首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
基于OpenSees平台的钢管混凝土结构力学性能数值模拟   总被引:1,自引:0,他引:1  
基于非线性纤维梁-柱单元理论,以OpenSees为求解平台分别进行了钢管混凝土结构滞回曲线计算和弹塑性动力时程分析等数值模拟,计算结果与试验吻合良好。钢管内核心混凝土采用考虑钢管约束效应的应力—应变关系,钢材采用随动强化本构模型。在传统纤维模型法的基础上,通过直接在截面层次定义非线性剪切恢复力的方法建立了考虑非线性剪切效应的剪力墙结构数值模型,结果表明该模型能较好地模拟组合剪力墙的抗剪承载力、捏缩效应以及刚度退化等力学性能。对输入不同地震波下钢管混凝土框架体系的动力时程分析表明,基于OpenSees求解平台的非线性纤维模型法能够较好地模拟钢管混凝土框架结构的非线性动力特性。  相似文献   

2.
截面层次的恢复力模型能兼顾计算精度与计算效率,为此在梁-柱单元中得到了广泛的应用。但目前给定"轴力-弯矩-曲率"的截面恢复力模型无法灵活考虑轴力与弯矩的耦合作用;采用屈服面的截面恢复力模型尚未考虑截面强化效应。提出了基于屈服面的截面随动强化恢复力模型及其积分方法,首先依据截面屈服面建立了截面随动强化恢复力模型,然后依托塑性理论,进行截面状态确定和本构关系积分。最后利用所提出的恢复力模型进行了悬臂柱的静力往复分析。结果表明:(1)所选用的截面恢复力模型能很好考虑轴力存在对弯矩的影响;(2)该模型具有随动强化的特性;(3)在精度上接近纤维截面所用的单轴材料随动强化模型。  相似文献   

3.
采用OpenSees建立基于纤维截面的空心钢管混凝土柱有限元模型,对空心钢管混凝土柱的滞回性能进行计算。在该有限元模型基础上,考虑轴压比、长细比、截面空心率、截面含钢率、混凝土强度和钢材强度等因数对骨架曲线恢复力模型的影响,结合正交试验设计方法,对骨架曲线恢复力计算公式进行回归分析。研究结果表明:1数值计算结果与试验结果吻合良好;2得到的空心钢管混凝土柱骨架曲线恢复力计算公式在一定设计参数范围内具有较高的计算精度。  相似文献   

4.
试验研究及震害调查发现:由于配箍不足或箍筋间距过大,地震作用下钢筋混凝土柱易发生剪切破坏,继而发生轴向破坏。采用纤维截面的钢筋混凝土梁柱单元及与之串联的剪切弹簧以及轴向弹簧考虑钢筋混凝土柱的轴-弯-剪耦合效应,其中纤维梁柱单元用于模拟柱的弯曲机制,与梁柱单元串联的剪切弹簧和轴向弹簧用于模拟剪切机制和轴向机制,并利用单轴材料模型中的Limit State Material及其相应的Shear Limit Curve和Axial Limit Curve确定材料的剪切破坏与轴向破坏失效点,最终从单元层次上定义轴-弯-剪耦合效应。为验证该数值模型的合理性,选取不同破坏形式、轴向力与水平循环往复荷载共同作用下拟静力试验的钢筋混凝土柱,借助Open Sees分析软件模拟其滞回性能。模拟结果与试验结果的对比分析表明:考虑轴-弯-剪耦合的串联模型能较好地模拟钢筋混凝土柱的强度、刚度退化及捏拢效应等,且能够反映钢筋混凝土构件在复杂应力条件下的受力性能。  相似文献   

5.
通过3个施加常轴力的RPC箱型桥墩试件的水平反复荷载试验,考虑水平荷载作用方向对RPC箱型墩抗震性能的影响,分析各试件滞回特性和骨架曲线的特点,对影响RPC箱型桥墩恢复力模型的主要因素进行数值回归分析,建立了计入双轴水平力耦合效应的RPC箱型桥墩恢复力模型。利用基于平截面假定的纤维模型法编制考虑轴力二阶效应的双轴压弯构件非线性分析程序,并对RPC箱型桥墩试件的骨架曲线和滞回曲线进行数值模拟。通过与试验结果进行分析对比表明:所提出的恢复力模型具有较好的精确性,能够较好地模拟和反映RPC箱型桥墩的抗震性能。  相似文献   

6.
巨型钢框架结构中,组成主结构的杆件截面高度很大,荷载作用下截面剪切变形对杆件承载力和塑性发展的影响不能忽略,即基于弯曲梁理论的截面纤维模型梁柱单元用于此类结构非线性分析时精度并不高.本文基于刚度法将截面纤维模型与Timoshenko梁理论结合,考虑剪切屈服与弯曲屈服相分离建立杆件单元刚度矩阵通过有限元软件MSC.Mar...  相似文献   

7.
提出一种新型型钢-混凝土组合柱,并对其进行数值模拟分析,研究翼缘厚度、钢管径厚比、轴压比、混凝土强度等参数对该组合柱抗震性能的影响。将新型型钢-混凝土组合柱截面进行合理简化,基于平截面假定建立组合柱正截面承载力计算公式,通过对比试验与模拟数据,发现公式计算结果具有较高精度。进一步提出组合柱截面屈服点、峰值点、破坏点、加载刚度、卸载刚度等特征参数的计算方法,确定恢复力模型的滞回规则,最终建立基于退化三线型模型的新型型钢-混凝土组合柱恢复力模型。将公式计算得到的滞回曲线与试验得到的滞回曲线进行对比,发现二者吻合较好。  相似文献   

8.
多垂直杆单元模型是在钢筋混凝土剪力墙非线性分析中较为常用的一种宏观模型。现有的分析方法不能考虑翼板剪滞效应的影响,然而翼板上正应力非均匀分布必然影响剪力墙承载力的充分发挥。其次现有的分析方法大多不能较好地考虑垂直杆中正应力对剪切刚度的影响。本文在多垂直杆单元模型的基础上进行改进,把垂直杆的轴向刚度和剪切刚度相结合,并引入剪滞位移自由度,摒弃平截面假定的限制,对一工程结构模型的静力分析显示其变形状态符合受力机理,对3片短肢剪力墙模型和1片剪力墙模型进行弹塑性静力加载分析,计算结果与试验结果吻合较好,表明该方法应用可行。  相似文献   

9.
通过钢筋混凝土构件的动态试验,研究不同加载速率下的钢筋混凝土梁柱力学特性。考虑屈服强度、极限强度和刚度的动力效应,引入损伤因子,并考虑混凝土损伤对卸载刚度的影响,建立了钢筋混凝土构件率相关的三折线恢复力模型。利用有限元分析软件模拟钢筋混凝土构件的动态试验,对比模拟结果与试验结果得出:考虑应变率效应和混凝土损伤对卸载刚度的影响,能够更好地反映构件的动力特性。对一平面框架结构模型进行不同加载速率下的动态分析,研究加载速率对结构动力反应的影响,结果表明,随着加载速率的增大,结构模型各构件的强度和刚度增大,结构模型整体抗侧移刚度增强,水平位移减小。  相似文献   

10.
为精细化模拟桥梁结构的非线性行为,在深入分析纤维梁柱单元模型原理的基础上,本文基于ABAQUS建立了钢筋混凝土精细化纤维梁柱单元模拟平台FENAP,开发了与其相适应的材料模型库FENAP/MAT,涵盖了多种材料本构模型,能够有效考虑构件的刚度退化和强度退化等损伤效应,以及模拟轴力和弯矩的多维耦合效应等复杂非线性动力行为,且可考虑箍筋对混凝土的约束作用等。利用该FENAP平台数值模拟了一个钢筋混凝土矩形截面悬臂梁,进行了Pushover分析,考虑了箍筋对核心混凝土约束效应的影响,并与OpenSEES的计算结果进行对比。结果表明:FENAP平台可有效模拟桥梁构件的多种复杂非线性行为,且具有很好的计算效率和求解精度。  相似文献   

11.
This paper presents a masonry panel model for the nonlinear static and dynamic analysis of masonry buildings suitable for the seismic assessment of new and existing structures. The model is based on an equivalent frame idealization of the structure and stems from previous research on force‐based frame elements. The element formulation considers axial, bending, and shear deformations within the framework of the Timoshenko beam theory. A phenomenological cyclic section law that accounts for the shear panel response is coupled, through equilibrium between shear and bending forces along the element, with a fiber‐section model that accounts for the axial and bending responses. The proposed panel model traces with a low computational burden and numerical stability the main aspects of the structural behavior of masonry panels and is suitable for analyses of multi‐floor buildings with a relatively regular distribution of openings and with walls and floors organized to grant a box‐like behavior under seismic loads. The model capabilities are validated though analyses of simple unreinforced masonry panels and comparisons with published experimental results. The model accuracy is strongly dependent on the fiber and shear constitutive laws used. However, the formulation is general, and laws different from those employed in this study are easily introduced without affecting the model formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Seismic response of unreinforced masonry (URM) buildings is largely influenced by nonlinear behavior of spandrels, which provide coupling between piers under in‐plane lateral actions. Seismic codes do not appropriately address modeling and strength verification of spandrels, adapting procedures originally proposed for piers. Therefore, research on spandrels has received significant attention in some earthquake‐prone countries, such as Italy and New Zealand. In the last years, the authors of this paper have performed both monotonic and cyclic in‐plane lateral loading tests on full‐scale masonry walls with single opening and different spandrel types. Those tests were carried out in a static fashion and with displacement control. In this paper, experimental outcomes for two as‐built specimens are presented and compared with those obtained in the past for another as‐built specimen with a wooden lintel above the opening. In both newly tested specimens, the masonry above the opening was supported by a shallow masonry arch. In one of those specimens, a reinforced concrete (RC) bond beam was realized on top of the spandrel, resulting in a composite URM‐RC spandrel. Then, the influence of spandrel type is analyzed in terms of observed damage, force–drift curves, and their bilinear idealizations, which allowed to compare displacement ductility and overstrength of wall specimens. Furthermore, effects of rocking behavior of piers are identified, highlighting their relationship with hysteretic damping and residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Many older unreinforced masonry (URM) buildings feature timber floors and solid brick masonry. Simple equivalent frame models can help predicting the expected failure mechanism and estimating the strength of a URM wall. When modelling a URM wall with an equivalent frame model rather than, for example, a more detailed simplified micro-model, the strengths of the piers and spandrels need to be estimated from mechanical or empirical models. Such models are readily available for URM piers, which have been tested in many different configurations. On the contrary, only few models for spandrel strength have been developed. This paper reviews these models, discusses their merits, faults and compares the predicted strength values to the results of recent experimental tests on masonry spandrels. Based on this assessment, the paper outlines recommendations for a new set of strength equations for masonry spandrels.  相似文献   

14.
A new type of hybrid coupled wall system, consisting of rolled steel coupling beams, reinforced concrete (RC) wall piers, and concrete‐filled tube (CFT) short columns, is introduced. In this new system, the bases of the wall piers are connected to the base beams only through CFT short columns, unlike conventional coupled walls. Yield occurs in the coupling beams and the short columns; hence, in the RC wall piers, only minimum cracking appears. A total of four subassembly specimens, designed to fail in various collapse mechanisms, were cyclically loaded under constant axial force. A benchmark specimen showed ductile behavior with large energy dissipation until fracture occurred in the coupling beam. In the specimen designed to fail in shear in its CFT, substantial axial shortening was observed, but the overall behavior was ductile. Behavior of specimens with small amounts of section steel in the wall panel fringe, or with thin wall panels, also showed ductile behavior, but the strength and energy dissipation were significantly smaller than other two specimens. An analytical model was proposed for a frame analysis program using fiber elements to simulate elastic–plastic behavior of the system. Design methods to prevent shear failure of CFT and RC panels are suggested using the analytical and test results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
为讨论利用纤维梁柱单元进行钢筋混凝土桥墩地震反应分析的建模方法,分别以4个悬臂式单柱墩和1个双柱墩拟静力加载试验,以及1个悬臂式单柱墩的振动台试验结果为依据,基于OpenSees数值分析平台建立了桥墩的地震反应分析模型。通过改变单元数量,分析了基于力的纤维梁柱单元和基于位移的纤维梁柱单元对桥墩地震反应的模拟精度。结果表明:对悬臂式单柱墩的拟静力和振动台试验,可沿墩高仅建立1个基于力的纤维梁柱单元,并在墩底串联1个考虑纵筋塑性渗透和粘结滑移的转动弹簧单元,即可获得很好的模拟结果。当采用基于位移的纤维梁柱单元时,应沿墩高至少建立2个单元,且塑性铰区至少有1个,才能保证获得较高的模拟精度。对双柱墩拟静力试验,采用基于力的纤维梁柱单元建模,沿每个墩高建立2个单元即可;以基于位移的纤维梁柱单元建模,建议沿每个墩高建立3个单元,且其中2个单元布置在塑性铰区。当数值模型可对静力滞回曲线取得很好的模拟结果后,该模型一般可对动力作用下墩顶最大位移和墩底最大剪力进行较为准确的模拟,但对墩顶残余位移的模拟精度无法保证。  相似文献   

16.
关于埋深对地下结构地震反应的影响的研究对象多见于地下隧道,对地铁车站地震反应受埋深影响变化规律缺乏深入研究。本文基于ANSYS有限元软件,采用改进的简化方法建立三种不同埋深的地铁车站结构有限元模型,以两种基岩波的水平向和竖向地震动作为激励,求解各模型中地铁车站结构重要部位的地震反应。分析不同埋深时地铁车站结构惯性作用、侧面土体和上部土体三个因素对地铁车站地震反应的影响情况。分析结果表明:在双向地震作用下,地铁车站侧壁弯矩、剪力、轴力和中柱轴力随埋深的增加而增加,中柱剪力和弯矩随埋深增加而减少。埋深越深,侧面土体对地铁车站地震反应影响越大;上部土体使中柱轴力不断增加;结构自身的惯性作用对其地震反应的贡献逐渐减小。  相似文献   

17.
For seismic analysis of unreinforced masonry (URM) buildings characterized by a box-like behavior, a widely accepted model is based on the equivalent frame idealization of walls. The equivalent frame model uses 1D elements to represent the vertical piers and horizontal spandrels which are connected by rigid nodes. The mechanical characterization of the elements is one of the crucial aspects to predict reasonably the building seismic behavior. Through the comparison with pseudo-static and dynamic experimental tests performed on two-story full-scale buildings, this paper validates the frame modeling in the OpenSees framework, which includes a fiber-section force-based beam element for the axial-flexural behavior, coupled with a cyclic shear-deformation phenomenological law.  相似文献   

18.
为探究局部锈蚀矩形截面钢筋混凝土(RC)桥墩重度震损加固后的抗震性能,本文对拟静力破坏后的6个矩形截面RC桥墩试件进行扩大截面加固。通过加载试验,对加固桥墩试件从破坏形态、滞回特性、水平承载力、位移延性、侧向刚度以及耗能等方面进行了系统分析。结果表明:相比于普通箍筋,横向施加预应力的改进扩大截面加固方式对破坏后桥墩试件的抗震性能修复成效更佳;在同等位移幅值下,锈蚀率不断增大,桥墩试件抗震性能呈现逐渐降低的趋势;钢筋锈蚀位置上移,加固后桥墩试件的抗震性能提升;轴压比加大,加固后桥墩试件承载力和侧向刚度增大,但延性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号