsoid is highly sensitive to both strain regime and superpositions of orthogonal deformation events.  相似文献   

4.
王仁民  李孟江  程素华 《岩石学报》2012,28(4):1037-1043
在华北克拉通北部,太古代麻粒岩古陆核与陆外沉积盆地(红旗营子群)之间已经厘定出一个晚太古代的古洋壳残片(Wang et al., 2009)。此残片南北两侧又发现了低Al2O3 型TTG岩体(2512±19Ma)、富钾高铬的深熔花岗岩(Closepet-like),含Cr 97×10-6~308×10-6,以及含大量密集的煌斑岩脉的含石英的二长岩(Sanukitoid-like)等三类在成因上与俯冲带密切相关的岩体。低Al2O3型TTG是在角闪麻粒岩亚相条件下由俯冲中的滑片部分熔融所生成。深熔花岗岩是TTG再熔融的产物,而它们的基性化演化和Cr的增高是幔源岩浆与富钾深熔花岗岩经复杂的岩浆混合和交代改造的结果。  相似文献   

5.
Three major episodes of folding are evident in the Eastern Ghats terrain. The first and second generation folds are the reclined type; coaxial refolding has produced hook-shaped folds, except in massif-type charnockites in which non-coaxial refolding has produced arrow head folds. The third generation folds are upright with a stretching lineation parallel to subhorizontal fold axes. The sequence of fold stylesreclinedF 1and coaxialF 2, clearly points to an early compressional regime and attendant progressive simple shear. Significant subhorizontal extension duringF 3folding is indicated by stretching lineation parallel to subhorizontal fold axes. In the massif-type charnockites low plunges ofF 2folds indicate a flattening type of deformation partitioning in the weakly foliated rocks (magmatic ?). The juxtaposition of EGMB against the Iron Ore Craton of Singhbhum by oblique collision is indicative of a transpressional regime.  相似文献   

6.
Composition and evolution of fluids depositing tin and tungsten ores in Kibaran quartz vein deposits allow the modelling of devolatizing evolved granites as their source at depth. Fluids forming gold quartz veins and breccias are different from the first, especially by showing characteristics of a high-pressure environment. All deposits are controlled by compressional deformation whose fading phases affect earlier formed veins. These findings lead to the conclusion that both anatectic melting resulting in intrusion of fertile granites, and the generation of fluids forming gold deposits are the final consequence of deep crustal metamorphism. The latter was caused by crustal thickening immediately preceding the metallogenetic climax.  相似文献   

7.
Microstructural criteria for the determination of the sense of shear in rocks homogeneously deformed in the partially melted state are similar to those which apply to solid-state deformation. Sense of shear determination is either direct, deduced from the sense of rotation of markers, or indirect, involving the obliquity between the shear and foliation planes, or between the successive foliations imprinted at different stages of progressive deformation.This study is a by-product of the detailed structural and microstructural investigation of a high-grade metamorphic rock pile (Variscan Vosges Massif, France) which underwent subhorizontal shearing during partial melting and further solidification. Depending on the rock chemistry, on the position in the pile and the relative timing of progressive deformation, layered migmatites and homogeneous granites were variously deformed in the partially melted and solid states. The sense of shear obtained from these rock types, using the criteria presented here, consistently gives a top to SW direction.  相似文献   

8.
The detailed investigation of the Bushveld granites, around the Rooiberg area, has revealed the existence, in the field, of at least three main types:
  1. Granophyric rocks, which form a belt (transition-zone) between the country rocks (sediments and felsite) and the Main granite.
  2. Main granite, which is the most common type of granite.
  3. Younger granites, which are responsible for the tin mineralization.
All evidence points to a metasomatic origin for the granophyric rocks. For the Main granite, a probable anatectic origin is proposed, which is borne out by the presence of ghost-stratigraphy patterns, detected by trend surface analysis. The younger granites are undoubtely magmatic. On account of parallelism between the structural lines of the granitic rocks and the country rocks, an hypothesis based on deformation contemporaneous with the emplacement of the granites is advanced to explain the structure of the Rooiberg Area. In view of this hypothesis, the “Rooiberg roof-pendant” is considered to be probably a portion of the roof in its normale position.  相似文献   

9.
Granite magma migration and emplacement along thrusts   总被引:1,自引:0,他引:1  
This paper investigates the influence exerted by brittle tectonic structures in the emplacement of granite plutons in contractional settings. We address both cases where contractional tectonics and magma intrusion are (1) coeval, to study how active contractional tectonics controls the transport of magma, and (2) diachronous, to study the role of pre-existing structures on the transport of magma. In light of new experimental models, we show that magma can rise along thrusts ramps and flats. This phenomenon occurs for both low-viscosity magma (basalts to andesite) and high-viscosity magma (dry granite). The experimental results also allow the evaluation of the role played by magma viscosity in determining pluton geometries. In addition, a review of literature demonstrates a spatial and causal relationship between granites and thrusts and highlights the geometric control of magma pathways in the pluton final shape. The abundance of subhorizontal and tabular granitic intrusions indicates that the location of inflating granitic sills along thrust flats can be common. We argue that active and pre-existing flats-and-ramps thrusts provide a preferential continuous planar anisotropy susceptible to become a granitic magma migration pathway.  相似文献   

10.
The Khungariisk high-alumina S-type granites (northern Sikhote-Alin fold system, Russian Far East) have been formed as a result of anatectic melting during collision of the Anyuy sialic block with the continental margin in the Early Cretaceous. Methane-rich fluid inclusions are characteristic of these granites. The CH4-H2O fluid composition is explained by the release of water and methane from the sedimentary units residing on the oceanic plate, as it was subducted beneath the sialic block. This fluid seeped into the heated and deformed metamorphic rocks of the overlying block and initiated partial fusion of the granites. A comparison of the new data with the results of fluid-inclusion studies of high-alumina collisional granites from the Pamir Mountains and Japan reveals similarities. Thus, methane-bearing fluid is probably one of the general features of this granite type, reflecting its anatectic origin.  相似文献   

11.
The Xolapa Complex (XC) is the largest plutonic and metamorphic mid‐crustal basement unit in Mexico and represents an ancient continental magmatic‐arc. A complete range from metatexite to diatexite migmatitic structures has been produced during a single high‐grade metamorphic event. However, structural relics reveal the existence of early Cpx + Pl + Qtz ± Opx and Grt + Opx + Pl + Qtz ± Cpx pre‐migmatitic metamorphic assemblages. Field relationships and microstructural observations allow us to constrain five pre‐, syn‐ and post‐migmatitic deformational phases. It is argued that migmatitic structures and minor anatectic granites were developed during ductile recumbent folding and shear structures related to the D2–D3 phases. Late post‐migmatitic ductile‐brittle deformation is evidenced by the development of NNE trending transpressional thrusting (D4), and E–W left‐lateral mylonitic shear zones (D5). Biotite‐breakdown melting in felsic rocks and amphibole‐breakdown melting in mafic rocks, as well as geothermobarometric results, indicate that metamorphism took place at temperatures from 830 to 900 °C and pressures ranging from ≥6.3 to 9.5 kbar. Late migmatitic assemblages equilibrated in the highest temperature range along a clockwise P–T path. The relationships between the large diversity of migmatitic structures and the progressive production of melt suggest that feedback relations prevailed as a time‐marker during a contractional regime. Deformation, metamorphism, and plutonism of the XC show that this terrane evolved as a north‐east‐verging thrust system with synkinematic metamorphism and partial melting, during the Late Cretaceous – Palaeogene. The tectonothermal history of XC is analogous to a Cordilleran metamorphic magmatic‐arc formed in an accretionary tectonic framework. This new model provides constraints on the exhumation mechanism and thermal evolution of southern Mexico.  相似文献   

12.
Granitic rocks of various ages and composition are found in the Schwarzwald region of West Germany. These granites range in age from Upper Devonian to Upper Carboniferous (370-280 m.y.) and in composition from granodiorites to alkali feldspar granites. 14 representative samples of twelve different types were analysed for their La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Lu by instrumental neutron activation. The studies reveal that there are characteristic differences between the different types of granitic rocks both as regards to their total REE content as well as the distribution pattern of these elements. These differences can not be directly related to the variations in the major element chemistry or the mineralogy of the granites. On the other hand, a relationship is found between the age of the granitic rocks and the total REE as well as their distribution pattern. In general the ΣREE varies from 22 to 215 ppm in different types. The ΣLa-Lu increases gradually in the direction Upper Devonian→Lower Carboniferous, however, in the granitic rocks of the Upper Carboniferous this trend is reversed and there is again a marked depletion in the content of REE. The chondrite normalised patterns of all the older types give a smooth concave curve with decrease of concentration from La to Lu. All the Upper Carboniferous granites on the other hand are characterised by a progressive pronounced negative Eu anomaly. The gradual increase of the ΣREE in the older granites is related to their evolution by progressive anatexis, whereas, the decrease in the total REE content in case of the younger Upper Carboniferous granites is due to processes of magmatic differentiation. The depletion of Eu in these K-feldspar rich types of granite is probably related to the breakdown of biotite in the anatectic starting material.  相似文献   

13.
Abstract The high-grade metamorphic rocks of southern Brittany underwent a complex tectonic evolution under various P-T conditions (high-P, high-T), related to stacking of nappes during Palaeozoic continentcontinent collision. The east to west thrusting observed in the whole belt is strongly perturbed by vertical movements attributed to the ascent of anatectic granites in the high-T area. The field reconstruction of subvertical, closed elliptical structures in gneisses and migmatites, associated with the subhorizontal, doubly radial pattern of stretching lineation in the mica schists, suggests the existence of an elliptical diapiric body buried at depth beneath the present erosion level. Deformation is associated with a complex P-T evolution partly recorded in aluminous gneisses (kinzigites, e.g. morbihanites). A chronology of successive episodes of mineral growth at different compositions is established by detailed studies of the mineral-microstructure relationships in X-Z sections, using the deformation-partitioning concept (low- and high-strain zones). Several thermometric and barometric calibrations are applied to mineral pairs either in contact or not in contact but in equivalent microstructiiral positions with respect to the deformation history. This methodology provides a continuous microstructural control of P-T variations through time and leads to three P-T-t-d paths constructed from numerous successive P-T estimations. Path 1 is a clockwise retrograde path preserved in low-strain zones, which records general exhumation movements after crustal thickening. Paths 2 and 3 are clockwise prograde/retrograde paths from high-strain zones; they are interpreted and discussed in the light of models of crustal anatexis and upward movement of magma (diapirism). Deformation and P-T effects induced by diapirism can be distinguished from the general deformation-metamorphic history of a belt, and would seem to be produced during a late stage of its history. The present microstructural-petrological approach to defining successive mineral equilibria in relation to progressive deformation steps provides a far more accurate evaluation of the metamorphic evolution than is possible by ‘standard’thermobarometry.  相似文献   

14.
The Araçuaí orogen is the Brazilian counterpart of the Araçuaí‐West Congo orogenic system (AWCO), a component of the Ediacaran‐Cambrian orogenic network formed during the amalgamation of West Gondwana. The northwestern portion of the Araçuaí orogen is dominated by a succession of metasedimentary rocks made up of Meso‐ to Neoproterozoic rift, passive margin and syn‐orogenic sequences, locally intruded by post‐collisional granites. These sequences are involved in three distinct tectonic units, which from west to east are: the southern Espinhaço fold‐thrust system (SE‐thrust system), the normal‐sense Chapada Acauã shear zone (CASZ) and the Salinas synclinorium. Three deformation phases were documented in the region. The first two phases (D1 and D2) are characterized by contractional structures and represent the collisional development stage of the orogen. The third phase (D3) is extensional and currently viewed as a manifestation of orogenic collapse of the system. The distribution of the metamorphic mineral assemblages in the region characterizes two metamorphic domains. The M‐Domain I on the west, encompassing the SE‐thrust system and the CASZ, is marked by a syn‐collisional (syn‐D1) Barrovian‐type metamorphism with P–T conditions increasing eastwards and reaching ~8.5 kbar at ~650°C between 575 and 565 Ma. The M‐Domain II comprises the Salinas synclinorium in the hangingwall of the CASZ, and besides the greenschist facies syn‐collisional metamorphism, records mainly a Buchan‐type metamorphic event, which took place under 3–5.5 kbar and up to 640°C at c. 530 Ma. The northwestern Araçuaí orogen exhibits, thus, a paired metamorphic pattern, in which the Barrovian and Buchan‐type metamorphic domains are juxtaposed by a normal‐sense shear zone. Lithospheric thinning during the extensional collapse of the orogen promoted ascent of the geotherms and melt generation. A large volume of granites was emplaced in the high grade and anatectic core of the orogen during this stage, and heat advected from these intrusions caused the development of Buchan facies series over a relatively large area. Renewed granite plutonism, hydrothermal activities followed by progressive cooling affected the system between 530 and 490 Ma.  相似文献   

15.
The Dating rocks and Darjeeling gneisses, which constitute the Sikkim dome in eastern Himalaya, as well as the Gondwana and Buxa rocks of ‘Rangit Window’, disclose strikingly similar sequences of deformation and metamorphism. The structures in all the rocks belong to two generations. The structures of early generation are long-limbed, tight near-isoclinal folds which are often intrafolial and rootless. These intrafolial folds are associated with co-planar tight folds with variably oriented axes and sheath folds with arcuate hinges. Penetrative axial plane cleavage and mineral lineation are related structures; transposition of bedding is remarkable. This early phase of deformation (D 1) is accompanied by constructive metamorphism. The structures of later generation are open, asymmetrical or polyclinal; a crenulation cleavage or discrete fracture may occur. The structures of early generation are distorted by folds of later generation and recrystallized minerals are cataclastically deformed. Recrystallization is meagre or absent during the later phase of deformation (D 2). The present discussion is on structures of early generation and strain environment during theD 1 phase of deformation. The concentration of intrafolial folds in the vicinity of ductile shear zones and decollement or detachment surface (often described as ‘thrust’) may be considered in this context. The rocks of Darjeeling-Sikkim Himalaya display minor structures other than intrafolial folds and variably oriented co-planar folds. The state of finite strain in the rocks, as observed from features like flattened grains and pebbles, ptygmatic folds and boudinaged folds indicate combination of flattening and constrictional type strain. The significance of the intrafolial folds in the same rocks is discussed to probe the environment of strain during progressive deformation (D 1).  相似文献   

16.
Multiple deformation in all the Precambrian metamorphic-migmatitic rocks has been reported from Rajasthan during the last three decades. But, whereas the Aravalli Group and the Banded Gneissic Complex show similarity in the style and sequence of structures in all their details, the rocks of the Delhi Group trace a partly independent trend. Isoclinal folds of the first generation (AF1) in the rocks of the Aravalli Group had gentle westerly plunge prior to later deformations. These folds show reclined, inclined, and upright attitude as a result of coaxial upright folding (AFla). Superposition of upright folds (AF2) of varying tightness, with axial plane striking N to NNE, has resulted in interference patterns of diverse types in the scale of maps, and deformation of earlier planar and linear structures in the scale of hand specimens. The structures of the third generation (AF3) are either open recumbent folds or reclined conjugate folds with axial planes dipping gently towards NE or SW. Structures of the last phase are upright conjugate folds (AF4) with axial planes striking NNE-SSW and E-W. The Banded Gneissic Complex (BGC) underlies the Aravalli Group with a conglomerate horizon at the contact, especially in southern Rajasthan. But, for a major part of central and southern Rajasthan, migmatites representing BGC show a structural style and sequence identical with those in the Aravalli Group. Migmatization, broadly synkinematic with the AF1 folding, suggests extensive remobilization of the basement. Very rare relict fabric athwart to and overprinted by structures of AF, generation provide tangible evidence for a basement. Although the structures of later phases in the rocks of the Delhi Group (DF3 and DF4) match with the late-phase structures in the Aravalli Group (AF3 and AF4), there is a contrast in the structural history of the early stages in the rocks of the two groups. The folds of the first generation in the Delhi Group (DF1) were recumbent to reclined with gentle plunge towards N to NNE or S to SSW. These were followed by coaxial upright folds of varying tightness (DF2). Absence of westerly trending AF1 folds in the Delhi Group, and extreme variation in plunge of the AF2 folds in contrast with the fairly constant plunge of the DF2 folds, provide evidence for an angular unconformity between the Aravalli and the Delhi Groups. Depending on the importance of flattening attendant with and following buckling during AF2 deformation, the lineations of AF1 generation show different patterns. Where the AF1 lineations are distributed in circular cones around AF2 axes because of flexural-slip folding in layered rocks with high viscosity contrast, loci of early lineations indicate that the initial orientation of the AF1 axes were subhorizontal, trending towards N280°. The orientation of the axial planes of the earlier folds has controlled the development of the later folds. In sectors where the AF, axial planes had N-S strike and gentle dips, or E-W strike with gentle to steep dips, nearly E-W horizontal compression during AF2 deformation resulted in well-developed AF2 folds. By contrast, where the AF, axial planes were striking nearly N-S with steep dips, E-W horizontal compression resulted in tightening (flattening) of the already isoclinal AF1 folds, and probably boudinage structures in some instances, without the development of any AF2 folds. A similar situation obtains when DF4 deformation is superposed on earlier structures. Where the dominant S-planes were subhorizontal, N-S compression during DF4 deformation resulted in either chevron folds with E-W striking axial plane or conjugate folds with axial plane striking NE and NW. In zones with S-planes striking E-W and dipping steeply, the N-S compression resulted in flattening of the earlier folds without development of DF4 folds.  相似文献   

17.
Field studies in the Palaeoproterozoïc Daléma basin, Kédougou-Kéniéba Inlier, reveal that the main tectonic feature comprises alternating large shear zones relatively well-separated by weakly deformed surrounding rock domains. Analysis of the various structures in relation to this major D2 phase of Eburnean deformation indicates partitioning of sinistral transpressive deformation between domains of dominant transcurrent and dominant compressive deformation. Foliation is mostly oblique to subvertical and trending 0–30° N, but locally is subhorizontal in some thrust-motion shear zones. Foliation planes of shear zones contain a superimposed subhorizontal stretching lineation which in places cross-cuts a steeply plunging stretching lineation which is clearly expressed in the metasedimentary rocks of weakly deformed surrounding domains. In the weakly deformed domains, the subhorizontal lineation is absent, whereas the oblique to subvertical lineation is more fully developed. Finite strain analyses of samples from surrounding both weakly deformed and shearing domains, using finite strain ratio and the Fry method, indicate flattened ellipsoid fabrics. However, the orientation of the long axis (X) of the finite strain ellipsoid is horizontal in the shear zones and oblique within the weakly deformed domains. Exceptionally, samples from some thrust zones indicate a finite strain ellipsoid in triaxial constriction fabrics with a subhorizontal long axis (X). In addition, the analysis of the strain orientation starting from semi-ductile and brittle structures indicates that a WNE–ESE (130° N to 110° N) orientation of strain shortening axis occurred during the Eburnean D2 deformation.  相似文献   

18.
Partial melting has been shown to be an important mechanism for intracrustal differentiation and granite petrogenesis. However, a series of compositional differences between granitic melt from experiments and natural granites indicate that the processes of crustal differentiation are complex. To shed light on factors that control the processes of crustal differentiation, and then the compositions of granitic magma, a combined study of petrology and geochemistry was carried out for granites (in the forms of granitic veins and parautochthonous granite) from a granulite terrane in the Tongbai orogen, China. These granites are characterized by high SiO2 (>72 wt%) and low FeO and MgO (<4 wt%) with low Na2O/K2O ratios (<0.7). Minerals in these granites show variable microstructures and compositions. Phase equilibrium modelling using P–T pseudosections shows that neither anatectic melts nor fractionated melts match the compositions of the target granites, challenging the conventional paradigm that granites are the crystallized product of pure granitic melts. Based on the microstructural features of minerals in the granites, and a comparison of their compositions with crystallized minerals from anatectic melts and minerals in granulites, the minerals in these granitoids are considered to have three origins. The first is entrained garnets, which show comparable compositions with those in host granulites. The second is early crystallized mineral from melts, which include large plagioclase and K-feldspar (with high Ca contents) crystals as well as a part of biotite whose compositions can be reproduced by crystallization of the anatectic melts. The compositions of other minerals such as small grained plagioclase, K-feldspar and anorthoclase in the granites with low Ca contents are not well reconstructed, so they are considered as the third origin of crystallized products of fractionated melts. The results of mass balance calculation show that the compositions of these granites can be produced by mixing between different proportions of crystallized minerals and fractionated melts with variable amounts of entrained minerals. However, the calculated modal proportions of different crystallized minerals (plagioclase, K-feldspar, biotite and quartz) in the granites are significantly different from those predicted by melt crystallization modelling. Specifically, some rocks have lower modes of biotite and plagioclase, whereas others show lower K-feldspar modes than those produced by melt crystallization. This indicates that the crystallized minerals would be differentially separated from the primary magmas to form the evolved magmas that produce these granites. Therefore, the crystal entrainment and differential melt-crystal separation make important contributions to the composition of the target granites. Compared with leucogranites worldwide, the target granites show comparable compositions. As such, the leucogranites may form through the crystal fractionation of primary granitic magmas at different extents in addition to variable degrees of partial melting.  相似文献   

19.
Abstract The St Malo region in north-west France contains migmatites and anatectic granites derived by partial melting of metasedimentary protoliths during Cadomian orogenesis at c. 540 Ma. Previously reported Rb–Sr model ages for muscovite and biotite range from c. 550 to c. 300 Ma, and suggest variable resetting of mineral isotopic systems. These rocks display microscopic evidence for variably intense Cadomian intracrystalline plastic strain but record no obvious evidence of penetrative Palaeozoic regional deformation. 40Ar/39Ar mineral ages have been determined to evaluate better the extent, timing and significance of Palaeozoic overprinting. Eleven muscovite concentrates and one whole-rock phyllite have been prepared from various units exposed in the St Malo and adjacent Mancellian regions. In the Mancellian region, muscovite from two facies of the Bonnemain Granite Complex record 40Ar/39Ar plateau ages of c. 527 and 521 Ma. An internally discordant 40Ar/39Ar release spectrum characterizes muscovite from protomylonitic granite within the Cadomian Alexain-Deux Evailles-Izé Granite Complex, and probably records the effects of Variscan displacement along the North Armorican Shear Zone. Muscovite concentrates from anatectic granite and from Cadomian mylonites along ductile shear zones within the north-western sector of the St Malo region exhibit internally discordant 40Ar/39Ar release spectra which suggest variable and partial late Palaeozoic rejuvenation. By contrast, muscovite concentrates from samples of variably mylonitic Brioverian metasedimentary rocks exposed within the south-eastern sector of the St Malo region display internally concordant apparent age spectra which define plateaux of 326–320 Ma. A whole-rock phyllite sample from Brioverian metasedimentary rocks exposed along the eastern boundary of the St Malo region displays an internally discordant argon release pattern which is interpreted to reflect the effects of a partial late Palaeozoic thermal overprint. Muscovite from the Plélan granite, part of the Variscan Plélan-Bobital Granite Complex, yields a 40Ar/39Ar plateau age of c. 307 Ma. The 40Ar/39Ar results indicate that Cadomian rocks of the St Malo region have undergone a widespread and variable Palaeozoic (Carboniferous) rejuvenation of intracrystalline argon systems which apparently did not affect the Mancellian region. This rejuvenation was not accompanied by penetrative regional deformation, and was probably of a static thermal–hydrothermal origin. The heat source for rejuvenation was probably either the result of heating during Variscan extension or advection from Variscan granites which are argued to underlie the St Malo region.  相似文献   

20.
In the Harts Range (central Australia), the upper amphibolite facies to lower granulite facies, c. 480–460 Ma Harts Range Metamorphic Complex (HRMC), and the upper amphibolite facies, c. 340–320 Ma Entia Gneiss Complex are cut by numerous, generally peraluminous pegmatites and their deformed equivalents. The pegmatites have previously been interpreted as locally derived partial melts. However, SHRIMP U–Pb monazite and zircon dating of 29 pegmatites or their deformed equivalents, predominantly from the HRMC, reveal that they were emplaced episodically throughout almost the entire duration of the polyphase, c. 450–300 Ma intra‐plate Alice Springs Orogeny. Episodes of pegmatite intrusion correlate with the age of major Alice Springs‐age structures and with deposition of syn‐orogenic sedimentary rocks in the adjacent Centralian Superbasin. Similar Alice Springs ages have not been obtained from anatectic country rocks in the HRMC, suggesting that the pegmatites were not locally derived. Instead, they are interpreted as highly fractionated granites, and imply that much larger parental Alice Springs‐age granites exist at depth. The mechanism to allow repeated felsic magmatism in an intraplate setting, where all exposed rock types had a previous high‐temperature history, is enigmatic. However, we suggest that episodic underthrusting and dehydration of unmetamorphosed Centralian Superbasin sedimentary rocks allowed crustal fertility to maintained over a c. 140 Ma interval during the intra‐plate Alice Springs Orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号