首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Geospatial simulation models can help us understand the dynamic aspects of Digital Earth. To implement high-performance simulation models for complex geospatial problems, grid computing and cloud computing are two promising computational frameworks. This research compares the benefits and drawbacks of both in Web-based frameworks by testing a parallel Geographic Information System (GIS) simulation model (Schelling's residential segregation model). The parallel GIS simulation model was tested on XSEDE (a representative grid computing platform) and Amazon EC2 (a representative cloud computing platform). The test results demonstrate that cloud computing platforms can provide almost the same parallel computing capability as high-end grid computing frameworks. However, cloud computing resources are more accessible to individual scientists, easier to request and set up, and have more scalable software architecture for on-demand and dedicated Web services. These advantages may attract more geospatial scientists to utilize cloud computing for the development of Digital Earth simulation models in the future.  相似文献   

2.
随着对地立体观测体系的建立,遥感大数据不断累积。传统基于文件、景/幅式的影像组织方式,时空基准不够统一,集中式存储不利于大规模并行分析。对地观测大数据分析仍缺乏一套统一的数据模型与基础设施理论。近年来,数据立方体的研究为对地观测领域大数据分析基础设施提供了前景。基于统一的分析就绪型多维数据模型和集成对地观测数据分析功能,可构建一个基于数据立方的对地观测大数据分析基础设施。因此,本文提出了一个面向大规模分析的多源对地观测时空立方体,相较于现有的数据立方体方法,强调多源数据的统一组织、基于云计算的立方体处理模式以及基于人工智能优化的立方体计算。研究有助于构建时空大数据分析的新框架,同时建立与商业智能领域的数据立方体关联,为时空大数据建立统一的时空组织模型,支持大范围、长时序的快速大规模对地观测数据分析。本文在性能上与开源数据立方做了对比,结果证明提出的多源对地观测时空立方体在处理性能上具有明显优势。  相似文献   

3.
基于开放互操作标准的分布式地理空间模型共享研究   总被引:1,自引:0,他引:1  
传统的单机环境和封闭式网络环境由于有限的资源利用能力, 难以充分支持分散地学数据、模型等资源的共享与应用集成。基于网络环境的信息交换特点, 提出了分布式地理空间模型共享的服务体系。该体系以数据、模型、元数据等互操作要素为核心, 通过网络将数据、模型等网络节点进行开放式耦合。针对地理空间模型服务的互操作问题, 提出了分布式环境下的模型共享服务交互接口, 该接口定义了模型服务元数据、模型服务的交互操作、模型服务的通讯方式等交互规则, 尽可能地降低模型服务与模型终端之间在数据交换、功能调用等方面的互操作困难。为了降低将模型共享为模型服务的实现难度, 设计和开发了地理空间模型共享平台, 并介绍了在该平台上发布地理空间模型的2种方法。最后介绍了研究成果在Prairie生态模型共享方面的应用实践。  相似文献   

4.
Cloud computing has been considered as the next-generation computing platform with the potential to address the data and computing challenges in geosciences. However, only a limited number of geoscientists have been adapting this platform for their scientific research mainly due to two barriers: 1) selecting an appropriate cloud platform for a specific application could be challenging, as various cloud services are available and 2) existing general cloud platforms are not designed to support geoscience applications, algorithms and models. To tackle such barriers, this research aims to design a hybrid cloud computing (HCC) platform that can utilize and integrate the computing resources across different organizations to build a unified geospatial cloud computing platform. This platform can manage different types of underlying cloud infrastructure (e.g., private or public clouds), and enables geoscientists to test and leverage the cloud capabilities through a web interface. Additionally, the platform also provides different geospatial cloud services, such as workflow as a service, on the top of common cloud services (e.g., infrastructure as a service) provided by general cloud platforms. Therefore, geoscientists can easily create a model workflow by recruiting the needed models for a geospatial application or task on the fly. A HCC prototype is developed and dust storm simulation is used to demonstrate the capability and feasibility of such platform in facilitating geosciences by leveraging across-organization computing and model resources.  相似文献   

5.
Apache Spark分布式计算框架可用于空间大数据的管理与计算,为实现云GIS提供基础平台。针对Apache Spark的数据组织与计算模型,结合Apache HBase分布式数据库,从分布式GIS内核的理念出发,设计并实现了分布式空间数据存储结构与对象接口,并基于某国产GIS平台软件内核进行了实现。针对点、线、面数据的存储与查询,与传统空间数据库系统PostGIS进行了一系列对比实验,验证了提出的分布式空间数据存储架构的可行性与高效性。  相似文献   

6.
Abstract

The geospatial sciences face grand information technology (IT) challenges in the twenty-first century: data intensity, computing intensity, concurrent access intensity and spatiotemporal intensity. These challenges require the readiness of a computing infrastructure that can: (1) better support discovery, access and utilization of data and data processing so as to relieve scientists and engineers of IT tasks and focus on scientific discoveries; (2) provide real-time IT resources to enable real-time applications, such as emergency response; (3) deal with access spikes; and (4) provide more reliable and scalable service for massive numbers of concurrent users to advance public knowledge. The emergence of cloud computing provides a potential solution with an elastic, on-demand computing platform to integrate – observation systems, parameter extracting algorithms, phenomena simulations, analytical visualization and decision support, and to provide social impact and user feedback – the essential elements of the geospatial sciences. We discuss the utilization of cloud computing to support the intensities of geospatial sciences by reporting from our investigations on how cloud computing could enable the geospatial sciences and how spatiotemporal principles, the kernel of the geospatial sciences, could be utilized to ensure the benefits of cloud computing. Four research examples are presented to analyze how to: (1) search, access and utilize geospatial data; (2) configure computing infrastructure to enable the computability of intensive simulation models; (3) disseminate and utilize research results for massive numbers of concurrent users; and (4) adopt spatiotemporal principles to support spatiotemporal intensive applications. The paper concludes with a discussion of opportunities and challenges for spatial cloud computing (SCC).  相似文献   

7.
The objective of this paper is to present a spatially explicit agent-based simulation framework with a supporting software package to explore complex adaptive geographic systems. This framework is particularly suitable for modeling entities that are contextually aware, knowledge driven, and adaptive because it represents them as geographically aware intelligent agents. Fundamental advances in the explicit representation of contextual information, knowledge structures, and learning processes are needed for modeling intelligent agents situated within geographic systems. The representation of these agents requires the integration of agent-based models, machine learning, and GIS. Existing software packages for agent-based modeling, however, often provide insufficient support for this integration. The agent-based simulation package presented here is specifically designed to achieve such integration by assisting the development of agent-based models from the simulation framework. Object-oriented modeling techniques were used to implement this simulation package, which includes four modules: simulation, visualization, learning, and geoprocessing. In particular, the learning and geoprocessing modules facilitate the representation of adaptive behavior in agents within spatially explicit environments. The utility of the agent-based simulation package is illustrated using two simulation models: one of adaptive elk behavior and another of pedestrian movement. The successful design of the simulation models suggests that the modeling framework with the supporting software package is well suited to the resolution of complex adaptive geographic problems.  相似文献   

8.
针对大规模栅格数据的空间分析,设计并实现了一种基于MapReduce架构的通用地图代数并行计算方法。该方法能将栅格像素矩阵按数据行分割为多个独立的子矩阵,并在并行节点上使用地图代数的四种算子对来自不同矩阵的像素进行分析计算。栅格数据叠加实验结果表明,该方法具备有效性和可靠性,能降低计算对硬件设备的要求,并提升了计算效率。  相似文献   

9.
ABSTRACT

As an effective tool for simulating spatiotemporal urban processes in the real world, urban cellular automata (CA) models involve multiple data layers and complicated calibration algorithms, which make their computational capability become a bottleneck. Numerous approaches and techniques have been applied to the development of high-performance urban CA models, among which the integration of vectorization and parallel computing has broad application prospects due to its powerful computational ability and scalability. Unfortunately, this hybrid algorithm becomes inefficient when the axis-aligned bounding box (AABB) of study areas contains many unavailable cells. This paper presents a minimum-volume oriented bounding box (OBB) strategy to solve the above problem. Specifically, geometric transformation (i.e. translation and rotation) is applied to find the OBB of the study area before implementing the hybrid algorithm, and a set of functions are established to describe the spatial coordinate relationship between the AABB and OBB layers. Experiments conducted in this study demonstrate that the OBB strategy can further reduce the computational time of urban CA models after vectorization and parallelism. For example, when the cell size is 15 m and the neighborhood size is 3 × 3, an approximately 10-fold speedup in computational time can result from vectorization in the MATLAB environment, followed by an 18-fold speedup after implementing parallel computing in a quad-core processor and, finally, a speedup of 25-fold by further using an OBB strategy. We thus argue that OBB strategy can make the integration of vectorization and parallel computing more efficient and may provide scalable solutions for significantly improving the applicability of urban CA models.  相似文献   

10.
多源地理空间矢量数据之间存在着隐含的关联关系,这些关联关系往往隐式存在,难以直观展示,也难以与空间数据映射交互展示,更无法进行查询分析,获取所需信息。针对这种情况,本文以多源地理空间矢量数据及统计数据为研究对象,首先定义了多源地理空间矢量数据关联的概念及分类,然后以此为基础设计了多源地理空间矢量数据关联模型,并将其分为3个子模型:基于自适应四叉树编码的空间关联子模型、基于几何匹配的空间关联子模型及基于语义匹配的空间关联子模型。该模型定义了多源地理空间矢量数据之间的关联方式,为关联关系的构建奠定了理论基础。  相似文献   

11.
The Markov chain random field (MCRF) model is a spatial statistical approach for modeling categorical spatial variables in multiple dimensions. However, this approach tends to be computationally costly when dealing with large data sets because of its sequential simulation processes. Therefore, improving its computational efficiency is necessary in order to run this model on larger sizes of spatial data. In this study, we suggested four parallel computing solutions by using both central processing unit (CPU) and graphics processing unit (GPU) for executing the sequential simulation algorithm of the MCRF model, and compared them with the nonparallel computing solution on computation time spent for a land cover post-classification. The four parallel computing solutions are: (1) multicore processor parallel computing (MP), (2) parallel computing by GPU-accelerated nearest neighbor searching (GNNS), (3) MP with GPU-accelerated nearest neighbor searching (MP-GNNS), and (4) parallel computing by GPU-accelerated approximation and GPU-accelerated nearest neighbor searching (GA-GNNS). Experimental results indicated that all of the four parallel computing solutions are at least 1.8× faster than the nonparallel solution. Particularly, the GA-GNNS solution with 512 threads per block is around 83× faster than the nonparallel solution when conducting a land cover post-classification with a remotely sensed image of 1000?×?1000 pixels.  相似文献   

12.
龚强 《测绘科学》2010,35(4):59-60,19
与机群系统相比,地理空间信息网格计算模式的优势在于可以更好地解决资源的异构性问题,支持资源的柔性伸缩及多种并行编程环境,支持科学计算库与工具软件,支持可视化动态人机交互。地理空间信息网格计算模式的体系结构是具有一定智能的分层结构。本文参考五层沙漏结构思想和前人的研究成果,研究设计了具有资源底层、安全调度层、抽象接口层、中间件层、应用接口层和应用层等六个层面的地理空间信息网格计算系统多层体系结构。  相似文献   

13.
Abstract

One of the major scientific challenges and societal concerns is to make informed decisions to ensure sustainable groundwater availability when facing deep uncertainties. A major computational requirement associated with this is on-demand computing for risk analysis to support timely decision. This paper presents a scientific modeling service called ‘ModflowOnAzure’ which enables large-scale ensemble runs of groundwater flow models to be easily executed in parallel in the Windows Azure cloud. Several technical issues were addressed, including the conjunctive use of desktop tools in MATLAB to avoid license issues in the cloud, integration of Dropbox with Azure for improved usability and ‘Drop-and-Compute,’ and automated file exchanges between desktop and the cloud. Two scientific use cases are presented in this paper using this service with significant computational speedup. One case is from Arizona, where six plausible alternative conceptual models and a streamflow stochastic model are used to evaluate the impacts of different groundwater pumping scenarios. Another case is from Texas, where a global sensitivity analysis is performed on a regional groundwater availability model. Results of both cases show informed uncertainty analysis results that can be used to assist the groundwater planning and sustainability study.  相似文献   

14.
In this article, an extensive inventory in the literature of water erosion modelling from a geospatial point of view is conducted. Concepts of scale, spatiality and complexity are explored and clarified in a theoretical background. Use of Geographic Information Systems (GIS) is pointed out as facilitating data mixing and model rescaling and thus increasing complexity in data-method relations. Spatial scale, temporal scale and spatial methodologies are addressed as the most determining geospatial properties underlying water erosion modelling. Setting these properties as classification criteria, 82 water erosion models are identified and classified into eight categories. As a result, a complete overview of water erosion models becomes available in a single table. The biggest share of the models is found in the category of the mechanistic pathway-type event-based models for watershed to landscape scales. In parallel, geospatial innovations that could be considered as milestones in water erosion modelling are highlighted and discussed. An alphabetical list of all models is also listed in the Appendix. For manipulating scale efficiently, two promising spatial theories are suggested for further exploitation in the future such as hierarchy theory and fractals theory. Regarding erosion applications, uncertainty analysis within GIS is considered to be necessary for further improving performance of erosion models.  相似文献   

15.
The 3D Elevation Program (3DEP) is a collaborative effort among government entities, academia, and the private sector to collect high-resolution 3-dimensional data over the United States. The United States Geological Survey (USGS) is making preparations for managing, processing, and delivering petabytes of 3DEP elevation products for the Nation. In addition to the existing 1/3, 1, and 2 arc-second seamless elevation data layers of The National Map, new 3DEP products include lidar point cloud data; a standard 1-meter DEM layer; additional source datasets; and, in Alaska, 5-meter digital elevation models. A new product generation system improves the construction and publication of the seamless elevation datasets, prepares the additional 3DEP products for distribution, and automates the data management functions required to accommodate the high-volume 3DEP data collection. Major changes in geospatial data acquisition, such as high resolution lidar data, volunteered geographic information, data processing using parallel and grid computer systems, and user needs for semantic access to geospatial data and products, are driving USGS research associated with the 3DEP. To address the research requirements, a set of inter-related projects including spatiotemporal data models, data integration, geospatial semantics and ontology, high performance computing, multi-scale representation, and hydrological modeling using lidar and other 3DEP data has been developed.  相似文献   

16.
当前云计算的发展已能支持高性能的地理空间服务,比如在数字城市和电子商务等行业。Apache基金支持下的开源软件框架Hadoop,可以用来构建一个云环境的集群用来存储和处理高性能的地理空间数据。开放地理空间联盟(OGC)的Web三维服务(W3DS)就是这样一个很好的三维的地理空间数据服务标准。在标准的云计算环境下将是一个更好的应用示范。基于此,本文研究了OGC的W3DS服务在云计算环境下的实验结果。实验采用Apache的Hadoop框架作为三维地理空间信息服务实验展示的基础。实验结果对展示高性能的三维地理空间信息提供了有价值的参考。  相似文献   

17.
The growth of the Web has resulted in the Web‐based sharing of distributed geospatial data and computational resources. The Geospatial Processing Web (GeoPW) described here is a set of services that provide a wide array of geo‐processing utilities over the Web and make geo‐processing functionalities easily accessible to users. High‐performance remote sensing image processing is an important component of the GeoPW. The design and implementation of high‐performance image processing are, at present, an actively pursued research topic. Researchers have proposed various parallel strategies for single image processing algorithm, based on a computer science approach to parallel processing. This article proposes a multi‐granularity parallel model for various remote sensing image processing algorithms. This model has four hierarchical interfaces that are labeled the Region of Interest oriented (ROI‐oriented), Decompose/Merge, Hierarchical Task Chain and Dynamic Task interfaces or sub‐models. In addition, interfaces, definitions, parallel task scheduling and fault‐tolerance mechanisms are described in detail. Based on the model and methods, we propose an open‐source online platform named OpenRS‐Cloud. A number of parallel algorithms were uniformly and efficiently developed, thus certifying the validity of the multi‐granularity parallel model for unified remote sensing image processing web services.  相似文献   

18.
ABSTRACT

Big Data has emerged in the past few years as a new paradigm providing abundant data and opportunities to improve and/or enable research and decision-support applications with unprecedented value for digital earth applications including business, sciences and engineering. At the same time, Big Data presents challenges for digital earth to store, transport, process, mine and serve the data. Cloud computing provides fundamental support to address the challenges with shared computing resources including computing, storage, networking and analytical software; the application of these resources has fostered impressive Big Data advancements. This paper surveys the two frontiers – Big Data and cloud computing – and reviews the advantages and consequences of utilizing cloud computing to tackling Big Data in the digital earth and relevant science domains. From the aspects of a general introduction, sources, challenges, technology status and research opportunities, the following observations are offered: (i) cloud computing and Big Data enable science discoveries and application developments; (ii) cloud computing provides major solutions for Big Data; (iii) Big Data, spatiotemporal thinking and various application domains drive the advancement of cloud computing and relevant technologies with new requirements; (iv) intrinsic spatiotemporal principles of Big Data and geospatial sciences provide the source for finding technical and theoretical solutions to optimize cloud computing and processing Big Data; (v) open availability of Big Data and processing capability pose social challenges of geospatial significance and (vi) a weave of innovations is transforming Big Data into geospatial research, engineering and business values. This review introduces future innovations and a research agenda for cloud computing supporting the transformation of the volume, velocity, variety and veracity into values of Big Data for local to global digital earth science and applications.  相似文献   

19.
云计算作为一种革命性的计算模型住很多行业都成为重要的技术趋势。将云计算应用于空间地理信息领域所形成的空间云计算也逐渐成为整个空间地理信息行业的主流技术。位置服务利用当今高速发展的互联网和多样化的移动终端向用户提供基于位置的信息和娱乐服务。空间信息数据是位置服务平台的重要维成部分。本文首先介绍云计算相关概念,根据对目前位置服务平台存在的问题的剖析提出了基于云计算的位置服务平台建设的思路和平台架构,最后分析了该平台的特点和所形成的产业链。  相似文献   

20.
Despite advancements in geographic information system (GIS) technology, the efficient and effective utilization of GIS to solve geospatial problems is a daunting process requiring specialized knowledge and skills. Two of the most important and burdensome tasks in this process are interpretation of geospatial queries and mapping the interpreted results into geospatial data models and geoprocessing operations. With the current state of GIS, there exists a gap between the knowledge user's possess and the knowledge and skills they need to utilize GIS for solving problems. Currently, users resort to training and practice on GIS technology or involving GIS experts. Neither of these options is optimal and there is a need for a new approach that automates geoprocessing tasks using GIS technology. This paper presents an ontological engineering methodology that uses multiple ontologies and the mappings among them to automate certain tasks related to interpretation of geospatial queries and mapping the interpreted results into geospatial data models and geoprocessing operations. The presented methodology includes conceptualization of geospatial queries, knowledge representation for queries, techniques for relating elements in different ontologies, and an algorithm that uses ontologies to map queries to geoprocessing operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号