首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The coalescence and spatial variability of different thrust‐related folding mechanisms involving the same mechanical multilayer along a curved thrust system are documented in this study. The field‐based analysis of thrust‐related folds spectacularly exposed in the Gran Sasso thrust system, Central Apennines of Italy, allowed us to reconstruct the interference fold pattern between fault‐bend and fault‐propagation folding. These two thrust‐related folding mechanisms exhibit spatial variability along the differently oriented ramps of the curved Gran Sasso thrust system, passing from one style to the other. Their selective development is controlled by contrasting styles of compressional normal‐fault reactivation related to positive tectonic inversion. Fault‐bend and fault‐propagation folding interact with a characteristic interference fold pattern in the salient apex zone of the curved thrust system due to their synchronous/in‐sequence growth. This interference fold pattern might be helpful and predictive when reconstructing lateral variations in different thrust‐related folds in similar subaerial or submarine thrust belts.  相似文献   

2.
In the internal part of the Umbro-Marchean-Romagnan Apennines, the foredeep clastic wedge constituting the Neogene part of the sedimentary cover is completely detached from the underlying Mesozoic–Palaeogene succession. The resulting (Umbro-Romagnan) parautochthon consists of tectonostratigraphic units with a general geometry of broad synclinal blocks separated by narrow faulted anticlines.
Thrust-related structures observed in the field require thrust ramp propagation to have occurred within already folded rocks; therefore, they cannot be restored using simple fault-bend fold or fault-propagation folding models. Evidence for a passive fold origin in the studied rocks suggests that an early detachment folding episode preceded ramp propagation. The latter was facilitated by the enhanced thickness of incompetent material in the cores of detachment anticlines, which became the preferential sites where thrust ramps cut up-section. Depending on the trajectory of such thrust ramps, different types of fault-related structures could develop. Hanging-wall anticlines which give way to monoclinal structures higher up in the section are associated with listric thrust ramps, whereas hanging wall monoclines approximately parallel to the underlying fault surface are associated with straight-trajectory ramps.
This kinematic evolution, which occurred partly during syn-depositional compression, also accounts for the observed lithofacies distribution. The latter reflects an early differentiation of the foredeep trough into sub-basins that are progressively younger towards the foreland. The detachment anticlines that originally bounded such sub-basins were the site of later thrust propagation, leading to a tectonic juxtaposition of different tectonostratigraphic units consisting of broad NW-SE elongate synclinal blocks.  相似文献   

3.
In this paper, we analyze small scale examples of thrust faults and related folding in outcrops of the Cretaceous Boquillas Formation within Big Bend National Park in west Texas to develop detailed understanding of the fault nucleation and propagation that may aid in the interpretation of larger thrust system structure. Thrust faults in the outcrop have maximum displacements ranging from 0.5 cm to 9 cm within competent limestone beds, and these displacements diminish both upward into anticlines and downward into synclines within the interbedded and weaker mudrock layers. We interpret the faults as having nucleated within the competent units and partially propagated into the less competent units without developing floor or roof thrusts. Faults that continued to propagate resulted in hanging wall anticlines above upwardly propagating fault tips, and footwall synclines beneath downwardly propagating fault tips. The observed structural style may provide insights in the nucleation of faults at the formation scale and the structural development at the mountain-range scale. Décollement or detachment layers may be a consequence rather than cause of thrust ramps through competent units and could be over interpreted from seismic data.  相似文献   

4.
玛东褶皱-冲断带是世界上保存最好的早古生代褶皱冲断带之一,也是塔里木油气勘探的重点区域之一。褶皱-冲 断带浅部构造由于遭受强烈剥蚀,为玛东褶皱-冲断带的构造样式和变形机制研究带来巨大的挑战。断层相关褶皱理论定 量化建立了断层形态和褶皱形态几何学和运动学的关系,是一种有效的利用断层形态来推测褶皱形态的方法,为恢复玛东 地区被剥蚀区域的构造形态提供了可能。文中详细介绍了断层转折褶皱和断层传播褶皱的几何学和运动学特征,并将其应 用于玛东地区的典型构造中,建立2 种玛东地区构造变形模式。最后结合工业地震剖面和钻井资料,认为玛东地区的主要 构造样式是断层转折褶皱, 并分析了构造样式对油气圈闭的影响。  相似文献   

5.

An overturned angular fold in the Currabubula Formation at Tulcumba Ridge has a north‐south axial trace exposed along the western side of this ridge. The geometry and position of this fold adjacent to the Mooki Thrust is consistent with its formation as a fault‐propagation fold involving a thrust step‐up angle of ~ 30° from a décollement. Overturned strata also occur adjacent to the Mooki Thrust near the Rocky Creek Syncline to the north and to the south on Gunnan Ridge and in the Werrie Syncline. Overturning of strata in these areas may be the result of fault‐propagation folding. It is suggested that folding in the Tamworth Belt involves thin‐skinned deformation that is dominantly fault‐related.  相似文献   

6.
基底断层在沉积盖层中传播所形成的褶皱形态难以用平行膝折褶皱理论进行解释,这在于两者的流变学性质有很大差异。Erslev提出了三角剪切断层传播褶皱理论,认为下伏断层的脆性强破裂变形为向上变宽的三角形分布式剪切所调节,三角形顶点固定于断层端点。Hardy和Ford拓展了这一理论并成功地建立数字模拟模型,Allmendinger进一步建立与完善了三角剪切的正演模型与反演方法。通过运动学模型预测结果与天然构造观察和相似模拟实验结果的对比分析,以及通过一系列力学模型对运动学模型的检验,三角剪切断层传播褶皱理论被证实并获得了广泛应用。对前陆盆地、克拉通盆地和走滑盆地的基底卷入型构造与走滑或斜向滑动构造,都可以应用三角剪切断层传播褶皱理论来分析变形样式及其分布特征。该理论可以有效地预测隐伏断层的初始破裂点、断层传播量与发育部位,已成功地应用于工程地质与地震灾害预报等方面。  相似文献   

7.
Non-cylindrical, flexural slip folding is described from the well-known coastal section between Ardwell Bay and Kennedy's Pass, near Girvan, southwest Scotland. Bedding plane slip is recognised by the ubiquitous slickenside striations on bedding surfaces, and these linear elements define the ac kinematic plane of fold formation. This intersects the axial surfaces of folds (ab) in the common direction a which is the movement direction during fold propagation. Statistical treatment of the orientation of structural and kinematic elements yields important conclusions concerning fold formation: the Ardwell folds are markedly non-cylindrical and this is a primary feature amplified during the Ardwell Fold Phase.  相似文献   

8.
Mapping the nucleation and 3D fault tip growth of the active Osaka-wan blind thrust provides an opportunity to asses how reactivated thrusts build slip from preexisting faults and the threat they pose as sources of large earthquakes. Analysis of folded growth strata, based on 2D trishear inverse modeling allows a range of best-fit models of the evolution of slip and propagation of the fault to be defined. The depth of the fault tip at 1200 ka varies between ∼1.5–4.5 km, suggesting the fault grew upward from high in the crust, and that it is reactivated. From its onset at ∼1500 ka, the fault grew rapidly along strike in ∼300 ky, and upwards with a P/S ratio of 2.5–3.0, but variable fault slip in space and time. Shallower depths of the fault tip at initiation and thinner basin fill correlates with slower propagation with time, contradicting models that argue for sediments as inhibitors of fault growth. Results also suggest the displacement profile of the currently active thrust is offset from its predecessor, assuming shallower depths to the original fault correlate with greater displacement in its prior history. These results suggest reactivated faults may accrue slip differently than newly developed ones, based on the history of upward fault propagation.  相似文献   

9.
《International Geology Review》2012,54(12):1121-1131
The Xianshuihe fault zone (XFZ) forms a boundary that accommodates crustal movement eastwards from central Tibet. The lack of well-defined time constraints has hampered the reconstruction of the geometric and kinematic evolution of the fault zone, and inhibited the development of a consistent regional tectonic model. New geochronological investigations of mica K/Ar and apatite fission-track ages on the Ganzi–Yushu segment of the XFZ indicate that fault activity started ca. 13 Ma before present, which considerably precedes the 5 Ma initiation of offset on the Xiaojiang fault (XjF) segment. Different initiation times for different fault segments clearly demonstrate that the geometric and kinematic evolution of the XFZ can be divided into two periods. The XFZ cut through the Dangjiang, Ganzi, and Gongga Shan areas, and reached the Qinghe–Yanyuan area during an early stage, from ca. 13 to 5 Ma, as a boundary fault with lateral mass transfer from the interior to southeast Tibet. At the southern edge of the XFZ, the movement took advantage of the southern segment of the Longmen Shan thrust fault – the Jinhe–Qinghe thrust fault. During the late stage, from 5 Ma to present, the fault zone passed through the Yushu, Ganzi, and Gongga Shan areas, then offset the Longmen Shan thrust fault belt and reached the Kunming area. The Jinhe–Qinghe fault was abandoned in the later period as the southern part of the XFZ, and the XjF became active because of continuous clockwise rotation of the crust around the eastern syntaxis.  相似文献   

10.
Pseudo 3-D modeling of trishear fault-propagation folding   总被引:1,自引:0,他引:1  
Basement structures, to which trishear fault-propagation models have most successfully been applied, are commonly three-dimensional folds formed at the tip-line of a fault. We present here a ‘pseudo-3D’ trishear model in which various parameters are permitted to vary along strike and oblique-slip can be modeled. These variations may be combined in an infinite number of ways, facilitating the simulation of many real structures. A thrust changing from blind to emergent can be produced by a change in the slip or propagation-to-slip (P/S) along strike. Folds with forelimbs changing from overturned to upright along strike can be modeled either by changing the slip, P/S or trishear angle. Also some minor folds perpendicular or oblique to the main structure can result from changes in the trishear angle or fault angle along the strike. Models including growth strata show that it is practically impossible to distinguish between growth and pre-growth strata using the map patterns. As a field test, we have modeled the oblique slip East Kaibab monocline, demonstrating a good fit between the field observations and model predictions.  相似文献   

11.
Modern seismic data indicate that the sole fault of the Turner Valley thrust sheet does not lose displacement in an up-dip direction and that it does not crop out but rather flattens into the triangle zone on the eastern edge of the Rocky Mountain Foothills Belt. Well constrained balanced cross-sections drawn through this part of the belt do not incorporate significant folding related to the propagation of thrust faults.  相似文献   

12.
Interpretation and 2‐D forward modelling of aeromagnetic datasets from the Olary Domain to the north of the outcropping Kalabity Inlier, South Australia, is consistent with a buried structural architecture characterised by isolated anticlines (also referred to as growth anticlines) bounded by steeply dipping reverse faults. The isolated anticlines are interpreted to have formed by half‐graben inversion during crustal shortening associated with the ca 1600–1580 Ma Olarian Orogeny. We interpret the bounding reverse faults as reactivated high‐angle normal faults, originating from a listric extensional fault architecture. As shortening increased, ‘break‐back bypass’ and ‘short‐cut‘ thrusts developed because of buttressing of the hangingwall successions against the footwall. The resulting architecture resembles a combination of a thrust‐related imbricate fan and an accumulation of inverted basins. Using this structural architecture, synrift sediments proximal to interpreted normal faults were identified as prospective for sediment‐hosted massive sulfide Pb–Zn–Ag mineralisation.  相似文献   

13.
The spacing of parallel continental strike‐slip faults can constrain the mechanical properties of the faults and fault‐bounded crust. In the western US, evenly spaced strike‐slip fault domains are observed in the San Andreas (SA) and Walker Lane (WL) fault systems. Comparison of fault spacing (S) vs. seismogenic zone thickness (L) relationships of the SA and WL systems indicates that the SA has a higher S/L ratio (~8 vs. 1, respectively). If a stress‐shadow mechanism guides parallel fault formation, the S/L ratio should be controlled by fault strength, crustal strength, and/or regional stress. This suggests that the SA‐related strike‐slip faults are relatively weaker, with lower fault friction: 0.13–0.19 for the SA vs. 0.20 for WL. The observed mechanical differences between the San Andreas and Walker Lane fault systems may be attributed to variations in the local geology of the fault‐hosting crust and/or the regional boundary conditions (e.g. geothermal gradient or strain rate).  相似文献   

14.
Displacement analyses along thrust faults of different maturity (or size) reveal maxima and minima, often associated with minor folding of the adjacent beds, between the tip points. The results show that these faults are segmented, and that they formed through the linkage of smaller (previously independent) faults, and (or) by propagation of a single fault affected by the existence of barriers. Points of potential linkage (marked by displacement minima) are fault bends or distinct fault breaks. Fault nucleation (marked by displacement maxima) occurs within the planar segments of a fault; only in one of eight examples is the nucleation point seen to occur at a fault bend.Displacement variations along inferred or extrapolated regional-scale thrust faults show a variety of patterns, most of which involve constant displacement or a monotonic increase or decrease away from the basal décollement. These data are not considered to be as reliable as those from observed thrusts due to the necessary subjectivity involved in the extrapolation process.In general, displacement variation appears to be a reflection of the symmetry of the thrust fault system, such that, for example, a flat-ramp geometry ending in a steep tip will show an asymmetrical displacement function skewed toward the surface, with a nucleation point above the basal décollement.  相似文献   

15.
The Tafilalt is one of a number of generally unexplored sub‐basins in the eastern Anti‐Atlas of Morocco, all of which probably underwent a similar tectono‐stratigraphic evolution during the Palaeozoic Era. Analysis of over 1000 km of 2‐D seismic reflection profiles, with the interpretation of ten regional seismic sections and five isopach and isobath maps, suggests a multi‐phase deformation history for the Palaeozoic‐aged Tafilalt sub‐basins. Extensional phases were probably initiated in the Cambrian, followed by uniform thermal subsidence up to at least the end of the Silurian. Major extension and subsidence did not begin prior to Middle/Upper Devonian times. Extensional movements on the major faults bounding the basin to the north and to the south took place in synchronisation with Upper Devonian sedimentation, which provides the thickest part of the sedimentary sequence in the basin. The onset of the compressional phase in Carboniferous times is indicated by reflectors in the Carboniferous sequence progressively onlapping onto the Upper Devonian sequence. This period of compression developed folds and faults in the Upper Palaeozoic‐aged strata, producing a structural style characteristic of thin‐skinned fold and thrust belts. The Late Palaeozoic units are detached over a regional décollement with a northward tectonic vergence. The folds have been formed by the process of fault‐propagation folding related to the thrust imbricates that ramp up‐section from the décollement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Metamorphic pressure–temperature (PT) paths derived from 16 growth‐zoned garnets, nine from this study and seven from a previous study, have been combined to construct a detailed composite path for an area in the hinterland of the Cretaceous to early Tertiary Sevier orogenic belt in southern Idaho and north‐west Utah. Samples are from two Proterozoic units in the footwall of the Basin‐Elba thrust: the schist of Mahogany Peaks in the central Albion Mountains, Idaho, and the schist of Stevens Spring in the Basin Creek area of the Grouse Creek Mountains, Utah, ~40 km to the south. The simulated portions of the garnets analysed in this study grew from reactions involving the breakdown of chlorite in the upper greenschist to lower amphibolite facies. Multiple garnets were analysed from three samples. Overlapping segments of PT paths from different garnets in the same sample correlate with respect to slope and garnet Mn concentration. The composite PT path documents three episodes of sharply increasing pressures separated by two episodes of pressure decrease, all during progressively increasing temperatures. The path is interpreted to represent alternating episodes of synconvergent thrusting and extensional exhumation in the hinterland of the Sevier orogen. Burial was probably caused by the Basin‐Elba fault, the only major thrust exposed in the region. Extensional exhumation may have occurred along the Mahogany Peaks or Emigrant Spring faults, or by extensional reactivation of the Basin‐Elba fault. This method of correlating partial PT paths to reveal a more complete composite path provides a powerful tool in unveiling orogenic histories in metamorphic terranes, where evidence of major structures responsible for burial and exhumation is commonly obscured by later events.  相似文献   

17.
The Doublespring duplex, located in the Lost River Range of Idaho, is a Sevier age fault-related fold complex in massive limestones of the Upper Mississippian Scott Peak Formation. Folds within the duplex closely resemble fault-bend fold geometrics, with open interlimb angles and low-angle bed cut-offs. Narrow, widely spaced, bedding-parallel shear zones with well-developed pressure solution cleavage alternate with massive, relatively undeformed layers on fold limbs. Shear zones are developed only on the limbs of anticlines, and have similar but unique morphologies in each of three different folds. Incremental strain histories reconstructed from antitaxial fibrous overgrowths and veins within the shear zones constrain the kinematics of folding. Shear zones experienced distributed bedding-parallel simple shear (flexural flow) towards pins near axial surfaces, while adjacent massive layers experienced rotation through an externally fixed extension direction. The absence of footwall synclines and morphological differences in shear zones from adjacent folds suggest that faulting preceded folding. Kinematic histories of folds that have experienced different translational histories are identical, and are not compatible with strain histories predicted from previous kinematic models of fault-bend folding. Shear zone development and fiber growth is instead interpreted to have occurred during low amplitude fixed-hinge buckling in response to initial resistance to translation of the thrust sheet. Fault-bend folding with mobile axial surfaces occurred with translation of the thrust sheets once the initial resistance to translation was overcome and resulted in no penetrative strain.  相似文献   

18.
Amphibolite facies metasedimentary schists within the Yukon‐Tanana terrane in the northern Canadian Cordillera reveal a two‐stage, polymetamorphic garnet growth history. In situ U‐Th‐Pb Sensitive High Resolution Ion Microprobe dating of monazite provide timing constraints for the late stages of garnet growth, deformation and subsequent decompression. Distinct textural and chemical growth zoning domains, separated by a large chemical discontinuity, reveal two stages of garnet growth characterized in part by: (i) a syn‐kinematic, inclusion‐rich stage‐1 garnet core; and (ii) an inclusion‐poor, stage‐2 garnet rim that crystallized with syn‐ to post‐kinematic staurolite and kyanite. Phase equilibria modelling of garnet molar and compositional isopleths suggest stage‐1 garnet growth initiated at ~600 °C, 8 kbar along a clockwise P–T path. Growth of the compositionally distinct, grossular‐rich, pyrope‐poor inner portion of the stage‐2 overgrowth is interpreted to have initiated at higher pressure and/or lower temperature than the stage‐1 core along a separate P–T loop, culminating at peak P–T conditions of ~650–680 °C and 9 kbar. Stage‐2 metamorphism and the waning development of a composite transposition foliation (ST) are dated at c. 118 Ma from monazite aligned parallel to ST, and inclusions in syn‐ to post‐ST staurolite and kyanite. Slightly younger ages (c. 112 Ma) are obtained from Y‐rich monazite that occurs within resorbed areas of both stage‐1 and stage‐2 garnet, together with retrograde staurolite and plagioclase. The younger ages obtained from these texturally and chemically distinct grains are interpreted, with the aid of phase equilibria calculations, to date the growth of monazite from the breakdown of garnet during decompression at c. 112 Ma. Evidence for continued near‐isothermal decompression is provided by the presence of retrograde sillimanite, and cordierite after staurolite, which indicates decompression below ~4–5 kbar prior to cooling below ~550 °C. As most other parts of the Yukon‐Tanana terrane were exhumed to upper crustal levels in the Early Jurassic, these data suggest this domain represents a tectonic window revealing a much younger, high‐grade tectono‐metamorphic core (infrastructure) within the northern Cordilleran orogen. This window may be akin to extensional core complexes identified in east‐central Alaska and in the southeastern Canadian Cordillera.  相似文献   

19.
张猛  贾东  王毛毛  李志刚  李一泉 《地质论评》2013,59(6):1207-1217
斜向逆冲作用在自然界普遍存在,研究斜向逆冲断层相关褶皱的构造几何学特征,识别断层相关褶皱是否存在斜向逆冲有重要意义。文章采用Trishear 4.5、Gocad以及Trishear3D软件构建一系列不同滑移量的断层转折褶皱和断层传播褶皱的二维正演剖面,通过连接一系列不同排列方式的二维剖面建立了三种不同逆冲滑移方向的断层转折褶皱和断层传播褶皱的假三维模型,通过不同假三维模型的比较分析来探讨斜向逆冲断层相关褶皱的构造几何学特征。研究发现,斜向逆冲断层相关褶皱区别于正向逆冲断层相关褶皱的特征主要有两点:① 正向逆冲断层相关褶皱层面等高线图上的最高点与后翼等高线中点的连线以及水平切面上的核心点与后翼中点的连线方向均与断层走向垂直,而斜向逆冲断层相关褶皱的最高点以及核心点与后翼中点的连线方向均与断层走向斜交,并且最高点与后翼等高线中点的连线方向或者核心点与后翼中点的连线方向均与逆冲滑移方向一致;② 在褶皱平行断层走向纵剖面上,正向逆冲断层相关褶皱各个层面最高点的连线是直立的,而斜向逆冲断层相关褶皱各个层面最高点的连线发生倾斜。通过这两个特征可以判别褶皱是否存在斜向逆冲以及逆冲的方向。将模型分析结果运用到四川盆地西南部三维地震勘探资料所覆盖的邛西背斜和大兴西背斜的实例中。研究结果表明,两个背斜均存在右旋斜向逆冲,逆冲方向与各自断层走向的夹角均为70°左右,邛西背斜和大兴西背斜的逆冲方向分别是NE79°和NE77°左右,这与龙门山南段晚上新世以来的主应力方向以及反演的汶川地震最大主应力方向一致。  相似文献   

20.
Geological structure of the active foreland fold and thrust belt of Papua New Guinea has been interpreted using high-quality seismic-reflection data. Three en échelon anticlines, the Strickland, Cecilia and Wai Asi, are located along the frontal margin of the Papuan Fold Belt. All three are foreland-vergent and cut by hinterland-dipping thrust faults that sole into a common detachment beneath the Oligocene to Miocene Darai Limestone. Two of the anticlines are linked by a right-lateral transfer zone. Folding occurs primarily in the upper 2000 m of strata, which consist of Darai Limestone overlain by Miocene to Quaternary siliciclastic sedimentary rocks. Beneath the Darai Limestone lies the less-competent shaly Ieru Formation, which exhibits disharmonic folding and variable bed thickness. Seismic-reflection data clearly show that the Plio-Pleistocene upper Era Beds are deformed to the same extent as the underlying Darai Limestone, demonstrating that most of the observed deformation has occurred during the Late Pliocene and Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号