首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processes influencing turbulence in a deciduous forest and the relevant length and time scales are investigated with spectral and cross-correlation analysis. Wind velocity power spectra were computed from three-dimensional wind velocity measurements made at six levels inside the plant canopy and at one level above the canopy. Velocity spectra measured within the plant canopy differ from those measured in the surface boundary layer. Noted features associated with the within-canopy turbulence spectra are: (a) power spectra measured in the canopy crown peak at higher wavenumbers than do those measured in the subcanopy trunkspace and above the canopy; (b) peak spectral values collapse to a relatively universal value when scaled according to a non-dimensional frequency comprised of the product of the natural frequency and the Eulerian time scale for vertical velocity; (c) at wavenumbers exceeding the spectral peak, the slopes of the power spectra are more negative than those observed in the surface boundary layer; (d) Eulerian length scales decrease with depth into the canopy crown, then increase with further depth into the canopy; (e) turbulent events below crown closure are more correlated with turbulent events above the canopy than are those occurring in the canopy crown; and (f) Taylor's frozen eddy hypothesis is not valid in a plant canopy. Interactions between plant elements and the mean wind and turbulence alter the processes that produce, transport and remove turbulent kinetic energy and account for the noted observations.  相似文献   

2.
The structure of turbulent flows along a transition between tall-forested canopies and forest clearings continues to be an active research topic in canopy turbulence. The difficulties in describing the turbulent flow along these transitions stem from the fact that the vertical structure of the canopy and its leaf area distribution cannot be ignored or represented by an effective roughness length. Large-eddy simulation (LES) runs were performed to explore the effect of a homogeneous variation in the forest leaf area index (LAI) on the turbulent flow across forest edges. A nested grid numerical method was used to ensure the development of a deep boundary layer above the forest while maintaining a sufficiently high resolution in the region close to the ground. It was demonstrated that the LES here predicted first-order and second-order mean velocity statistics within the canopy that agree with reported Reynolds-Averaged Navier–Stokes (RANS) model results, field and laboratory experiments. In the simulations reported here, the LAI was varied between 2 and 8 spanning a broad range of observed LAI in terrestrial ecosystems. By increasing the forest LAI, the mean flow properties both within the forest and in the clearing near the forest edge were altered in two fundamental ways: near the forest edge and into the clearing, the flow statistical properties resembled the so-called back-facing step (BFS) flow with a mean recirculation zone near the edge. Another recirculation zone sets up downstream of the clearing as the flow enters the tall forest canopy. The genesis of this within-forest recirculation zone can be primarily described using the interplay between the mean pressure gradients (forcing the flow) and the drag force (opposing the flow). Using the LES results, a simplified analytical model was also proposed to explain the location of the recirculation zone inside the canopy and its dependence on the forest LAI. Furthermore, a simplified scaling argument that decomposes the mean velocity at the outflow edge into a superposition of ‘exit flow’ and BFS-like flow with their relative importance determined by LAI was explored.  相似文献   

3.
We analyse single-point velocity statistics obtained in a wind tunnel within and above a model of a waving wheat crop, consisting of nylon stalks 47 mm high and 0.25 mm wide in a square array with frontal area index 0.47. The variability of turbulence measurements in the wind tunnel is illustrated by using a set of 71 vertical traverses made in different locations, all in the horizontally-homogeneous (above-canopy) part of the boundary layer. Ensemble-averaged profiles of the statistical moments up to the fourth order and profiles of Eulerian length scales are presented and discussed. They are consistent with other similar experiments and reveal the existence of large-scale turbulent coherent structures in the flow. The drag coefficient in this canopy as well as in other reported experiments is shown to exhibit a characteristic height-dependency, for which we propose an interpretation. The velocity spectra are analysed in detail; within and just above the canopy, a scaling based on fixed length and velocity scales (canopy height and mean horizontal wind speed at canopy top) is proposed. Examination of the turbulent kinetic energy and shear stress budgets confirms the role of turbulent transport in the region around the canopy top, and indicates that pressure transport may be significant in both cases. The results obtained here show that near the top of the canopy, the turbulence properties are more reminiscent of a plane mixing layer than a wall boundary layer.  相似文献   

4.
The two-scalar covariance budget is significant within the canopy sublayer (CSL) given its role in modelling scalar flux budgets using higher-order closure principles and in estimating the segregation ratio for chemically reactive species. Despite its importance, an explicit expression describing how the two-scalar covariance is modified by inhomogeneity in the flow statistics and in the vertical variation in scalar emission or uptake rates within the canopy volume remains elusive even for passive scalars. To progress on a narrower version of this problem, an analytical solution to the two-scalar covariance budget in the CSL is proposed for the most idealized flow conditions: a stationary and planar homogeneous flow inside a uniform and dense canopy with a constant leaf area density distribution. The foliage emission (or uptake) source strengths are assumed to vary exponentially with depth while the forest floor emission is represented as a scalar flux. The analytical solution is a superposition of a homogeneous part that describes how the two-scalar covariance at the canopy top is transported and dissipated within the canopy volume, and an inhomogeneous part governed by local production mechanisms of the two-scalar covariance. The homogeneous part is primarily described by the canopy adjustment length scale, and the attenuation coefficients of the turbulent kinetic energy and the mean velocity. Conditions for which the vertical variation of the two-scalar covariance is controlled by the rapid attenuation in the mean velocity and turbulent kinetic energy profiles, vis-à-vis the vertical variation of the scalar source strength, are explicitly established. This model also demonstrates how dissimilarity in the emissions from the ground, even for the extreme binary case with one scalar turned ‘on’ and the other scalar turned ‘off’, modifies the vertical variation of the two-scalar covariance within the CSL. To assess its applicability to field conditions, the analytical model predictions were compared with observations made at two different forest types—a sparse pine forest at the Hyytiälä SMEAR II-station (in Finland) and a dense alpine hardwood forest at Lavarone (in Italy). While the model assumptions do not represent the precise canopy morphology, attenuation properties of the turbulent kinetic energy and the mean velocity, observed mixing length, and scalar source attenuation properties for these two forest types, good agreement was found between measured and modelled two scalar covariances for multiple scalars and for the triple moments at the Hyytiälä site.  相似文献   

5.
Turbulence Statistics Measurements in a Northern Hardwood Forest   总被引:3,自引:0,他引:3  
Tower-based turbulence measurements were collected in and over a mixed hardwood forest at the University of Michigan BiologicalStation (UMBS) UMBSflux site in the northern summerof 2000. Velocity and temperature fluctuations were measured at five levels within the canopy (up to the canopy height, H = 21.4 m), using one- and three-dimensional sonic anemometers and fine-wire thermocouples. Six additional thermocouples were distributed over the canopy-layer depth. Three-dimensional velocities and sonic temperatures were also measured above the canopy at 1.6H and at 2.15H on the AmeriFlux tower located at the UMBSflux site. Vertical profiles of buoyancy flux, mean horizontal velocity, Reynolds stress, and standard deviation and skewness of velocity components were calculated. The analysis of these measurements aims at a multi-layer parameterization framework of turbulence statistics forimplementation in Lagrangian stochastic models. Turbulence profiles and power spectra above the canopy were analyzed in the context of Monin-Obukhov similarity theory (MOST) and Kolmogorov theory, as determined by stability at the top level (2.15H), to assess the extent to which surface scaling is valid as the canopy top is approached. Velocity spectra were computed to explore the potential of estimating the viscous dissipation rate, and results show that the high frequency range of the spectra above the canopy exhibits the roll-off predicted by Kolmogorov theory. Similarly, velocity standard deviations above the canopy converge to MOST predicted values toward the top level, and spectral peaks shift with stability, as expected. Within the canopy, both turbulence statistics profiles and spectral distributions follow the general known characteristics inside forests.  相似文献   

6.
A Eulerian-Lagrangian canopy microclimate model wasdeveloped with the aim of discerning physical frombiophysical controls of CO2 and H2O fluxes. The model couples radiation attenuation with mass,energy, and momentum exchange at different canopylevels. A unique feature of the model is its abilityto combine higher order Eulerian closure approachesthat compute velocity statistics with Lagrangianscalar dispersion approaches within the canopy volume. Explicit accounting for within-canopy CO2,H2O, and heat storage is resolved by consideringnon-steadiness in mean scalar concentration andtemperature. A seven-day experiment was conducted inAugust 1998 to investigate whether the proposedmodel can reproduce temporal evolution of scalar(CO2, H2O and heat) fluxes, sources andsinks, and concentration profiles within and above auniform 15-year old pine forest. The modelreproduced well the measured depth-averaged canopy surfacetemperature, CO2 and H2O concentrationprofiles within the canopy volume, CO2 storageflux, net radiation above the canopy, and heat andmass fluxes above the canopy, as well as the velocitystatistics near the canopy-atmosphere interface. Implications for scaling measured leaf-levelbiophysical functions to ecosystem scale are alsodiscussed.  相似文献   

7.
Comparison of turbulence statistics within three boreal forest canopies   总被引:5,自引:0,他引:5  
Three-dimensional sonic anemometers were used to measure velocities and temperatures within three natural boreal forest canopies. Vertical profiles of atmospheric turbulence statistics for a black spruce forest, a jack pine forest, and a trembling aspen forest, all located in southeastern Manitoba, were plotted and compared. The canopy structures were quite different, with total leaf-area indices of 2, 4 and 10, for the pine, aspen, and spruce forests, respectively.The profiles of the first and second moments differed among the canopies, where velocities decreased more rapidly in the top portions of the denser canopies. The velocity distributions were skewed and kurtotic within all canopies, and showed some differences among the canopies. Eulerian time scale profiles were generally similar among the canopies, and the vertical and streamwise time scale profiles were almost mirror images of each other. Eulerian length scale profiles showed some differences among canopies caused by differences in the velocity profiles. Ratios of vertical-to-horizontal time and length scales had a maximum in mid-canopy.Shear stress profiles were similar in the top parts of all canopies, and upward momentum fluxes were occasionally observed within the canopy trunk space. Countergradient heat fluxes were also observed sometimes. The countergradient fluxes and the skewed, kurtotic velocity distributions indicate the contribution of intermittent, large-scale eddies that are important for energy and mass transfer within canopies.  相似文献   

8.
The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.  相似文献   

9.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

10.
Turbulence statistics were measured in a natural black-spruce forest canopy in southeastern Manitoba, Canada. Sonic anemometers were used to measure time series of vertical wind velocity (w), and cup anemometers to measure horizontal wind speed (s), above the canopy and at seven different heights within the canopy. Vertical profiles were measured during 25 runs on eight different days when conditions above the canopy were near-neutral.Profiles of s and of the standard deviation ( w ) of w show relatively little scatter and suggest that, for this canopy and these stability conditions, profiles can be predicted from simple measurements made above the canopy. Within the canopy, a negative skewness and a high kurtosis of the w-frequency distributions indicate asymmetry and the persistence of large, high-velocity eddies. The Eulerian time scale is only a weak function of height within the canopy.Although w-power spectra above the canopy are similar to those in the free atmosphere, we did not observe an extensive inertial subrange in the spectra within the canopy. Also, a second peak is present that is especially prominent near the ground. The lack of the inertial subrange is likely caused by the presence of sources and sinks for turbulent kinetic energy within our canopy. The secondary spectral peak is probably generated by wake turbulence caused by form drag on the wide, horizontal spruce branches.  相似文献   

11.
Static pressure fluctuations in the microscale range were measured in a mature deciduous forest. Pressure measurements were taken at the ground and above the canopy, and mean profile data of windspeed were collected from above the canopy to near the forest floor. Time series, spectra, and cross-correlations were calculated under different canopy conditions, and relationships between surface pressure fluctuations and mean windspeeds were determined. High-frequency pressure fluctuations that occur over aerodynamically smoother surfaces do not occur at the forest floor. These surface fluctuations are advected by the wind above the canopy, not that within the trunk space. The shapes of the pressure spectra are affected by changes in windspeed. Comparisons of spectra above and below the canopy also show some effect of the canopy itself on the shape of the pressure spectra.  相似文献   

12.
Concentration fluctuation data from surface-layer released smokeplumes have been investigated with the purpose of finding suitable scaling parametersfor the corresponding two-particle, relative diffusion process.Dispersion properties have been measured at downwind ranges between 0.1 and 1 km from a continuous, neutrally buoyant ground level source. A combinationof SF6 and chemical smoke (aerosols) was used as tracer. Instantaneous crosswind concentration profiles of high temporal (up to 55 Hz) and spatialresolution (down to 0.375 m) were obtained from aerosol-backscatter Lidar detectionin combination with simultaneous gas chromatograph (SF6) reference measurements. The database includes detailed crosswind concentration fluctuation measurements. Each experiment, typically of 1/2-hour duration, containsplume mean and variance concentration profiles, intermittency profiles andexceedence and duration statistics. The diffusion experiments were accompanied by detailed in-situ micrometeorological mean and turbulence measurements. In this paper, a new distance-neighbour function for surface-released smoke plumes is proposed, accompanied by experimental evidence in its support. The new distance-neighbour function is found to scale with the surface-layer friction velocity,and not with the inertial subrange dissipation rate, over the range of distance-neighbour separations considered.  相似文献   

13.
Using analyses of data from extant direct numerical simulations and large-eddy simulations of boundary-layer and channel flows over and within urban-type canopies, sectional drag forces, Reynolds and dispersive shear stresses are examined for a range of roughness densities. Using the spatially-averaged mean velocity profiles these quantities allow deduction of the canopy mixing length and sectional drag coefficient. It is shown that the common assumptions about the behaviour of these quantities, needed to produce an analytical model for the canopy velocity profile, are usually invalid, in contrast to what is found in typical vegetative (e.g. forest) canopies. The consequence is that an exponential shape of the spatially-averaged mean velocity profile within the canopy cannot normally be expected, as indeed the data demonstrate. Nonetheless, recent canopy models that allow prediction of the roughness length appropriate for the inertial layer’s logarithmic profile above the canopy do not seem to depend crucially on their (invalid) assumption of an exponential profile within the canopy.  相似文献   

14.
An ensemble of random-phase internal gravity waves is considered in the dynamical framework of the Euler–Boussinesq equations. For flows with zero mean potential vorticity, a kinetic equation for the mean spectral energy density of the waves is obtained under hypothesis of Gaussian statistics with zero correlation length. Stationary scaling solutions of this equation are found for almost vertically propagating waves. The resulting spectra are anisotropic in vertical and horizontal wave numbers. For flows with small but non-zero mean potential vorticity, under the same statistical hypothesis applied to the wave part of the flow, it is shown that the vortex part and the wave part decouple. The vortex part obeys a limiting slow dynamics equation exhibiting vertical collapse and layering which may contaminate the wave-part spectra. Relation of these results to the in situ atmospheric measurements and previous work on oceanic gravity waves is discussed.  相似文献   

15.
Over the past two decades, several inverse methods have been proposed to estimatescalar source and sink strengths from measured mean concentration profiles withinthe canopy volume (hereafter termed the `inverse' problem). These inverse methodscommonly assumed neutral atmospheric stability conditions for the entire canopyvolume. For non-neutral conditions, atmospheric stability corrections in inverseschemes were limited to adjusting the integral time scale or other flow statistics tomatch well-established surface-layer similarity relations above the canopy. Suchstability corrections do not explicitly consider the local stability effects within thecanopy volume. Currently, there is no satisfactory inverse scheme that explicitlyaccounts for local atmospheric stability for canopy turbulence. A Eulerian inversemethod that explicitly accounts for local atmospheric stability within the canopy isdeveloped using second-order closure principles. Field testing the method is conductedusing temperature measurements from two field experiments collected in an even-ageduniform loblolly pine forest. It is demonstrated that by accounting for local atmospheric stability in the inversion scheme, the agreement between modelled sensible heat flux calculations and measurements improve by 60% for stable conditions, 10% for near-neutral conditions and 20% for unstable conditions  相似文献   

16.
Large eddy simulation and study of the urban boundary layer   总被引:7,自引:1,他引:6  
  相似文献   

17.
An intensive measurement campaign within and above a maize row canopy was carried out to investigate flow characteristics within this vegetation. Attention was given to finding adequate scaling parameters of the within-canopy windspeed and air temperature profiles under above-canopy stable stratification.During clear and calm nights the within-canopy condition differs considerably from the abovecanopy state. In contrast to the daytime, the windspeed and temperature profiles do not scale with the above-canopy friction velocity,u * , and the scaling temperature,T * , respectively. A free convection flow regime is generated, forced by the soil heat flux at the canopy floor and by cooling at the top of the canopy. However, the windspeed and temperature profiles appear to scale well with the free convective velocity scale,w * , and the free convective temperature scale,T f , respectively. The free convective state within the canopy agrees well with the free convection criterion Gr>16Re2(u * ), where Gr is the Grashof number and Re(u * ) the Reynolds number, a criterion often used in technical flow problems. Also it is shown that under within-canopy free convection, there is a unique relation between the Grashof number, Gr, and the Reynolds number if the latter is based on the free convective velocity scale.Under within-canopy free convective conditions, it appears that within the canopy the fluxes of heat and water vapour can be estimated well with the relatively simple variance technique. Under these conditions, the Grashof, or Rayleigh number, represents a measure for the kinetic energy of the turbulence within the canopy.  相似文献   

18.
How the spatial perturbations of the first and second moments of the velocity and pressure fields differ for flow over a train of gentle hills covered by either sparse or dense vegetation is explored using large-eddy simulation (LES). Two simulations are investigated where the canopy is composed of uniformly arrayed rods each with a height that is comparable to the hill height. In the first simulation, the rod density is chosen so that much of the momentum is absorbed within the canopy volume yet the canopy is not dense enough to induce separation on the lee side of the hill. In the second simulation, the rod density is large enough to induce recirculation inside the canopy on the lee side of the hill. For this separating flow case, zones of intense shear stress originating near the canopy-atmosphere interface persist all the way up to the middle layer, ‘contaminating’ much of the middle and outer layers with shear stress gradients. The implications of these persistent shear-stress gradients on rapid distortion theory and phase relationships between higher order velocity statistics and hill-induced mean velocity perturbations (Δu) are discussed. Within the inner layer, these intense shear zones improve predictions of the spatial perturbation by K-theory, especially for the phase relationships between the shear stress (~ ?Δu/?z) and the velocity variances, where z is the height. For the upper canopy layers, wake production increases with increasing leaf area density resulting in a vertical velocity variance more in phase with Δu than with ?Δu/?z. However, background turbulence and inactive eddies may have dampened this effect for the longitudinal velocity variance. The increase in leaf area density does not significantly affect the phase relationship between mean surface pressure and topography for the two simulations, though the LES results here confirm earlier findings that the minimum mean pressure shifts downstream from the hill crest. The increase in leaf area density and associated flow separation simply stretches this difference further downstream. This shift increases the pressure drag, the dominant term in the overall drag on the hill surface, by some 15%. With regards to the normalized pressure variance, increasing leaf area density increases ${\sigma_p/u_{*}^{2}}$ near the canopy top, where u * is the longitudinally averaged friction velocity at the canopy top and σ p is the standard deviation of the pressure fluctuations. This increase is shown to be consistent with a primitive scaling argument on the leading term describing the mean-flow turbulent interaction. This scaling argument also predicts the spatial variations in σ p above the canopy reasonably well for both simulations, but not inside the canopy.  相似文献   

19.
Observations of wind statistics within and above a Scots pine forest are comparedwith those predicted from an analytical second-order closure model. The roughnesssublayer (RSL) effects, and the influence of stability on similarity functions, arestudied using observations. The commonly accepted forms of similarity functionsdescribe the influence of diabatic effects above the RSL well. According to earlierstudies they are expected also to apply within the RSL. As an exception, the averagewind speed normalised with friction velocity was found to be invariant with stabilityclose to the canopy top under unstable conditions. Lagrangian stochastic trajectorysimulations were used to evaluate the influence of canopy turbulence profiles onfootprint prediction. The main uncertainty was found to arise from parameterisationof the random forcing term in the Lagrangian velocity equation. The influence ofdiabatic conditions was studied, and it was found that thermal stability affectssignificantly the footprint function above the forest canopy, but significantuncertainty exists because of uncertainties in the formulation of stability functions.  相似文献   

20.
A recently developed dynamic surface roughness model (Anderson and Meneveau, J Fluid Mech 679:288–314, 2011) for large-eddy simulation (LES) of atmospheric boundary-layer flow over multi-scale topographies is applied to boundary-layer flow over several types of fluvial-like landscapes. The landscapes are generated numerically with simulation of a modified Kardar–Parisi–Zhang equation (Passalacqua et al., Water Resour Res 42:WOD611, 2006). These surfaces possess the fractal-like channel network and anisotropic features often found in real terrains. The dynamic model is shown to lead to accurate flow predictions when the surface-height distributions exhibit power-law scaling (scale invariance) in the prevalent mean flow direction. In those cases, the LES provide accurate predictions (invariant to resolution) of mean velocity profiles. Conversely, some resolution dependence is found for applications in which the landscape’s streamwise spectra do not exhibit pure power-law scaling near wavenumbers corresponding to the LES grid resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号