首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fluid inclusion and structural studies were carried out at the Guarim gold deposit in the Palaeoproterozoic Tapajós province of the Amazonian craton. Guarim is a fault-hosted gold deposit cutting basement granitoids. It consists of a quartz vein, which is massive in its inner portions, grading laterally either to a massive or to cavity-bearing quartz vein associated with hydrothermal breccias. The wallrock alteration comprises chlorite, carbonate, white mica and sulphide minerals, with free gold occurring within quartz grains and spatially associated with sulphide mineral grains. Petrographic, microthermometric and Laser Raman investigations recognised CO2-rich, mixed H2O–CO2, and H2O fluid inclusions. The coexisting CO2 and H2O–CO2 inclusions were interpreted as primary immiscible fluids that formed the gold-bearing vein. The H2O inclusions were considered a product of later infiltration of fluids unrelated to the mineralising episode. The mineralising fluid has CO2 ranging typically from 5–10 mol%, contains traces of N2, has salinities of ∼5 wt% NaCl equiv., and densities varying between 0.85 and 0.95 g/cm3. The P–T estimations bracket gold deposition between 270–320 °C and 0.86–2.9 kb; ƒO2–ƒS2–pH estimates suggest a reduced, near-neutral character for the fluid. Variations in the physico-chemical properties, as demonstrated by the fluid inclusion study, resulted from a combination of fluid immiscibility and pressure fluctuation. This interpretation, combined with textural and structural evidence, suggests the emplacement of the mineralised vein in an active fault and at a rather shallow level (4–7 km). The geological and structural setting, deposit-scale textures and structures, wallrock alteration and physico-chemical fluid properties are compatible with those of epizonal to mesozonal orogenic lode gold deposits. Received: 3 March 2000 / Accepted: 21 October 2000  相似文献   

2.
The Rushan gold deposit in the Jiaodong Peninsula is currently the largest lode gold in China. Gold occurs mainly in pyrite- and polymetallic sulfide–quartz vein/veinlet stockworks. Fluid inclusions in the deposit are divided into three main types, namely CO2–H2O, H2O–CO2 ± CH4 and aqueous ones. Microthermometric data show that the pre-gold fluids were CO2-dominant (XCO2 up to 0.53), and the total homogenization temperatures fall in the range of 298377 °C. These fluids, modified by fluid/wallrock reactions, gradually evolved into fluids with less CO2 (XCO2 = 0.010.19) in the main ore-forming stage, and the total homogenization temperatures range from 170 to 324 °C. Hydrogen and oxygen stable isotope data suggest that ore-forming fluids were mixture of magmatic and meteoritic origin. Co-occurrence of gold and sulfides implies that gold was most likely transported in the form of gold–sulfide complexes. The wide distribution of CO2 inclusions means that the pH variation during gold transportation was controlled by CO2 buffering.  相似文献   

3.
The Campbell-Red Lake gold deposit in the Red Lake greenstone belt, with a total of approximately 840 t of gold (past production + reserves) and an average grade of 21 g/t Au, is one of the largest and richest Archean gold deposits in Canada. Gold mineralization is mainly associated with silicification and arsenopyrite that replace carbonate veins, breccias and wallrock selvages. The carbonate veins and breccias, which are composed of ankerite ± quartz and characterized by crustiform–cockade textures, were formed before and/or in the early stage of penetrative ductile deformation, whereas silicification, arsenopyrite replacement and gold mineralization were coeval with deformation. Microthermometry and laser Raman spectroscopy indicate that fluid inclusions in ankerite and associated quartz (Q1) and main ore-stage quartz (Q2) are predominantly carbonic, composed mainly of CO2, with minor CH4 and N2. Aqueous and aqueous–carbonic inclusions are extremely rare in both ankerite and quartz. H2O was not detected by laser Raman spectroscopic analyses of individual carbonic inclusions and by gas chromatographic analyses of bulk samples of ankerite and main ore-stage quartz (Q2). Fluid inclusions in post-mineralization quartz (Q3) are also mainly carbonic, but proportions of aqueous and aqueous–carbonic inclusions are present. Trace amounts of H2S were detected by laser Raman spectroscopy in some carbonic inclusions in Q2 and Q3, and by gas chromatographic analyses of bulk samples of ankerite and Q2. 3He/4He ratios of bulk fluid inclusions range from 0.008 to 0.016 Ra in samples of arsenopyrite and gold. Homogenization temperatures (T h–CO2) of carbonic inclusions are highly variable (from −4.1 to +30.4°C; mostly to liquid, some to vapor), but the spreads within individual fluid inclusion assemblages (FIAs) are relatively small (within 0.5 to 10.3°C). Carbonic inclusions occur both in FIAs with narrow T h–CO2 ranges and in those with relatively large T h–CO2 variations. The predominance of carbonic fluid inclusions has been previously reported in a few other gold deposits, and its significance for gold metallogeny has been debated. Some authors have proposed that formation of the carbonic fluid inclusions and their predominance is due to post-trapping leakage of water from aqueous–carbonic inclusions (H2O leakage model), whereas others have proposed that they reflect preferential trapping of the CO2-dominated vapor in an immiscible aqueous–carbonic mixture (fluid unmixing model), or represent an unusually H2O-poor, CO2-dominated fluid (single carbonic fluid model). Based on the FIA analysis reported in this study, we argue that although post-trapping modifications and host mineral deformation may have altered the fluid inclusions in varying degrees, these processes were not solely responsible for the formation of the carbonic inclusions. The single carbonic fluid model best explains the extreme rarity of aqueous inclusions but lacks the support of experimental data that might indicate the viability of significant transport of silica and gold in a carbonic fluid. In contrast, the weakness of the unmixing model is that it lacks unequivocal petrographic evidence of phase separation. If the unmixing model were to be applied, the fluid prior to unmixing would have to be much more enriched in carbonic species and poorer in water than in most orogenic gold deposits in order to explain the predominance of carbonic inclusions. The H2O-poor, CO2-dominated fluid may have been the product of high-grade metamorphism or early degassing of magmatic intrusions, or could have resulted from the accumulation of vapor produced by phase separation external to the site of mineralization.Geological Survey of Canada contribution 2004383.  相似文献   

4.
Fluid inclusions were studied in quartz samples from early (stage I) gold-poor quartz veins and later (stage II) gold- and sulphide-rich quartz veins from the Wenyu, Dongchuang, Qiangma, and Guijiayu mesothermal gold deposits in the Xiaoqinling district, China. Fluid inclusion petrography, microthermometry, and bulk gas analyses show remarkably consistent fluid composition in all studied deposits. Primary inclusions in quartz samples are dominated by mixed CO2-H2O inclusions, which have a wide range in CO2 content and coexist with lesser primary CO2-rich and aqueous inclusions. In addition, a few secondary aqueous inclusions are found along late-healed fractures. Microthermometry and bulk gas analyses suggest hydrothermal fluids with typically 15–30 mol% CO2 in stage I inclusions and 10–20 mol% CO2 in stage II inclusions. Estimates of fluid salinity decrease from 7.4–9.2 equivalent wt.% NaCl to 5.7–7.4 equivalent wt.% NaCl between stage I and II. Primary aqueous inclusions in both stages show consistent salinity with, but slightly lower Th total than, their coexistent CO2-H2O inclusions. The coexisting CO2-rich, CO2-H2O, and primary aqueous inclusions in both stage I and II quartz are interpreted to have been trapped during unmixing of a homogeneous CO2-H2O parent fluid. The homogenisation temperatures of the primary aqueous inclusions give an estimate of trapping temperature of the fluids. Trapping conditions are typically 300–370 °C and 2.2 kbar for stage I fluids and 250–320 °C and 1.6 kbar for stage II fluids. The CO2-H2O stage I and II fluids are probably from a magmatic source, most likely devolatilizing Cretaceous Yanshanian granitoids. The study demonstrates that gold is largely deposited as pressures and temperatures fall accompanying fluid immiscibility in stage II veins. Received: 15 May 1997 / Accepted: 10 June 1998  相似文献   

5.
Auriferous quartz veins in the Hill End goldfield, NSW, Australia, comprise bedding-parallel vein sets and minor extension and fault-controlled veins which are hosted by a multiply deformed, Late Silurian slate-metagreywacke turbidite sequence. Fluid inclusions in quartz, either from bedding-parallel veins or from narrow, steeply N-dipping veins (‘leader’ veins) indicate a similar range in homogenisation temperatures (Th) from 350°C to 110°C. Within this range, Th data demonstrate five groupings in the temperature intervals 350–280°C, 280–250°C, 250–190°C, 190–150°C, and 150–110°C, corresponding to a variety of primary and secondary inclusions developed during five periods of vein growth under a generally declining temperature regime. Inclusion fluids are characterised by a low salinity of around 0.1 to 3.6 wt% NaCl equivalent. Laser Raman microprobe inclusion analysis indicates that gas-phase compositions relate to the paragenetic stage of the host quartz. H2O(g) and N2 dominate in the primary inclusions from barren, Stage I quartz; CH4 and CH4 + H2O(g) are important in inclusions related to the early gold forming events (equivalent to Stages II and III quartz), but inclusions developed during the last episode of gold deposition are characterised by H2O(g), CO2-rich and liquid-CO2 bearing fluids. Precipitation of gold was aided by sulphidation reactions or phase separation in response to periods of vein opening. Late in the paragenesis, gold deposition may have been promoted by oxidation of the ore fluid.  相似文献   

6.
Non-aqueous CO2 and CO2-rich fluid inclusions are found in the vein quartz hosting mesothermal gold-sulphide mineralization at Bin Yauri, northwestern Nigeria. Although mineralizing fluids responsible for gold mineralization are thought to be CO2-rich, the occurrence of predominantly pure to nearly pure CO2 inclusions is nevertheless unusual for a hydrothermal fluid system. Many studies of similar CO2-rich fluid inclusions, mainly in metamorphic rocks, proposed preferential loss (leakage) of H2O from H2O-CO2 inclusions after entrapment. In this study however, it is proposed that phase separation (fluid immiscibility) of low salinity CO2-rich hydrothermal fluids during deposition of the gold mineralization led to the loss of the H2O phase and selective entrapment of the CO2. The loss of H2O to the wallrocks resulted in increasing oxidizing effects. There is evidence to suggest that the original CO2-rich fluid was intrinsically oxidized, or perhaps in equilibrium with oxidizing conditions in the source rocks. The source of the implicated fluid is thought to be subducted metasediments, subjected to dehydration and devolatilization reactions along a transcurrent Anka fault/shear system, which has been described as a Pan-African (450–750 Ma) crustal suture.  相似文献   

7.
Coexisting, liquid-rich and vapor-rich primary fluid inclusions in quartz provide direct evidence for fluid phase separation in high-grade quartz–roscoelite–gold veins and breccias from the Porgera alkalic-type gold deposit. Vapor-rich fluid inclusions are CO2-rich, and sometimes contain liquid CO2 at room temperature. The close spatial and paragenetic relationship between these “boiling assemblage” fluid inclusions and gold suggests that gold was precipitated by phase separation, at least locally. Additionally, the occurrence of carbonate and sulfate minerals in high-grade veins (reflecting pH increase and oxidation of the boiled fluid) and the appearance of hydrothermal breccias, are consistent with the process of fluid phase separation. Liquid CO2-bearing fluid inclusions are rare in near-surface epithermal deposits, and indicate that the Porgera vein system was formed at greater depths and pressures (our estimates suggest pressures between 250 and 340 bars). It is suggested that alkalic-type gold deposits may be distinguished from other epithermal deposit types by the more gaseous nature of the ore-forming fluids, in addition to their association with alkalic magmas. Received: 24 February 2000 / Accepted: 6 April 2000  相似文献   

8.
雪鸡坪铜矿床产于印支晚期石英二长闪长玢岩-石英闪长玢岩-石英二长斑岩复式侵入体内,为一斑岩型铜矿床。矿床形成经历了多阶段热液成矿作用,主要有微细脉浸染状黄铁矿±黄铜矿-石英、细脉状辉钼矿±黄铁矿±黄铜矿-石英及微细脉状贫硫化物-石英-方解石等。流体包裹体岩相学、显微测温、激光拉曼及碳、氢、氧同位素综合研究表明,微细脉浸染状黄铁矿±黄铜矿-石英阶段石英中主要发育含Na Cl子矿物三相及气液两相包裹体,与含矿的石英二长斑岩石英中发育的流体包裹体特征相似,表明成矿流体主要为中高温、高盐度Na Cl-H2O体系热液,可能主要来源于印支期石英二长斑岩侵入体;辉钼矿±黄铁矿±黄铜矿-石英中主要发育含CO2三相及气液两相包裹体,成矿流体为中温、低盐度Na Cl-CO2-H2O体系热液,与前者来源明显不同;贫硫化物-石英-方解石石英中主要发育气液两相包裹体,成矿流体为中低温、低盐度Na Cl-H2O体系热液,推测其可能较多来自于大气降水。因此,雪鸡坪铜矿床为不同来源、不同地球化学性质热液叠加成矿作用的结果。  相似文献   

9.
Fluid inclusions were studied in samples from the Ashanti, Konongo-Southern Cross, Prestea, Abosso/Damang and Ayanfuri gold deposits in the Ashanti Belt, Ghana. Primary fluid inclusions in quartz from mineralised veins of the Ashanti, Prestea, Konongo-Southern Cross, and Abosso/Damang deposits contain almost exclusively volatile species. The primary setting of the gaseous (i.e. the fluid components CO2, CH4 and N2) fluid inclusions in clusters and intragranular trails suggests that they represent the mineralising fluids. Microthermometric and Raman spectroscopic analyses of the inclusions revealed a CO2 dominated fluid with variable contents of N2 and traces of CH4. Water content of most inclusions is below the detection limits of the respective methods used. Aqueous inclusions are rare in all samples with the exception of those from the granite-hosted Ayanfuri mineralisation. Here inclusions associated with the gold mineralisation contain a low salinity (<6 eq.wt.% NaCl) aqueous solution with variable quantities of CO2. Microthermometric investigations revealed densities of the gaseous inclusions of 0.65 to 1.06 g/cm3 at Ashanti, 0.85 to 0.98 g/cm3 at Prestea, up to 1.02 g/cm3 at Konongo-Southern Cross, and 0.8 to 1.0 g/cm3 at Abosso/Damang. The fluid inclusion data are used to outline the PT ranges of gold mineralisation of the respective gold deposits. The high density gaseous inclusions found in the auriferous quartz at Ashanti and Prestea imply rather high pressure trapping conditions of up to 5.4 kbar. In contrast, mineralisation at Ayanfuri and Abosso/Damang is inferred to have occurred at lower pressures of only up to 2.2 kbar. Mesothermal gold mineralisation is generally regarded to have formed from fluids characterized by H2O > CO2 and low salinity ( ±  6 eq.wt.%NaCl). However, fluid inclusions in quartz from the gold mineralisations in the Ashanti belt point to distinctly different fluid compositions. Specifically, the predominance of CO2 and CO2 >> H2O have to be emphasized. Fluid systems with this unique bulk composition were apparently active over more than 200␣km along strike of the Ashanti belt. Fluids rich in CO2 may present a hitherto unrecognised new category of ore-forming fluids. Received: 30 May 1996 / Accepted: 8 October 1996  相似文献   

10.
胶东三甲金矿床流体包裹体特征   总被引:14,自引:6,他引:8  
三甲金矿是胶东牟平-乳山金成矿带内重要的石英脉型金矿,金主要产于黄铁矿和多金属硫化物石英脉中。流体包裹体研究表明,三甲金矿蚀变岩石和各成矿阶段金矿石中的流体包裹体主要有三种类型:H2O-CO2包裹体、富CO2包裹体和H2O溶液包裹体。早期乳白色石英中主要赋存原生的H2O-CO2包裹体;成矿期黄铁矿石英脉和多金属硫化物石英脉中的富CO2包裹体主要为原生,随机分布,气液比变化较大,常与早期H2O溶液包裹体共生且均一温度接近,显示不混溶流体包裹体组合特征;在成矿晚期的石英和方解石中主要发育原生H2O溶液包裹体。显微测温结果显示,成矿前(第1阶段)H2O-CO2包裹体的完全均一温度(Tb.TOT,至液相)为280℃至416℃,成矿期(第Ⅱ和Ⅲ阶段)富CO2包裹体的完全均一温度为210—330℃,同期的H2O溶液包裹体均一温度为253~377℃,成矿后(第Ⅳ阶段)H2O溶液包裹体的均一温度为176—207℃。成矿流体为低盐度的CO2-H2O-NaCl型热液,成矿应力场转变导致的流体减压沸腾作用可能是三甲金矿金沉淀成矿的主要原因。  相似文献   

11.
Synorogenic veins from the Proterozoic Eastern Mount Isa Fold Belt contain three different types of fluid inclusions: CO2-rich, aqueous two-phase and rare multiphase. Inclusions of CO2 without a visible H2O phase are particularly common. The close association of CO2-rich inclusions with aqueous two-phase, and possibly multiphase inclusions suggests that phase separation of low- to -moderate salinity CO2-rich hydrothermal fluids led to the selective entrapment of the CO2. Microthermometric results indicate that CO2-rich inclusions homogenize between –15.5 and +29.9 °C which corresponds to densities of 0.99 to 0.60 g.cm−3. The homogenization temperatures of the associated aqueous two-phase inclusions are 127–397 °C, with salinities of 0.5 to 18.1 wt.% NaCl equivalent. The rarely observed multiphase inclusions homogenize between 250 and 350 °C, and have salinities ranging from 34.6 to 41.5 wt.% NaCl equivalent. Evidence used to support the presence of fluid immiscibility in this study is mainly derived from observations of coexisting H2O-rich and CO2-rich inclusions in groups and along the same trail. In addition, these two presumably unmixed fluids are also found on adjacent fractures where monophase CO2-rich inclusions are closely related to H2O-rich inclusions. Similar CO2-rich inclusions are widespread in mineral deposits in this region, which are simply metal-enriched synorogenic veins. Therefore, we argue that fluid immiscibility caused volatile species such as CO2 and H2S to be lost from liquid, thus triggering ore deposition by increasing the fluid pH and decreasing the availability of complexing ligands. Received: 28 April 1997 / Accepted: 4 January 1999  相似文献   

12.
The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (∼2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW–SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18–33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310–335°C) values of +6.2 to +8.4‰ and −19 to −80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from −14.2 to −15.7‰ in carbonates; it is −17.6‰ in fluid inclusion CO2 and −23.6‰ in graphite from the host rock. The δ34S values of pyrite are −2.6 to −7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site of deposition and sulfur isotopes indicate some oxidation of the originally reduced fluid. The deposition of gold is interpreted to have occurred mainly in response to phase separation and fluid-rock interactions such as CO2 removal and desulfidation reactions that provoked variations in the fluid pH and redox conditions.  相似文献   

13.
Scheelite mineralization accompanied by muscovite and albite, and traces of Mo-stolzite and stolzite occurs in epigenetic quartz vein systems hosted by two-mica gneissic schists, and locally amphibolites, of the Paleozoic or older Vertiskos Formation, in the Metaggitsi area, central Chalkidiki, N Greece. Three types of primary fluid inclusions coexist in quartz and scheelite: type 1, the most abundant, consists of mixed H2O-CO2 inclusions with highly variable (20–90 vol.%) CO2 contents and salinities between 0.2 and 8.3 equivalent weight % NaCl. Densities range from 0.79 to 0.99 g/cc; type 1 inclusions contain also traces (<2 mol%) of CH4. Type 2 inclusions are nearly 100 vol.% liquid CO2, with traces of CH4, and densities between 0.75 and 0.88 g/cc. Type 3 inclusions, the least abundant, contain an aqueous liquid of low salinity (0.5 to 8.5 equivalent weight% NaCl) with 10–30 vol.% H2O gas infrequently containing also small amounts of CO2 (<2 mol%); densities range from 0.72 to 0.99 g/cc. The wide range of coexisting fluid inclusion compositions is interpreted as a result of fluid immiscibility during entrapment. Immiscibility is documented by the partitioning of CH4 and CO2, into gas-rich (CO2-rich) type 1 inclusions, and the conformity of end-member compositions trapped in type 1 inclusions to chemical equilibrium fractionation at the minimum measured homogenization temperatures, and calculated homogenization pressures. Minimum measured homogenization temperatures of aqueous and gas-rich type 1 inclusions of 220°–250 °C, either to the H2O, or to the CO2 phase, is considered the best estimate of temperature of formation of the veins, and temperature of scheelite deposition. Corresponding fluid pressures were between 1.2 and 2.6 kbar. Oxygen fugacities during mineralization varied from 10−35 to 10−31 bar and were slightly above the synthetic Ni-NiO buffer values. The fluid inclusion data combined with δ18O water values of 3 to 6 per mil (SMOW) and δ13C CO2− fluid of −1.2 to +4.3 per mil (PDB), together with geologic data, indicate generation of mineralizing fluids primarily by late- to post-metamorphic devolatilization reactions. Received: 8 April 1997 / Accepted: 8 July 1997  相似文献   

14.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

15.
Major Cu–Au deposits of iron oxide–copper–gold (IOCG) style are temporally associated with oxidized, potassic granitoids similar to those linked to major porphyry Cu–Au deposits. Stable and radiogenic isotope evidence indicates fluids and ore components were likely sourced from the intrusions. IOCG deposits form over a range of crustal levels because CO2-rich fluids separate from the magmas at higher pressures than in CO2-poor systems, thereby, promoting partitioning of H2O, Cl and metals to the fluid phase. At deep levels, the magma–fluid system cannot generate sufficient mechanical energy to fracture the host rocks as in porphyry systems and the IOCG deposits therefore form in a variety of fault-related structural traps where the magmatic fluids may mix with other fluids to promote ore formation. At shallow levels, the IOCG deposits form breccia and fracture-hosted mineralization styles similar to the hydrothermal intrusive breccias and sulphide vein systems that characterize many porphyry Cu–Au deposits. The fluids associated with IOCG deposits are typically H2O–CO2–salt fluids that evolve by unmixing of the carbonic phase and by mixing with fluids from other sources. In contrast, fluids in porphyry systems typically evolve by boiling of moderate salinity fluid to produce high salinity brine and a vapor phase commonly with input of externally derived fluids. These different fluid compositions and mechanisms of evolution lead to different alteration types and parageneses in porphyry and IOCG deposits. Porphyry Cu–Au deposits typically evolve through potassic, sericitic and (intermediate and/or advanced) argillic stages, while IOCG deposits typically evolve through sodic(–calcic), potassic and carbonate-rich stages, and at deeper levels, generally lack sericitic and argillic alteration. The common association of porphyry and IOCG Cu–Au deposits with potassic, oxidized intermediate to felsic granitoids, together with their contrasting fluid compositions, alteration styles and parageneses suggest that they should be considered as part of the broad family of intrusion-related systems but that they are typically not directly related to each other.  相似文献   

16.
The small Pirilä gold deposit, which is located in the southeastern part of the Svecofennian complex near the Archean/Proterozoic boundary, is hosted by quartz veins and lenses occurring in mica schist. The rocks of the area were metamorphosed under conditions of amphibolite facies. Gold is invariably associated with sulphides. Microthermometry of fluid inclusions in quartz indicates four types of inclusions: (1) weakly saline H2O-CO2 (< 4.0 eq.wt% NaCl) with small amounts of CH4 (< 10 mole% CH4); (2) CO2 (< 10 mole% CH4); (3) CH4; and (4) H2O (< 25 eq.wt% NaCl) with less than 0.85 mole% CO2 in the vapour phase. Texturally these inclusion types are classified as primary (H2O-CO2) and secondary (H2O, CO2 and CH4). Leachate analysis shows that, in addition to Na, the aqueous fluids contain Ca and Fe with minor amounts of K and Mg. The primary H2O-CO2 and the secondary H2O inclusions contain sulphide and unidentified opaque grains, respectively. The secondary CH4 inclusions are often associated with short trails of arsenopyrite grains. Fluid inclusion and geological data suggest ore mineral mobilization, crystallization of host quartz, and deposition of sulphides controlled by the D2 and D3 structures in the presence of a H2O-CO2 fluid mainly during the plastic D3 deformation and during the amphibolite facies metamorphism (i.e. 3.4 kbars/540–670°C). During ductile-brittle deformation (probably D4), precipitation of tectonic remobilized gold from sulphides in fractures occurred in the presence of CH4 and H2O fluids at lowered temperature (< 440°C) and pressure (< 2 kbars).  相似文献   

17.
The Huijiabao gold district is one of the major producers for Carlin-type gold deposits in southwestern Guizhou Province, China, including Taipingdong, Zimudang, Shuiyindong, Bojitian and other gold deposits/occurrences. Petrographic observation, microthermometric study and Laser Raman spectroscopy were carried out on the fluid inclusions within representative minerals in various mineralization stages from these four gold deposits. Five types of fluid inclusions have been recognized in hydrothermal minerals of different ore-forming stages: aqueous inclusions, CO2 inclusions, CO2–H2O inclusions, hydrocarbon inclusions, and hydrocarbon–H2O inclusions. The ore-forming fluids are characterized by a H2O + CO2 + CH4 ± N2 system with medium to low temperature and low salinity. From early mineralization stage to later ones, the compositions of the ore-forming fluids experienced an evolution of H2O + NaCl  H2O + NaCl + CO2 + CH4 ± N2  H2O + NaCl ± CH4 ± CO2 with a slight decrease in homogenization temperature and salinity. The δ18O values of the main-stage quartz vary from 15.2‰ to 24.1‰, while the δDH2O and calculated δ18OH2O values of the ore-forming fluids range from −56.9 to −116.3‰ and from 2.12‰ to 12.7‰, respectively. The δ13CPDB and δ18OSMOW values of hydrothermal calcite change in the range of −9.1‰ to −0.5‰ and 11.1–23.2‰, respectively. Stable isotopic characteristics indicate that the ore-forming fluid was mainly composed of ore- and hydrocarbon-bearing basinal fluid. The dynamic fractionation of the sulfur in the diagenetic pyrite is controlled by bacterial reduction of marine sulfates. The hydrothermal sulfides and the diagenetic pyrite from the host rocks are very similar in their sulfur isotopic composition, suggesting that the sulfur in the ore-forming fluids was mainly derived from dissolution of diagenetic pyrite. The study of fluid inclusions indicates that immiscibility of H2O–NaCl–CO2 fluids took place during the main mineralization stage and caused the precipitation and enrichment of gold.  相似文献   

18.
《Ore Geology Reviews》1999,14(3-4):203-225
The auriferous veins at Yirisen, Masumbiri, Sierra Leone, occurring mainly in the form of sericitic quartz-sulphide lodes and stringers, are hosted in metamorphosed volcano-sedimentary assemblages invaded by at least two generations of granitic intrusions. Detailed microthermometric studies of fluid inclusions from the veins coupled with laser Raman spectroscopic analysis show that the inclusions contain aqueous fluids of variable salinity (5 to 60 wt.% NaCl equivalent) and dense carbonic fluids (pure CO2: 1.08>d>0.88 g/cm3). Optical observations and analysis on opened inclusions by scanning electron microscopy (SEM) reveal that some of the aqueous inclusions contain a number of daughter minerals: halite, sylvite, Ca-, Fe-, Mg- and possibly Li-bearing chlorides, and anhydrite; nahcolite occurs also in some of the CO2 inclusions. The SEM runs also detected a small amount of electrum, suggesting that silver might be a bi-product of the mineralisation. The aqueous and carbonic fluids remained immiscible throughout the formation and evolution of the hydrothermal veins. A few mixed (H2O+CO2) inclusions apparently resulted from accidental trapping of both fluids in the same cavity. The wide range of salinities observed in the aqueous inclusions is attributed to the mixing of relatively hot, low-salinity aqueous fluids and colder, high-salinity brines. The CO2-rich and low-salinity H2O inclusions are considered to be derived from the metamorphic decarbonation/dehydration of the greenstone pile whilst the high-salinity brines are believed to be basinal in origin. Pressure–temperature (PT) conditions of entrapment, inferred from the intersection of representative isochores of the immiscible fluids, indicate that the formation of the veins started at T=400°C and P about 4 kbar, in the presence of the high-density CO2 and low-salinity H2O fluids. At about 200°C, pressure fluctuations (incremental opening of the vein) correspond to the trapping of the lower-density CO2 inclusions and high-salinity brines. It is proposed that the decarbonation/dehydration processes (possibly aided by later magmatic processes) expelled and mobilised the gold from the greenstone pile and concentrated it in the CO2-bearing hydrothermal fluid in the form of Au–chloride complexes. High thermal gradients are believed to have caused the upward migration of this fluid from the bottom of the greenstone pile through structurally controlled conduits. We contend that phase separation of the H2O–CO2 metamorphic fluid, aided possibly by some wall–rock alteration, most probably triggered a decrease in ligand activity and thus, precipitation of the gold into lodes. Percolation of the basinal brines is thought to have remobilised some of the gold together with some silver.  相似文献   

19.
Recent O-isotope and fluid inclusion studies have provided evidence on the nature of the fluids associated with the late-Alpine quartz-gold deposits of the Monte Rosa district. The most abundant inclusions in quartz from these deposits contain a low salinity aqueous fluid (about 2% to 10% wt. NaCl eq.), and a CO2 phase (usually less than 20% mol), in places with minor methane. CO2 densities and total homogenization temperatures vary widely throughout the district, reflecting diverse conditions of trapping (P = 1 to 3 kb, T = 300° to 450°C). At Miniera dei Cani, unmixing between CO2-rich and H2O-rich fluids possibly occurred. A second type of inclusion contains an aqueous brine without recognizable CO2, and is especially abundant at Val Toppa. O-isotope studies suggest that fluids were largely equilibrated in a metamorphic environment. It is concluded that the gold-related fluids in the district were mainly of a metamorphic nature; at Val Toppa, both isotopic and fluid inclusion data point to contributions of unexchanged meteoric waters. Mechanisms of gold transport and precipitation are less contrained. A possible model involves transport of gold as bisulfide complexes, and precipitation due to one or more of the following processes: decrease of sulfur activity due to precipitation of sulfides, wall-rock reaction, cooling/dilution, and/or fluid unmixing.  相似文献   

20.
Fine-grained peraluminous synkinematic leuco-monzogranites (SKG), of Cambro-Ordovician age, occur as veins and sills (up to 20–30 m thick) in the Deep Freeze Range, within the medium to high-grade metamorphics of the Wilson Terrane. Secondary fibrolite + graphite intergrowths occur in feldspars and subordinately in quartz. Four main solid and fluid inclusion populations are observed: primary mixed CO2+H2O inclusions + Al2SiO5 ± brines in garnet (type 1); early CO2-rich inclusions (± brines) in quartz (type 2); early CO2+CH4 (up to 4 mol%)±H2O inclusions + graphite + fibrolite in quartz (type 3); late CH4+CO2+N2 inclusions and H2O inclusions in quartz (type 4). Densities of type 1 inclusions are consistent with the crystallization conditions of SKG (750°C and 3 kbar). The other types are post-magmatic: densities of type 2 and 3 inclusions suggest isobaric cooling at high temperature (700–550°C). Type 4 inclusions were trapped below 500°C. The SKG crystallized from a magma that was at some stage vapour-saturated; fluids were CO2-rich, possibly with immiscible brines. CO2-rich fluids (±brines) characterize the transition from magmatic to post-magmatic stages; progressive isobaric cooling (T<670°C) led to a continuous decrease off O 2 can entering in the graphite stability field; at the same time, the feldspars reacted with CO2-rich fluids to give secondary fibrolite + graphite. Decrease ofT andf O 2 can explain the progressive variation in the fluid composition from CO2-rich to CH4 and water dominated in a closed system (in situ evolution). The presence of N2 the late stages indicates interaction with external metamorphic fluids.Contribution within the network Hydrothermal/metamorphic water-rock interactions in crystalline rocks: a multidisciplinary approach on paleofluid analysis. CEC program: Human Capital and Mobility  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号