首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To predict reservoir pore pressure, we present a one-dimensional flow model that captures complicated two- and three-dimensional flow present in a dipping permeable reservoir encased in overpressured mudrock. The model incorporates the variation of mudrock permeability with effective stress and includes the effect of reservoir geometry. We find that reservoir pressure is lower when stress-dependent mudrock permeability is assumed relative to the case of constant mudrock permeability. Increased structural relief further reduces the reservoir pressure relative to the far-field pressure and increased effective stress (pore pressure is lower relative to the overburden) results in increased reservoir pressure relative to the far-field pressure. If a large fraction of the reservoir area is in deeper areas where the mudrocks are more overpressured, then the relative pressure is higher than cases where the reservoir area remains constant with depth. The model results compare favorably both to pressures predicted by a more complex numerical model that simulates basin evolution and to field observations in the Bullwinkle Basin (Green Canyon 65, Gulf of Mexico). Our model provides a quick workflow to predict excess pressures in dipping reservoirs encased in mudrock within mechanically-compacted basins. It can be used to analyze trap integrity, understand hydrocarbon migration, and improve drilling safety.  相似文献   

2.
Massive mudrock refers to mudrock with internally homogeneous characteristics and an absence of laminae. Previous studies were primarily conducted in the marine environment, while notably few studies have investigated lacustrine massive mudrock. Based on core observation in the lacustrine environment of the Jiyang Depression, Bohai Bay Basin, China, massive mudrock is a common deep water fine-grained sedimentary rock. There are two types of massive mudrock. Both types are sharply delineated at the bottom and top contacts, abundant in angular terrigenous debris, and associated with oxygen-rich (higher than 2 ml O2/L H2O) but lower water salinities in comparison to adjacent black shales. In addition, type 1 is laterally isolated and contains abundant sand injections and contorted layers formed in the depositional process, but type 2 exactly distributes in the distal part of deep water gravity-driven sandstone units, and shows scoured bases, high-angle mineral crytsals, and fining-upward trend. It is suggested that type 1 is a muddy mass transport deposit (MMTD) formed by slide, slump, and/or debris flow, and type 2 is a turbiditic mudrock deposited by settling from dilute turbidity currents. A warm and humid climate and high subsidence rate are two main triggering events. Because of its mass movement nature, MMTD preserves the mineralogic composition and organic matter characteristics of the source sediment. By contrast, dilute turbidity currents are able to greatly entrain biochemically-formed micrite and planktonic organisms from the water column, and deposit them in the turbiditic mudrock. Because of their different ability to deposit organic matter, MMTD have poor or fair source rock potential, but the turbiditic mudrock is able to be a potentially effective source rock. The minerals in the massive mudrock are disorganized and chaotic, which cause fractures to develop in various directions, thereby, enhancing the vertical migration of oil and gas molecules to horizontal wellbore in shale reservoir exploitation.  相似文献   

3.
ABSTRACT

This article presents a testing study on the strain-rate effects on the stress--strain behavior of natural, undisturbed Hong Kong marine deposits (HKMD) from three Hong Kong locations, including a one-dimensional (1-D) compressibility in a confined condition, and undrained shear strengths in triaxial compression and extension modes. The influences of the strain rates on the one-dimensional compressibility are studied by means of constant rate of strain (CRS) tests and multistage loading oedometer (MSL) tests, and those on the undrained shear strengths are studied by K o-consolidated undrained compression and extension tests with step-changed axial strain rates (CK oUC and CK oUE tests), and with both step-changed axial strain rates and relaxation processes (CK oUCR and CK oUER tests). The strain-rate effects on the stress--strain behavior are generally examined by “apparent” preconsolidation pressures in the 1-D compressions and undrained shear strengths in the triaxial compression and extension stress states. The stress--strain behavior of the natural, undisturbed HKMD exhibits considerable viscous characteristics. In the CRS and MSL tests at a given strain, the higher the strain rate, the higher the effective stress, the higher the porewater pressure. In the undrained shearing tests, the higher the strain rate, the higher the undrained shear strength, but the lower the porewater pressure. For the CK oUC and CK oUE tests on the Tsing Yi site samples, the undrained shear strength increases by 8.5% and 12.1% for one order increment of axial strain rate of 0.2%/hr (i.e., ρ0.2) for the compression and extension modes respectively. For the CK oUCR and CK o tests on the Tung Chung site samples of different compositions, average ρ0.2 is increased by 6.2% for the compression and 9.5% for the extension, but by 18.8% for the extension on a higher plastic sample. The present study shows that the strain-rate effects on the stress--strain behavior of the undisturbed HKMD are larger for specimens in extension than those in compression.  相似文献   

4.
The stability of the ion pair CaSO4 was determined from measurement of the change in calcium ion activity with medium composition at constant ionic strength. A calcium selective PVC-matrix liquid membrane electrode was used to monitor the calcium ion activity. All measurements were performed at 1 atm, 25 ± 0.1°C and 0.7 M formal ionic strength. The evaluation of the stability constant depends on the degree of complexation between calcium and chloride and between sodium and sulphate. The dependence of KCaSO4, on KNaSO4 and KCaCl can be described by the following relations:KCaSO4=17.7 KCaCl+16.5 (KNaSO4=1.8)KCaSO4=18.8 KCaCl+17.3 (KNaSO4=2) for KCaCl=0–1A value of KCaSO4=25.4 is suggested.  相似文献   

5.
Abstract

Sandstone-mudstone particle mixture (SMPM) is one of the main materials, which has been widely used for filling in and around reservoirs for water conservation projects. During the periodic rising and falling of the water level, the fill material for the embankments, dam, and other waterfront features will also undergo drainage-saturation cycles. The deformation and coefficient of lateral pressure at rest K0 may be affected by periodic saturation. In this study, a device is modified for testing the K0 for gravel-soil under periodic saturation. In order to investigate the effects of periodic saturation on K0, a series of experiments were performed for SMPM under different vertical stress and saturation cycling. K0N values of SMPM containing 20% mudstone particles under periodic saturation were obtained. The results shows that the K0N initially increased, but eventually reached a stable value with the increasing number of periodic saturation cycles. The magnitude of the coefficient increment was also found to be related to the stress condition. K0N is a logarithmic function of the saturation cycling time. By calculating K0N with the proposed empirical formula, the deformation and stress distribution of the SMPM filler in waterfront engineering works can be calculated with greater precision.  相似文献   

6.
Measurement and modeling of bed shear stress under solitary waves   总被引:1,自引:0,他引:1  
Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 104 < Re < ~ 105). Measurements were carried out where the wave height to water depth (h/d) ratio varied between 0.12 and 0.68; maximum near bed velocity varied between 0.16 m/s and 0.51 m/s and the maximum total shear stress (sum of skin shear stress and Froude–Krylov force) varied between 0.386 Pa and 2.06 Pa. The total stress is important in determining the stability of submarine sediment and in sheet flow regimes. Analytical modeling was carried out to predict total and skin shear stresses using convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total shear stress, maximum skin shear stress and at the time of maximum velocity) using both the maximum velocity and the instantaneous velocity at that phase of the wave cycle. Similarly, force coefficients obtained from total stress were estimated at time of maximum positive and negative total stress and at maximum velocity. Maximum positive total shear stress was approximately 1.5 times larger than minimum negative total stress. Modeled and measured positive bed shear stresses are well correlated using the best convolution model, but the model underestimates the data by about 4%. Friction factors are dependent on the choice of normalizing using the maximum velocity, as is conventional, or the instantaneous velocity. These differ because the stress is not in phase with the velocity in general. Friction factors are consistent with previous data for monochromatic waves, and vary inversely with the square-root of the Reynolds number. The total shear stress leads the free stream fluid velocity by approximately 50°, whereas the skin friction shear stress leads by about 30°, which is similar to that reported by earlier researchers.  相似文献   

7.
This contribution presents results from a laboratory study investigating the fluid (gas/water) transport properties in the matrix system of the Scandinavian Alum Shale. The maturity of the organic matter of the shale samples ranged between 0.5 and 2.4% vitrinite reflectance (VRr). Gas (He, Ar, CH4) and water flow properties were determined at effective stresses ranging between 5 and 30 MPa and a temperature of 45 °C. The effects of different controlling factors/parameters on the fluid conductivity including permeating fluid, moisture content, anisotropy, heterogeneity, effective stress, pore pressure, and load cycling were analyzed and discussed. Pore volume measurements by helium expansion were conducted under controlled “in situ” effective stress conditions on a limited number of plugs drilled parallel and perpendicular to bedding.For Alum Shale the intrinsic permeability coefficients measured parallel and perpendicular to bedding (6·10−22–8·10−18 m2) were within the range previously reported for other shales and mudstones. Permeability coefficients were strongly dependent on permeating fluid, moisture content, anisotropy, effective stress and other sample-to-sample variations. The intrinsic/absolute permeabilities measured with helium were consistently, higher (up to five times) than those measured with argon and methane. Permeability coefficients (He, CH4) measured on a dry sample were up to six times higher than those measured on an “as-received” sample, depending on effective stress. The effect of moisture on measured permeability coefficients became more significant as effective stress increased. Permeability coefficients (He, CH4) measured parallel to bedding were up to more than one order of magnitude higher than those measured perpendicular to bedding. Parallel to bedding, all samples showed a nonlinear reduction in permeability with increasing effective stress (5–30 MPa). The stress dependence of permeability could be well described by an exponential relationship.  相似文献   

8.
Knowledge of the in situ, or contemporary stress field is vital for planning optimum orientations of deviated and horizontal wells, reservoir characterization and a better understanding of geodynamic processes and their effects on basin evolution.This study provides the first documented analysis of in situ stress and pore pressure fields in the sedimentary formations of the Cuu Long and Nam Con Son Basins, offshore Vietnam, based on data from petroleum exploration and production wells.In the Cuu Long Basin, the maximum horizontal stress is mainly oriented in NNW–SSE to N–S in the northern part and central high. In the Nam Con Son Basin, the maximum horizontal stress is mainly oriented in NE–SW in the northern part and to N–S in the central part of the basin.The magnitude of the vertical stress has a gradient of approximately 22.2 MPa/km at 3500 m depth. Minimum horizontal stress magnitude is approximately 61% of the vertical stress magnitude in normally pressured sequences.The effect of pore pressure change on horizontal stress magnitudes was estimated from pore pressure and fracture tests data in depleted zone caused by fluid production, and an average pore pressure–stress coupling ratio (ΔShPp) obtained was 0.66. The minimum horizontal stress magnitude approaches the vertical stress magnitude in overpressured zones of the Nam Con Son Basin, suggesting that an isotropic or strike-slip faulting stress regime may exist in the deeper overpressured sequences.  相似文献   

9.
The results presented in this paper are the first published estimates of the complete stress tensor in the Cuu Long and Nam Con Son basins, offshore Vietnam. We analysed in situ stress and pore pressure fields in the sedimentary formations using data from petroleum exploration and production wells to evaluate the stress state in these basins. The data were obtained from the seafloor to 4300 m burial depth and include both hydrostatic and overpressured sections. Minimum horizontal stresses were obtained from extended leak-off tests and mini-fracture tests. Maximum horizontal stresses were estimated from drilling-induced fracture parameters and borehole breakout widths in twelve wells using rock properties measured in the laboratory or estimated empirically from wireline logs. Seven data points are located in sediments, and seventeen data points in igneous basement rocks at depths greater than 3000 m.The estimated magnitudes of σH are 70-110% of the σv magnitudes. Considering the errors in the stress magnitude estimates, their relative magnitudes suggest that a borderline normal/strike-slip stress regime presently exists in normally pressured sequences of the Nam Con Son and Cuu Long basins. Of the twenty-four data points, twenty have effective stress ratios at a critical stress state for faulting on the assumption that there are faults present that are optimally oriented for failure with friction coefficients of ∼0.5. The results suggest that the stress state in these basins is generally critical.  相似文献   

10.
In situ tensile fracture toughness of surficial cohesive marine sediments   总被引:1,自引:1,他引:0  
This study reports the first in situ measurements of tensile fracture toughness, K IC, of soft, surficial, cohesive marine sediments. A newly developed probe continuously measures the stress required to cause tensile failure in sediments to depths of up to 1 m. Probe measurements are in agreement with standard laboratory methods of K IC measurements in both potter’s clay and natural sediments. The data comprise in situ depth profiles from three field sites in Nova Scotia, Canada. Measured K IC at two muddy sites (median grain size of 23–50 μm) range from near zero at the sediment surface to >1,800 Pa m1/2 at 0.2 m depth. These profiles also appear to identify the bioturbated/mixed depth. K IC for a sandy site (>90% sand) is an order of magnitude lower than for the muddy sediments, and reflects the lack of cohesion/adhesion. A comparison of K IC, median grain size, and porosity in muddy sediments indicates that consolidation increases fracture strength, whereas inclusion of sand causes weakening; thus, sand-bearing layers can be easily identified in K IC profiles. K IC and vane-measured shear strength correlate strongly, which suggests that the vane measurements should perhaps be interpreted as shear fracture toughness, rather than shear strength. Comparison of in situ probe-measured values with K IC of soils and gelatin shows that sediments have a K IC range intermediate between denser compacted soils and softer, elastic gelatin.  相似文献   

11.
The global distributions of the major semidiurnal (M2 and S2) and diurnal (K1 and O1) baroclinic tide energy are investigated using a hydrostatic sigma-coordinate numerical model. A series of numerical simulations using various horizontal grid spacings of 1/15–1/5° shows that generation of energetic baroclinic tides is restricted over representative prominent topographic features. For example, nearly half of the diurnal (K1 and O1) baroclinic tide energy is excited along the western boundary of the North Pacific from the Aleutian Islands down to the Indonesian Archipelago. It is also found that the rate of energy conversion from the barotropic to baroclinic tides is very sensitive to the horizontal grid spacing as well as the resolution of the model bottom topography; the conversion rate integrated over the global ocean increases exponentially as the model grid spacing is reduced. Extrapolating the calculated results in the limit of zero grid spacing yields the estimate of the global conversion rate to be 1105 GW (821, 145, 102, 53 GW for M2, S2, K1, and O1 tidal constituents, respectively). The amount of baroclinic tide energy dissipated in the open ocean below a depth of 1000 m, in particular, is estimated to be 500–600 GW, which is comparable to the mixing energy estimated by Webb and Suginohara (Nature 409:37, 2001) as needed to sustain the global overturning circulation.  相似文献   

12.
We compare an evolutionary with a static approach for modeling stress and deformation around a salt diapir; we show that the two approaches predict different stress histories and very different strains within adjacent wall rocks. Near the base of a rising salt diapir, significantly higher shear stresses develop when the evolutionary analysis is used. In addition, the static approach is not able to capture the decrease in the hoop stress caused by the circumferential diapir expansion, nor the increase in the horizontal stress caused by the rise of the diapir. Hence, only the evolutionary approach is able to predict a sudden decrease in the fracture gradient and identify areas of borehole instability near salt. Furthermore, the evolutionary model predicts strains an order of magnitude higher than the strains within the static model. More importantly, the evolutionary model shows significant shearing in the horizontal plane as a result of radial shortening accompanied by an almost-equivalent hoop extension. The evolutionary analysis is performed with ELFEN, and the static analysis with ABAQUS. We model the sediments using a poro-elastoplastic model. Overall, our results highlight the ability of forward evolutionary modeling to capture the stress history of mudrocks close to salt diapirs, which is essential for estimating the present strength and anisotropic characteristics of these sediments.  相似文献   

13.
A combination of a three-dimensional hydrodynamic model and in-situ measurements provides the structures of barotropic tides, tidal circulation and their relationship with turbulent mixing in the Java Sea, which allow us to understand the impact of the tides on material distribution. The model retains high horizontal and vertical resolutions and is forced by the boundary conditions taken from a global model. The measurements are composed of the sea level at coastal stations and currents at moorings embedded in Seawatch buoys, in addition to hydrographic data. The simulated tidal elevations are in good agreement with the data for the K1 and M2 constituents. The K1 tide clearly shows the lowest mode resonance in the Java Sea with intensification around the nodal point in the central region. The M2 tide is secondary and propagates westward from the eastern open boundary, along with a counterclockwise amphidromic point in the western part. The K1 tide produces a major component of tidal energy, which flows westward and dissipates through the node region near the Karimata Strait. Meanwhile, the M2 tide dissipates in the entire Java Sea. However, the residual currents are mainly induced by the M2 tide, which flows westward following the M2 tidal wave propagation. The tidal mixing is mainly caused by K1 tide which peaks at the central region and is consistent with the uniform temperature and salinity along the vertical dimension. This mixing is expected to play an important role in the vertical exchange of nutrients and control of biological productivity.  相似文献   

14.
Most of the methods currently used for pore pressure prediction in sedimentary basins assume one-dimensional compaction based on relationships between vertical effective stress and porosity. These methods may be inaccurate in complex tectonic regimes where stress tensors are variable. Modelling approaches for compaction adopted within the geotechnical field account for both the full three-dimensional stress tensor and the stress history. In this paper a coupled geomechanical-fluid flow model is used, along with an advanced version of the Cam-Clay constitutive model, to investigate stress, pore pressure and porosity in a Gulf of Mexico style mini-basin bounded by salt subjected to lateral deformation. The modelled structure consists of two depocentres separated by a salt diapir. 20% of horizontal shortening synchronous to basin sedimentation is imposed. An additional model accounting solely for the overpressure generated due to 1D disequilibrium compaction is also defined. The predicted deformation regime in the two depocentres of the mini-basin is one of tectonic lateral compression, in which the horizontal effective stress is higher than the vertical effective stress. In contrast, sediments above the central salt diapir show lateral extension and tectonic vertical compaction due to the rise of the diapir. Compared to the 1D model, the horizontal shortening in the mini-basin increases the predicted present-day overpressure by 50%, from 20 MPa to 30 MPa. The porosities predicted by the mini-basin models are used to perform 1D, porosity-based pore pressure predictions. The 1D method underestimated overpressure by up to 6 MPa at 3400 m depth (26% of the total overpressure) in the well located at the basin depocentre and up to 3 MPa at 1900 m depth (34% of the total overpressure) in the well located above the salt diapir. The results show how 2D/3D methods are required to accurately predict overpressure in regions in which tectonic stresses are important.  相似文献   

15.
The impact load (equivalent impact height) applied to deep-sea sediment by a walking mining machine was first deduced by the energy conservation principle, and the simulative soil was prepared based on the deep-sea sediment collected from the Pacific C-C mining area. The self-designed impact compressive creep tests of the simulative soil were conducted under different ground stresses and impact heights, in order to determine impact compressive creep parameters using a K-H rheological model. Test results show that the impact compressive creep curves have three similar creep stages (transient creep, unstable creep, and stable creep) to static compressive creep curves, where the transient creep deformation and total deformation at the unstable creep stage decrease with the impact load. Among the three impact compressive creep parameters (K1, K2, β) of the simulative soil, K1 is first increased with impact height and finally fluctuated to a certain stable value, while K2 and β are approximately linearly increased with impact height. The maximum subsidence of the mining machine under a specific designed ground stress and walking velocity predicted by the impact compressive creep constitutive equation can be used for safety assessment of the mining machine.  相似文献   

16.
Although extensive research has been performed on the mechanical properties of cement-stabilized clays, quite a few attempts have been made on the compression behavior of remolded cement-admixed clays. The results from oedometer tests have been discussed to investigate the compressibility of remolded cement-admixed clays, taking into consideration cement amount and curing time. The findings show that the difference in shape and position of compression curves is attributed to cement amount and curing time. Most compression index (Cc) values of remolded cement-admixed clays are greater than those of untreated clay due to the presence of remolded yield stress σ′yr that is closely related to initial water content and clay fabric. Based on the obtained test data, the relationships of Cc vs. e0, Cc vs. w0, Cc vs. e1, Cc vs. eyr, and σ′yr vs. eyr are preliminarily discussed and quantitatively established. Especially, an important divergence of void index Iv at effective stress σ′v less than remolded yield stress σ′yr can be observed at different cement amounts and curing durations. Being independent on cement amount, curing time, and initial state of soil, an excellent convergence occurs at stress σ′v greater than yield stress σ′yr. The normalized compression curves of Iv vs. σ′v at σ′v?>?σ′y can be expressed by a unique line that agrees well with intrinsic compression line (ICL) and extended ICL.  相似文献   

17.
The dissociation constants (pK1, pK2 and pK3) for cysteine have been measured in seawater as a function of temperature (5 to 45 °C) and salinity (S = 5 to 35). The seawater values were lower than the values in NaCl at the same ionic strength. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been compared to those calculated from the Pitzer ionic interaction model. The lower values of pK3 in the Na–Mg–Cl solutions have been attributed to the formation of Mg2+ complexes with Cys2− anions
Mg2+ + Cys2− = MgCys
The stability constants have been fitted to
after corrections are made for the interaction of Mg2+ with H+.The pK1 seawater measurements indicate that H3Cys+ interacts with SO42−. The Pitzer parameters β0(H3CysSO4), β1(H3CysSO4) and C(H3CysSO4) have been determined for this interaction. The formation of CaCys as well as MgCys are needed to account for the values of pK2 and pK3 in seawater.The consideration of the formation of MgCys and CaCys in seawater yields model calculated values of pK1, pK2 and pK3 that agree with the measured values to within the experimental error of the measurements. This study shows that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   

18.
土霉素在牙鲆体内的药代动力学研究   总被引:1,自引:0,他引:1  
采用高效液相色谱法为定性、定量手段,研究土霉素在牙鲆(Paralichthys olivaceus)体内的药代动力学过程,采用DAS(Drug and Statistics)药代动力学程序对数据进行分析.结果表明,牙鲆单剂量口服土霉素后(200 mg/kg),血药经时过程符合二室模型,主要动力学参数如下:吸收半衰期(T(1/2)a)为10.043 h,单剂量给药后牙鲆体内出现最高质量分数的时间(Tmax)为4.000 h,单剂量给药后牙鲆体内最高血药质量分数(Cmax)为0.54 mg/L,药时曲线下总面积(CAU0-72)为17.15 (mg*h)/L,吸收速率常数(Ka)为0.223,消除速率常数(k)为0.476 h-1.牙鲆肌肉中土霉素的经时过程符合一级吸收一室模型,主要动力学参数:T(1/2)a为74.893 h,Tmax为4.000 h,Cmax为3.58 mg/L,CAU0-72为148.56 (mg*h)/L,Ka为0.731,k为2.991 h-1.牙鲆肝脏中土霉素的经时过程符合一级吸收一室模型,主要动力学参数:T(1/2)a为31.376 h,Tmax为4.000 h,Cmax为13.78 mg/L,CAU0-72为494.14 (mg*h)/L,Ka为0.876,k为4.940 h-1.  相似文献   

19.
A simple conceptual formulation to compute seabed shear stress due to asymmetric and skewed waves is presented. This formulation generalizes the sinusoidal wave case and uses a variable friction factor to describe the physics of the boundary layer and to parameterize the effects of wave shape. Predictions of bed shear stresses agree with numerical computations using a standard boundary layer model with a kε turbulence closure. The bed shear stress formulation is combined with a Meyer-Peter and Müller-type formula to predict sheet flow bedload transport under asymmetric and skewed waves for a horizontal or sloping bed. The predictions agree with oscillatory water tunnel measurements from the literature.  相似文献   

20.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号