首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper evaluates a recent record selection and scaling procedure of the authors that can determine the probabilistic structural response of buildings behaving either in the elastic or post‐elastic range. This feature marks a significant strength on the procedure as the probabilistic structural response distribution conveys important information on probability‐based damage assessment. The paper presents case studies that show the utilization of the proposed record selection and scaling procedure as a tool for the estimation of damage states and derivation of site‐specific and region‐specific fragility functions. The method can be used to describe exceedance probabilities of damage limits under a certain target hazard level with known annual exceedance rate (via probabilistic seismic hazard assessment). Thus, the resulting fragility models can relate the seismicity of the region (or a site) with the resulting building performance in a more accurate manner. Under this context, this simple and computationally efficient record selection and scaling procedure can be benefitted significantly by probability‐based risk assessment methods that have started to be considered as indispensable for developing robust earthquake loss models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
As a result of population growth and consequent urbanization, the number of high‐rise buildings is rapidly growing worldwide resulting in increased exposure to multiple‐scenario earthquakes and associated risk. The wide range in frequency contents of possible strong ground motions can have an impact on the seismic response, vulnerability and limit states definitions of RC high‐rise wall structures. Motivated by the pressing need to derive more accurate fragility relations to be used in seismic risk assessment and mitigation of such structures, a methodology is proposed to obtain reliable, Seismic Scenario‐Structure‐Based (SSSB) definitions of limit state criteria. A 30‐story wall building, located in a multi‐seismic scenario study region, is utilized to illustrate the methodology. The building is designed following modern codes and then modeled using nonlinear fiber‐based approach. Uncertainty in ground motions is accounted for by the selection of forty real earthquake records representing two seismic scenarios. Seismic scenario‐based building local response at increasing earthquake intensities is mapped using Multi‐Record Incremental Dynamic Analyses (MRIDAs) with a new scalar intensity measure. Net Inter‐Story Drift (NISD) is selected as a global damage measure based on a parametric study involving seven buildings ranging from 20 to 50 stories. This damage measure is used to link local damage events, including shear, to global response under different seismic scenarios. While the study concludes by proposing SSSB limit state criteria for the sample building, the proposed methodology arrives at a reliable definition of limit state criteria for an inventory of RC high‐rise wall buildings under multiple earthquake scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The seismic performance of conventional wood‐frame structures in south‐western British Columbia is analytically investigated through incremental dynamic analysis by utilizing available UBC‐SAWS models, which were calibrated based on experimental test results. To define an adequate target response spectrum that is consistent with information from national seismic hazard maps, record selection/scaling based on the conditional mean spectrum (CMS) is implemented. Furthermore, to reflect complex seismic hazard contributions from different earthquake sources (i.e. crustal events, interface events, and inslab events), we construct CMS for three earthquake types, and use them to select and scale an adequate set of ground motion records for the seismic performance evaluation. We focus on the impacts of adopting different record selection criteria and of using different shear‐wall types (Houses 1–4; in terms of seismic resistance, House 1>House 2>House 3>House 4) on the nonlinear structural response. The results indicate that the record selection procedures have significant influence on the probabilistic relationship between spectral acceleration at the fundamental vibration period and maximum inter‐story drift ratio, highlighting the importance of taking into account response spectral shapes in selecting and scaling ground motion records. Subjected to ground motions corresponding to the return period of 2500 years, House 1 is expected to experience very limited extent of damage; Houses 2 and 3 may be disturbed by minor damage; whereas House 4 may suffer from major damage occasionally. Finally, we develop statistical models of the maximum inter‐story drift ratio conditioned on a seismic intensity level for wood‐frame houses, which is useful for seismic vulnerability assessment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The use of a seismic intensity measure (IM) is paramount in decoupling seismic hazard and structural response estimation when assessing the performance of structures. For this to be valid, the IM needs to be sufficient;that is, the engineering demand parameter (EDP) response should be independent of other ground motion characteristics when conditioned on the IM. Whenever non‐trivial dependence is found, such as in the case of the IM being the first‐mode spectral acceleration, ground motion selection must be employed to generate sets of ground motion records that are consistent vis‐à‐vis the hazard conditioned on the IM. Conditional spectrum record selection is such a method for choosing records that are consistent with the site‐dependent spectral shape conditioned on the first‐mode spectral acceleration. Based on a single structural period, however the result may be suboptimal, or insufficient, for EDPs influenced by different period values, for example, peak interstory drifts or peak floor accelerations at different floors, potentially requiring different record suites for each. Recently, the log‐average spectral acceleration over a period range, AvgSA, has emerged as an improved scalar IM for building response estimation whose hazard can be evaluated using existing ground motion prediction equations. Herein, we present a recasting of conditional spectrum record selection that is based on AvgSA over a period range as the conditioning IM. This procedure ensures increased efficiency and sufficiency in simultaneously estimating multiple EDPs by means of a single IM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This study proposes a procedure for identifying spectral response curves for earthquake‐damaged areas in developing countries without seismic records. An earthquake‐damaged reinforced concrete building located in Padang, Indonesia was selected to illustrate the identification of the maximum seismic response during the 2009 West Sumatra earthquake. This paper summarizes the damage incurred by the building; the majority of the damage was observed in the third story in the span direction. The damage was quantitatively evaluated using the damage index R according to the Japanese guidelines for post‐earthquake damage evaluation. The damage index was also applied to the proposed spectral response identification method. The seismic performance of the building was evaluated by a nonlinear static analysis. The analytical results reproduced a drift concentration in the third story. The R‐index decreased with an increase in the story drift, which provided an estimation of the maximum response of the building during the earthquake. The estimation was verified via an earthquake response analysis of the building using ground acceleration data, which were simulated based on acceleration records of engineering bedrock that considered site amplification. The maximum response estimated by the R‐index was consistent with the maximum response obtained from the earthquake response analysis. Therefore, the proposed method enables the construction of spectral response curves by integrating the identification results for the maximum responses in a number of earthquake‐damaged buildings despite a lack of seismic records. Copyright © 2016 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

6.
Historical constructions are part of the world heritage, and their survival is an important priority. Comprising mostly unreinforced, load‐bearing masonry, heritage buildings may date anywhere from antiquity to the 19th and early 20th century. Being exposed to the elements over the years, they are in various states of disrepair and material degradation. Based on postearthquake reconnaissance reports, these structures occasionally behave rather poorly, even in moderate seismic events, undergoing catastrophic damage and collapse, whereas retrofitting is governed by international conventions regarding noninvasiveness and reversibility of the intervention. The complexity of their structural systems (continuous structural components, lack of diaphragm action, material brittleness, and variability) challenges the established methods of condition assessment of preretrofitted and postretrofitted heritage constructions. The most advanced state of the art in materials and analysis tools is required, far more complex than with conventional buildings. Thus, an assessment procedure specifically geared to this class of structures is urgently needed, in order to assist engineers in this endeavor. The objective of this paper is the development of a performance‐based assessment framework that is palatable to practitioners and quite accurate in seismic assessment of unreinforced masonry buildings with no diaphragm action. The underlying theoretical background of the method is illustrated with reference to first principles: global demand is obtained from the design earthquake scenario for the region, using empirical estimates for the prevailing translational period of the system; deformation demands are localized using an approximation to the translational 3‐D shape of lateral response, estimated using a uniform gravitational field in the direction of action of the earthquake; acceptance criteria are specified in terms of relative drift ratios, referring to the in‐plane and the out‐of‐plane action of the masonry piers. The quantitative accuracy of the introduced procedure is evaluated through comparison with detailed time‐history dynamic analysis results, using a real life example case study. Qualitative relevance of the results is evaluated through comparison of the location and extent of anticipated damage estimated from the proposed assessment procedure, with reported records of the building damages that occurred during a significant past earthquake event.  相似文献   

7.
The task of selecting and scaling an appropriate set of ground motion records is one of the most important challenges facing practitioners in conducting dynamic response history analyses for seismic design and risk assessment. This paper describes an integrated experimental and analytical evaluation of selected ground motion scaling methods for linear‐elastic building frame structures. The experimental study is based on the shake table testing of small‐scale frame models with four different fundamental periods under ground motion sets that have been scaled using different methods. The test results are then analytically extended to a wider range of structural properties to assess the effectiveness of the scaling methods in reducing the dispersion and increasing the accuracy in the seismic displacement demands of linear‐elastic structures, also considering biased selection of ground motion subsets. For scaling methods that are based on a design estimate of the fundamental period of the structure, effects of possible errors in the estimated period are investigated. The results show that a significant reduction in the effectiveness of these scaling methods can occur if the fundamental period is not estimated with reasonable certainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The concept of intensity‐based assessment for risk‐based decision‐making is introduced. It is realized by means of the so‐called 3R method (response analysis, record selection and risk‐based decision‐making), which can be used to check the adequacy of design of a new building or of the strengthening of an existing building by performing conventional pushover analysis and dynamic analysis for only a few ground motions, which are termed characteristic ground motions. Because the objective of the method is not a precise assessment of the seismic risk, a simple decision model for risk acceptability can be introduced. The engineer can decide that the reliability of a no‐collapse requirement is sufficient when collapse is observed in the case of less than half of, for example, seven characteristic ground motions. From the theoretical point of view, it is shown that the accuracy of the method is acceptable if the non‐linear response history analyses are performed at a low percentile of limit‐state intensity, which is also proven by means of several examples of multi‐storey reinforced concrete frame buildings. The 3R method represents a compromise between the exclusive use of either pushover analysis or dynamic analysis and can be easily introduced into building codes provided that its applicability is further investigated (e.g. asymmetric structures and other performance objectives) and that the procedure for the selection of characteristic ground motions is automated and readily available to engineers (www.smartengineering.si).  相似文献   

9.
Existing design procedures for determining the separation distance between adjacent buildings subjected to seismic pounding risk are based on approximations of the buildings' peak relative displacement. These procedures are characterized by unknown safety levels and thus are not suitable for use within a performance‐based earthquake engineering framework. This paper introduces an innovative reliability‐based methodology for the design of the separation distance between adjacent buildings. The proposed methodology, which is naturally integrated into modern performance‐based design procedures, provides the value of the separation distance corresponding to a target probability of pounding during the design life of the buildings. It recasts the inverse reliability problem of the determination of the design separation distance as a zero‐finding problem and involves the use of analytical techniques in order to evaluate the statistics of the dynamic response of the buildings. Both uncertainty in the seismic intensity and record‐to‐record variability are taken into account. The proposed methodology is applied to several different buildings modeled as linear elastic single‐degree‐of‐freedom (SDOF) and multi‐degree‐of‐freedom (MDOF) systems, as well as SDOF nonlinear hysteretic systems. The design separation distances obtained are compared with the corresponding estimates that are based on several response combination rules suggested in the seismic design codes and in the literature. In contrast to current seismic code design procedures, the newly proposed methodology provides consistent safety levels for different building properties and different seismic hazard conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This study presents a ground-motion selection and scaling methodology that preserves the basic seismological features of the scaled records with reduced scatter in the nonlinear structural response. The methodology modifies each strong-motion recording with known fundamental seismological parameters using the estimations of ground-motion prediction equations for a given target hazard level. It provides robust estimations on target building response through scaled ground motions and calculates the dispersion about this target. This alternative procedure is not only useful for record scaling and selection but, upon its further refinement, can also be advantageous for the probabilistic methods that assess the engineering demand parameters for a given target hazard level. Case studies that compare the performance of the proposed procedure with some other record selection and scaling methods suggest its usefulness for building performance assessment and loss models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.  相似文献   

13.
This paper deals with the development of a procedure aimed at defining a seismic risk mitigation strategy for public buildings in terms of prioritization, time required and funds. The procedure is based on a global risk index involving the entire building stock under study thus facilitating an examination of risk variation over time up to its final value. Relationships between the current seismic capacity–demand ratios and the required strengthening costs (cost models) have been developed. Each of the assumed cost models has a different target in terms of capacity–demand ratio to be obtained after strengthening, basically ranging between full retrofit and upgrading. The procedure has been applied to 69 hospital buildings located in Basilicata region for which the vulnerability data was available as a result of a large assessment program set up by the regional government. Priorities have been defined on the basis of seismic capacity, local hazard and number of human beings possibly involved (exposure). The results of different strengthening strategies have been outlined with a special focus on the pros and cons of the upgrading strategy with respect to various retrofit strategies. The procedure may be applied to different categories of public buildings by properly modifying some input parameters and partially redefining criteria for prioritization.  相似文献   

14.
This paper summarizes the results of an extensive study on the inelastic seismic response of X‐braced steel buildings. More than 100 regular multi‐storey tension‐compression X‐braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record‐to‐record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design‐oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation‐controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the seismic response of multi‐storey cross‐laminated timber (CLT) buildings and its relationship with salient ground‐motion and building characteristics. Attention is given to the effects of earthquake frequency content on the inelastic deformation demands of platform CLT walled structures. The response of a set of 60 CLT buildings of varying number of storeys and panel fragmentation levels representative of a wide range of structural configurations subjected to 1656 real earthquake records is examined. It is shown that, besides salient structural parameters like panel aspect ratio, design behaviour factor, and density of joints, the frequency content of the earthquake action as characterized by its mean period has a paramount importance on the level of nonlinear deformations attained by CLT structures. Moreover, the evolution of drifts as a function of building to ground‐motion periods ratio is different for low‐ and high‐rise buildings. Accordingly, nonlinear regression models are developed for estimating the global and interstorey drifts demands on multi‐storey CLT buildings. Finally, the significance of the results is highlighted with reference to European seismic design procedures and recent assessment proposals.  相似文献   

16.
This paper demonstrates the effectiveness of utilizing advanced ground motion intensity measures (IMs) to evaluate the seismic performance of a structure subject to near‐source ground motions. Ordinary records are, in addition, utilized to demonstrate the robustness of the advanced IM with respect to record selection and scaling. To perform nonlinear dynamic analyses (NDAs), ground motions need to be selected; as a result, choosing records that are not representative of the site hazard can alter the seismic performance of structures. The median collapse capacity (in terms of IM), for example, can be systematically dictated by including a few aggressive or benign pulse‐like records into the record set used for analyses. In this paper, the elastic‐based IM such as the pseudo‐spectral acceleration (Sa) or a vector of Sa and epsilon has been demonstrated to be deficient to assess the structural responses subject to pulse‐like motions. Using advanced IMs can be, however, more accurate in terms of probabilistic response prediction. Scaling earthquake records using advanced IMs (e.g. inelastic spectral displacement, Sdi, and IM 1I&2E; the latter is for the significant higher‐mode contribution structures) subject to ordinary and/or pulse‐like records is efficient, sufficient, and robust relative to record selection and scaling. As a result, detailed record selection is not necessary, and records with virtually any magnitude, distance, epsilon and pulse period can be selected for NDAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Ground‐motion simulations generated from physics‐based wave propagation models are gaining increasing interest in the engineering community for their potential to inform the performance‐based design and assessment of infrastructure residing in active seismic areas. A key prerequisite before the ground‐motion simulations can be used with confidence for application in engineering domains is their comprehensive and rigorous investigation and validation. This article provides a four‐step methodology and acceptance criteria to assess the reliability of simulated ground motions of not historical events, which includes (1) the selection of a population of real records consistent with the simulated scenarios, (2) the comparison of the distribution of Intensity Measures (IMs) from the simulated records, real records, and Ground‐Motion Prediction Equations (GMPEs), (3) the comparison of the distribution of simple proxies for building response, and (4) the comparison of the distribution of Engineering Demand Parameters (EDPs) for a realistic model of a structure. Specific focus is laid on near‐field ground motions (<10km) from large earthquakes (Mw7), for which the database of real records for potential use in engineering applications is severely limited. The methodology is demonstrated through comparison of (2490) near‐field synthetic records with 5 Hz resolution generated from the Pitarka et al (2019) kinematic rupture model with a population of (38) pulse‐like near‐field real records from multiple events and, when applicable, with NGA‐W2 GMPEs. The proposed procedure provides an effective method for informing and advancing the science needed to generate realistic ground‐motion simulations, and for building confidence in their use in engineering domains.  相似文献   

18.
The modal pushover‐based scaling (MPS) procedure, currently restricted to symmetric‐plan buildings, is extended herein to unsymmetric‐plan buildings. The accuracy of the extended MPS procedure was evaluated for a large set of three‐degree‐of‐freedom unsymmetric‐plan structures with variable stiffness and strength. The structures were subjected to nonlinear response history analysis considering sets of seven records scaled according to the MPS procedure. Structural responses were compared against the benchmark values, defined as the median values of the engineering demand parameters due to 30 unscaled records. This evaluation of the MPS procedure has led to the following conclusions: (i) the MPS procedure provided accurate estimates of median engineering demand parameter values and reduced record‐to‐record variability of the responses; and (2) the MPS procedure is found to be much superior compared to the ASCE/SEI 7‐10 scaling procedure for three‐dimensional analysis of unsymmetric‐plan buildings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
陈波  谢俊举  温增平 《地震学报》2013,35(2):250-261
研究了具有不同自振特性的建筑结构在近断层速度脉冲型及非速度脉冲型地震动作用下的结构层间变形分布,揭示了近断层速度脉冲对工程结构地震响应的特殊影响. 从汶川MS8.0地震近断层强震记录中选取两组典型速度脉冲型记录和非脉冲型记录, 根据确定的目标地震动强度水平,利用时域叠加小波函数法对选择的强震记录进行调整, 使之与目标地震动水平对应的加速度反应谱保持一致, 以此作为结构地震反应分析的地震动输入. 选取具有不同自振特征的3层、11层和20层典型钢筋混凝土框架结构, 建立有限元分析模型, 分别计算在速度脉冲型与非速度脉冲型记录作用下这些结构层间变形分布. 研究表明,速度脉冲型记录与非速度脉冲型记录作用下结构层间变形有明显差异, 且与结构自振特征有关.就低层结构的层间变形而言, 非速度脉冲型记录的影响较速度脉冲型记录的影响大. 随着结构自振周期的增加, 高阶振型的影响更加明显. 与非速度脉冲型记录相比,速度脉冲型记录的结构层间位移反应中值及离散程度较大. 速度脉冲型记录更容易激发高层结构的高阶振型, 产生较大的层间位移反应. 非速度脉冲型记录对中低层结构层间变形影响较大.因此, 在开展近断层结构地震影响评价时, 应考虑近断层速度脉冲的影响.   相似文献   

20.
State‐of‐the‐art methods for the assessment of building fragility consider the structural capacity and seismic demand variability in the estimation of the probability of exceeding different damage states. However, questions remain regarding the appropriate treatment of such sources of uncertainty from a statistical significance perspective. In this study, material, geometrical and mechanical properties of a number of building classes are simulated by means of a Monte Carlo sampling process in which the statistical distribution of the aforementioned parameters is taken into consideration. Record selection is performed in accordance with hazard‐consistent distributions of a comprehensive set of intensity measures, and issues related with sufficiency, efficiency, predictability and scaling robustness are addressed. Based on the appraised minimum number of ground motion records required to achieve statistically meaningful estimates of response variability conditioned on different levels of seismic intensity, the concept of conditional fragility functions is presented. These functions translate the probability of exceeding a set of damage states as a function of a secondary sufficient intensity measure, when records are selected and scaled for a particular level of primary seismic intensity parameter. It is demonstrated that this process allows a hazard‐consistent and statistically meaningful representation of uncertainty and correlation in the estimation of intensity‐dependent damage exceedance probabilities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号