首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 911 毫秒
1.
We investigated an alternative means for quantifying daytime ecosystem respiration from eddy-covariance data in three forests with different canopy architecture. Our hypothesis was that the turbulent transport by coherent structures is the main pathway for carrying detectable sub-canopy respiration signals through the canopy. The study extends previously published work by incorporating state-of-the-art wavelet decomposition techniques for the detection of coherent structures. Further, we investigated spatial and temporal variability of the respiration signal and coherent exchange at multiple heights, for three mature forest sites with varying canopy and terrain properties for one summer month. A connection between the coherent structures and identified sub-canopy respiration signal was clearly determined. Although not always visible in signals collected above the canopy, certain cases showed a clear link between conditionally sampled respiration events and coherent structures. The dominant time scales of the coherent structure ejection phase (20?C30 s), relative timing of maximum coincidence between respiration events and the coherent structure ejection phase (at approximately ?10 s from detection) and vertical transport upward through the canopy were shown to be consistent in time, across measurement heights and across the different forest sites. Best results were observed for an open canopy pine site. We conclude that the presented method is likely to be applicable at more open rather than dense (closed) canopies. The results provided a confirmation of the connection between below- and above-canopy scalar time series, and may help the development or refinement of direct methods for the determination of component fluxes from observations above the canopy.  相似文献   

2.
高风速相干结构对通量输送影响的实验研究   总被引:2,自引:0,他引:2  
切变湍流的相干结构是湍流研究中的重大发现,它表明湍流运动并非完全随机,其中具有可检测的有序结构.本文通过处理南京浦口地区大气边界层观测数据,来分析不稳定层结中高风速相干结构特征.本次观测项目包括对场地中央的气象铁塔上2 m和40 m高度上超声风速仪的脉动速度、温度测量以及风廓线雷达对边界层风速廓线的测量.对超声水平风速时间序列数据进行小波变换 (时间尺度400 s),通过阈值来识别这种高风速相干结构.与多普勒风廓线雷达测量结果对比后发现,这种方法确定的相干结构符合常规的认识,具有较长的时间尺度和较大的垂直尺度 (接近边界层厚度).分析三天相干结构特性得到无量纲空间间隔约为6,即每隔6个边界层厚度的水平位置出现一个高速相干结构.通过与垂直风速小波系数的比较,发现高风速相干结构与向下垂直风速之间有较好相关,这与湍流中 “阵风” 现象的研究结论相似.使用四象限分析方法分类得到两种动量通量输送为负的运动:较小水平风速的上扬 (ejection) 运动 (简称为上扬运动) 和较大水平风速的下扫 (sweep) 运动 (简称为下扫运动),这两种运动在整个湍流活动中处于主导地位.高风速相干结构通过促进下扫运动和抑制上扬运动来影响动量通量的输送.  相似文献   

3.
The relationship between surface pressure fluctuations and the velocity field associated with turbulent coherent structures is examined for flow within and above a deciduous forest. Measurements were taken with tower-mounted sonic anemometer/thermometers at six heights, Lyman-alpha humidiometers at three heights, and a pressure sensor at the forest floor. We find a strong, near-linear relationship between the mean square turbulent velocity and the standard deviation of the high-pass-filtered pressure fluctuations. Lagged cross-correlations between vertical velocity fluctuations and those of pressure show maximum correlations of ± 0.5 but with a phase offset. Examination of surface pressure during the passage of coherent structures, which are characterized by a transition from ejection to sweep, reveals a period of overpressure about 20 s in duration roughly centered on the time of passage of the scalar microfront at the top of the canopy. Pressure patterns associated with coherent structures appear to be largely responsible for the form of the correlations stated above.Pressure patterns calculated from an integrated Poisson equation, using observed velocity and temperature signals during coherent structures, match the main features of the observed pressure. Retrieval of the pressure fluctuations in this manner reveals that the mean wind shear/turbulence interaction term is dominant, but that important contributions arise from two other terms in the equation. Buoyancy effects are negligible. We show that the surface pressure signal is mainly created by the velocity field near the top of the forest, and present evidence to suggest that features of the sub-crown air movement result directly from this pressure field.  相似文献   

4.
Coherent Turbulent Structures Across a Vegetation Discontinuity   总被引:3,自引:2,他引:1  
The study of turbulent flow across a vegetation discontinuity is of significant interest as such landscape features are common, and as there is no available theory to describe this regime adequately. We have simulated the three-dimensional dynamics of the airflow across a discontinuity between a forest (with a leaf area index of 4) and a clearing surface using large-eddy simulation. The properties of the bulk flow, as well as the large-scale coherent turbulent structures across the forest-to-clearing transition and the clearing-to-forest transition, are systematically explored. The vertical transport of the bulk flow upstream of the leading edge gives rise to the enhanced gust zone around the canopy top, while the transport downstream of the trailing edge leads to the formation of a recirculation zone above the clearing surface. The large-scale coherent structures across the two transitions exhibit both similarities with and differences from those upstream of the corresponding transition. For example, the ejection motion is dominant over the sweep motion in most of the region 1?<?z/h < 2 (h is the canopy height) immediately downstream of the trailing edge, much as in the forested area upstream. Also, the streamwise vortex pair, which has previously been observed within the canopy sublayer and the atmospheric boundary layer, is consistently found across both transitions. However, the inflection observed both in the mean streamwise velocity, as well as in the vertical profiles of the coherent structures in the forested area, disappears gradually across the forest-to-clearing transition. The coherence of the turbulence, quantified by the percentage of the total turbulence kinetic energy that the coherent structures capture from the flow, decreases sharply immediately downstream of the trailing edge of the forest and increases downstream of the leading edge of the forest. The effects of the ratio of the forest/clearing lengths under a given streamwise periodicity on flow statistics and coherent turbulent structures are presented as well.  相似文献   

5.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   

6.
用连续子波变换提取城市冠层大气湍流的相干结构   总被引:4,自引:2,他引:4       下载免费PDF全文
陈炯  郑永光  胡非 《大气科学》2003,27(2):182-190
切变湍流的相干结构是湍流研究中的重大发现,它表明湍流在表面上看来不规则运动中具有可检测的有序运动,这种相干结构在切变湍流的脉动生成和发展中起着主宰作用.因此识别和提取相干结构对于认识和研究湍流是非常重要的.用数字滤波法将包含相干结构的大尺度信号提取出来以后,再用子波分析,根据子波能量极大值的判别方法,分别确定出大气湍流三个方向上的速度脉动信号相干结构的频率或时间尺度,然后由确定尺度上的连续子波反演公式,提取出大气湍流三个方向上的速度脉动信号相干结构所对应的波形.  相似文献   

7.
Landscape discontinuities such as forest edges play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence and triggering the formation of coherent tree-scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may lead to complex patterns of flow and turbulence that are potentially difficult to predict. Here, we investigate the effects of different levels of forest fragmentation on the airflow. Five gap spacings (of length approximately 5h, 10h, 15h, 20h, 30h, where h is the canopy height) between forest blocks of length 8.7h, as well as a reference case consisting of a continuous forest after a single edge, were investigated in a wind tunnel. The results reveal a consistent pattern downstream from the first edge of each simulated case, with the streamwise velocity component at tree top increasing and turbulent kinetic energy decreasing as gap size increases, but with overshoots in shear stress and turbulent kinetic energy observed at the forest edges. As the gap spacing increases, the flow appears to change monotonically from a flow over a single edge to a flow over isolated forest blocks. The apparent roughness of the different fragmented configurations also decreases with increasing gap size. No overall enhancement of turbulence is observed at any particular level of fragmentation.  相似文献   

8.
While turbulent bursts are considered critical for blowing-snow transport and initiation, the interaction of the airflow with the snow surface is not fully understood. To better characterize the coupling of turbulent structures and blowing-snow transport, observations collected in natural environments at the necessary high-resolution time scales are needed. To address this, high-frequency measurements of turbulence, blowing-snow density and particle velocity were made in the Canadian Rockies. During blowing-snow storms, modified variable-interval time averaging enabled identification of periods of near-surface blowing-snow coupling with shear-stress-producing motions in the lowest 2 m of the atmospheric surface layer. The identification of those turbulent motions responsible for blowing snow yields a better understanding of the event-driven mechanics of initiation and sustained transport. The type of coherent structures generating the Reynolds stress are just as important as the magnitude of the Reynolds stress in initiating and sustaining near-surface blowing snow. Our results suggest that blowing-snow models driven by merely the time-averaged shear stress lack physical realism in the near-surface region. The next phase of the development of blowing-snow models should incorporate parametrizations of coherent turbulent structures.  相似文献   

9.
Turbulent fluxes obtained using the conventional eddy covariance approach result in erratic results with large time fluctuations in extremely stable conditions. This can limit efforts to estimate components of the nocturnal energy budget and respiratory CO2 fluxes. Well-organized fluxes that show a clear dependence on turbulent intensity were obtained when multiresolution decomposition was used to estimate turbulent exchanges. CO2, heat and water vapour fluxes were observed at a site in the eastern Amazon basin that had been cleared for agricultural purposes. Temporal scales of the carbon transfer were determined and shown to be similar to those of latent heat, but as much as three times larger than those of sensible heat. CO2 eddy diffusivities at the temporal scales on which most of the vertical CO2 exchange occurs are shown to be 50 times larger than the eddy diffusivity for heat. A process associated with the vertical scale of the scalar accumulation layer is suggested to explain these different scales and turbulent diffusivities of carbon and sensible heat transfer. For an appreciable range of turbulence intensities, the observed vertical turbulent carbon exchange is insufficient to account for the locally respired CO2 estimated independently. Evidence that shallow drainage currents may account for this is given.  相似文献   

10.
During the CASES-99 field experiment, three quartz-based microbarographs were installed on the 58-m main tower at the Central Site. These devices measuredabsolute pressure with temperature compensated output at a resolution better than 0.2 Pa and a sampling frequency of 2 s-1 during the whole campaign. This sampling rate is not adequate to compute turbulent pressure fluxes with the classic averaging method, but the wavelet transform allows flux estimations at a wide range of scales. The resolution of the devices is suitable to study pressure perturbations such as internal gravity waves. The night period of the Intensive Operational Period number 6 (IOP6), where wave-like structures were present, is chosen to illustrate the method. A complete wavelet analysis of pressure recordsand data from sonic anemometers located at the same heights in the tower is performed. Wavelet methods make it possible to identify the relevant scales in the flowand to study the vertical structure of pressure perturbations, including coherent structures and small-scale motions.A study of a simplified turbulence kinetic energy budget equation is made and the contribution of the pressure terms is discussed.  相似文献   

11.
An atmospheric surface-layer (ASL) experiment conducted at a meteorological site in the Oostelijk-Flevoland polder of the Netherlands is described. Turbulent fluctuations of wind velocity, air temperature and static pressure were measured, using three 10 m towers.Simultaneous turbulent signals at several heights on the towers were used to investigate the properties of the turbulent structures which contribute most significantly to the turbulent vertical transports in the unstable ASL. These turbulent structures produce between 30 and 50% of the mean turbulent vertical transport of horizontal alongwind momentum and they contribute to between 40 and 50% of the mean turbulent vertical heat transport; in both cases this occurs during 15 to 20% of the total observation time.The translation speed of the turbulent structures equals the wind speed averaged over the depth of the ASL, which scales on the surface friction velocity. The inclination angle of the temperature interface at the upstream edge of the turbulent structures to the surface is significantly smaller than that of the internal shear layer, which is associated with the temperature interface. The turbulent structures in the unstable ASL are determined by a large-scale temperature field: Convective motions, which encompass the whole depth of the planetary boundary layer (PBL), penetrate into the ASL. The curvature of the vertical profile of mean horizontal alongwind velocity forces the alignment of the convective cells in the flow direction (Kuettner, 1971), which have an average length of several hundreds of metres and an average width of a few tens of metres. This mechanism leads to the formation of turbulent structures, which extend throughout the depth of the ASL.  相似文献   

12.
Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.  相似文献   

13.
Mechanisms Controlling Turbulence Development Across A Forest Edge   总被引:2,自引:9,他引:2  
In this paper we discuss the development of turbulence back from the transition fromopen moorland to a forest. Data from a field study and a wind-tunnel experiment arepresented. These show that the variance in the streamwise velocity begins to adjust tothe new surface between 2 to 4 tree heights downwind of the transition. This is soonerthan either the vertical velocity variance or the shear stress, both of which begin to adjust in a zone 3 to 5 tree heights downwind of the edge. Key terms in the prognostic equations for streamwise and vertical velocity variance are evaluated in order to explain these differences. The flow distortion caused by the forest edge, which extends to 4 tree heights downwind of the forest edge, is shown to be crucial in the delayed turbulence development. Initially the shear production term, which is the dominant source for the streamwise velocity variance, is counteracted by a sink in the vertical advection term. After the flow levels out the pressure redistribution (return-to-isotropy) term becomes the main sink of streamwisevelocity variance and feeds energy into the vertical velocity component. Therefore, thedevelopment of the vertical velocity variance and shear stress cannot begin until afterdevelopment of an increase in the streamwise velocity variance. Results are comparedwith other experiments, including the flow across shelterbelts, and large-eddy simulations of forest flow.  相似文献   

14.
王蓉  黄倩  岳平  王敏仲 《气象》2019,45(12):1700-1709
基于敦煌野外观测资料和大涡模式,研究了垂直方向不同尺度湍涡对夹卷及示踪物垂直传输的影响,明确了模式垂直分辨率在模拟结果分析中的作用。结果表明:垂直方向上小尺度湍涡对夹卷作用贡献更大,小尺度湍涡较多时夹卷层相对更暖,而夹卷层厚度、夹卷强度和风速变化受垂直方向湍涡尺度影响较小。当垂直分辨率为50 m时,越往夹卷层上部,上升气流和下沉气流分布较多且强度较大;分辨率为10、20和30 m时,夹卷层各高度垂直速度、位温和示踪物浓度分布较接近。另外,垂直方向湍涡尺度对示踪物垂直传输高度影响不大,而对示踪物的空间分布有一定作用。当大尺度湍涡较多且强度较强时,越有利于将高浓度的示踪物向上传输。综合考虑到模式采用较高分辨率模拟时产生的噪音及计算时间等问题,认为模式采用30 m的垂直分辨率,既能较好地模拟出夹卷层平均结构特征,又能模拟出夹卷层湍流的精细分布,是较为理想的选择。  相似文献   

15.
The presence of coherent structures in turbulent shear flows suggests order in apparently random flows. These coherent structures play an important dynamical role in momentum and scalar transport. To develop dynamical models describing the evolution of such motion, it is necessary to detect and isolate the coherent structures from the background fluctuations. In this paper, we decomposed atmospheric turbulence time series into large-scale eddies, which include coherent structures and small eddies, which are stochastic by using Fourier digital filtering. The wavelet energy computed for the three components of the velocity fluctuations in the large-scale eddies appears to have local maximum values at certain time scales, which correspond to the scales or frequencies of coherent structures. We extract coherent signals from large-scale vortices at this scale by inverse wavelet transform formulae. This method provides an objective technique for examining the turbulence signal associated with coherent structures in the atmospheric boundary layer. The average duration of coherent structures in three directions based on Mexican hat wavelets are 33 s, 34 s and 25 s respectively. Symmetric andanti-symmetric wavelet basis functions give almost the same results. The main features of the structures during the day and night have little difference. The dimensionless durations for u, v and w have linear correlations with each other. These relationships are insensitive to the wavelet basis.  相似文献   

16.
Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parametrize remote turbulence measurements, and to characterize ramp features in the turbulent field. Ramp features are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. The analysis of structure functions to identify ramp characteristics is used in surface renewal methods for estimating fluxes. It is unclear how commonly observed different scales of ramp-like shapes (i.e., smaller ramps and spikes embedded in larger ramps) influence structure function analysis. Here, we examine the impact of two ramp-like scales on structure function analysis using artificially generated data. The range of time lags in structure function analysis was extended to include time lags typically associated with isotropic turbulence to those larger than the ramp durations. The Van Atta procedure (Arch Mech 29:161–171, 1977) has been expanded here to resolve the characteristics of two-scale ramp models. This new method accurately, and in some cases, exactly determines the amplitude and duration of both ramp scales. Spectral analysis was applied to the structure functions for a broad range of time lags to provide qualitative support for the expanded Van Atta procedure results. The theory reported here forms the foundation for novel methods of analyzing turbulent coherent structures.  相似文献   

17.
2009年“莫拉克”台风登陆过程阵风特征分析   总被引:3,自引:2,他引:1  
李永平  郑运霞  方平治 《气象学报》2012,70(6):1188-1199
利用上海台风研究所移动观测车获取的“莫拉克”台风登陆过程中超声风、温等观测资料对地面阵风特性进行了诊断分析.结果表明,在风速时间序列中叠加有周期为3-7 min的阵风扰动,显现出明显的相干结构,即沿顺风方向阵风风速峰期有下沉运动,谷期有上升运动;阵风扰动的各向异性特征明显,沿顺风方向的阵风扰动能量最大,其次是沿侧向和垂直方向的扰动能量;沿顺风方向的阵风垂直动量通量向下传播,而沿侧风方向阵风扰动动量垂直通量总体贡献接近于0.阵风扰动沿顺风方向的积分空间尺度和时间尺度最大,沿侧风方向和垂直方向其次,均明显大于湍流的积分空间和时间尺度.此外,阵风扰动的其他特征还包括:感热垂直通量极小;当平均风速较大时阵风风向变化幅度较小,而风速较小时阵风风向变化幅度则较大;动力学分析表明,阵风扰动主要表现出重力内波的一些特性.  相似文献   

18.
This study investigates the organised motion near the canopy-atmosphere interface of a moderately dense spruce forest in heterogeneous, complex terrain. Wind direction is used to assess differences in topography and surface properties. Observations were obtained at several heights above and within the canopy using sonic anemometers and fast-response gas analysers over the course of several weeks. Analysed variables include the three-dimensional wind vector, the sonic temperature, and the concentration of carbon dioxide. Wavelet analysis was used to extract the organised motion from time series and to derive its temporal scales. Spectral Fourier analysis was deployed to compute power spectra and phase spectra. Profiles of temporal scales of ramp-like coherent structures in the vertical and longitudinal wind components showed a reversed variation with height and were of similar size within the canopy. Temporal scales of scalar fields were comparable to those of the longitudinal wind component suggesting that the lateral scalar transport dominates. The existence of a – 1 power law in the longitudinal power spectra was confirmed for a few cases only, with a majority showing a clear 5/3 decay. The variation of effective scales of organised motion in the longitudinal velocity and temperature were found to vary with atmospheric stability, suggesting that both Kelvin-Helmholtz instabilities and attached eddies dominate the flow with increasing convectional forcing. The canopy mixing-layer analogy was observed to be applicable for ramp-like coherent structures in the vertical wind component for selected wind directions only. Departures from the prediction of m = Λ w L s −1 = 8–10 (where Λ w is the streamwise spacing of coherent structures in the vertical wind w and L s is a canopy shear length scale) were caused by smaller shear length scales associated with large-scale changes in the terrain as well as the vertical structure of the canopy. The occurrence of linear gravity waves was related to a rise in local topography and can therefore be referred to as mountain-type gravity waves. Temporal scales of wave motion and ramp-like coherent structures were observed to be comparable.  相似文献   

19.
Canopy turbulence plays an important role in mass and energy exchanges at the canopy-atmosphere interface. Despite extensive studies on canopy turbulence over a flat terrain, less attention has been given to canopy turbulence in a complex terrain. The purpose of this study is to scrutinize characteristics of canopy turbulence in roughness sublayer over a hilly forest terrain. We investigated basic turbulence statistics, conditionally sampled statistics, and turbulence spectrum in terms of different atmospheric stabilities, wind direction and vertical structures of momentum fluxes. Similarly to canopy turbulence over a homogeneous terrain, turbulence statistics showed coherent structure. Both quadrant and spectrum analysis corroborated the role of intermittent and energetic eddies with length scale of the order of canopy height, regardless of wind direction except for shift of peak in vertical wind spectrum to relatively high frequency in the down-valley wind. However, the magnitude of the momentum correlation coefficient in a neutral condition was smaller than typical value over a flat terrain. Further scrutiny manifested that, in the up-valley flow, temperature skewness was larger and the contribution of ejection to both momentum and heat fluxes was larger compared to the downvalley flow, indicating that thermal instability and weaker wind shear in up-valley flow asymmetrically affect turbulent transport within the canopy.  相似文献   

20.
A three-dimensional large-eddy simulation (LES) model, which includes the effects of plant–atmosphere interactions, is used to study the effects of surface inhomogeneities on near-surface coherent structures over an open field and behind a forest canopy. These simulated conditions are representative of two wind sectors of the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) experimental site at the Institut Pierre Simon Laplace, Palaiseau, France. Coherent structure properties deduced from wavelet transforms of the simulated near-surface vertical velocity time series are not modified by upstream terrain heterogeneities, in agreement with site measurements. This feature is related to the nature of structures detected from the vertical velocity time series. The turbulence close to the surface seems composed of both local coherent structures and large coherent structures reflecting outer-layer properties, which depend on the overall surface heterogeneity or upstream heterogeneity. It is argued that the streamwise velocity is representative of these large outer-layer structures that impinge onto the ground through a top-down mechanism as identified through the space–time correlation of the wind velocity components. In contrast, the vertical velocity is more representative of small structures resulting from the impingement of the large outer-layer structures. These small structures represent locally-generated, active turbulence, which adjusts rapidly to local surface conditions, and consequently they are only weakly dependent on upstream heterogeneities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号