首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper demonstrates that the Belgian Continental Shelf and coastal plain occupy a key position between the depositional North Sea Basin and the erosional area of the Dover Strait as it is an area where erosional landforms and fragmented sedimentary sequences provide new evidence on northwest European landscape evolution. The study area hosts 20–30 m thick penultimate to last glacial sand‐dominated sequences that are preserved within the buried palaeo‐Scheldt Valley. Here, we build on the results of previous seismo‐ and lithostratigraphical studies, and present new evidence from biostratigraphical analysis, OSL dating and depth‐converted structure maps, together revealing a complex history of deposition and landscape evolution controlled by climate change, sea‐level fluctuations and glacio‐isostasy. This study presents strong new supportive evidence on the development of the incised palaeo‐Scheldt Valley landform that became established towards the end of the penultimate glacial period (MIS 6; Saalian) as a result of glacio‐isostatic forebulge updoming, proglacial lake drainage and subsequent collapse of a forebulge between East Anglia and Belgium following ice‐sheet growth, disintegration and retreat in areas to the north. The majority of the incised‐valley fill is of estuarine to shallow marine depositional context deposited during the transgression and high‐stand of the last interglacial (MIS 5e: Eemian). A thin upper part of the valley fill consists of last glacial (MIS 5d‐2: Weichselian) fluvial sediments that show a gradual decrease and retreat of fluvial activity to inland, upstream reaches of the valley system until finally the valley ceases to exist as the combined result of climate‐driven aeolian activity and possibly also glacio‐isostatic adjustment. Thus, strong contrasts exist between the palaeo‐Scheldt Valley and estuary systems of the penultimate glacial maximum to Last Interglacial (Saalian, Eemian), the beginning of the Last Glacial (Weichselian Early Glacial and Early‐Middle Pleniglacial), and the Last Glacial Maximum to Holocene. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Groundwater in the Bengal Basin is badly polluted by arsenic (As) which adversely affects human health. To provide low‐As groundwater for As mitigation, it was sought across 235 km2 of central West Bengal, in the western part of the basin. By drilling 76 boreholes and chemical analysis of 535 water wells, groundwater with <10 µg/L As in shallow aquifers was found under one‐third of a study area. The groundwater is in late Pleistocene palaeo‐interfluvial aquifers of weathered brown sand that are capped by a palaeosol of red clay. The aquifers form two N‐S trending lineaments that are bounded on the east by an As‐polluted deep palaeo‐channel aquifer and separated by a shallower palaeo‐channel aquifer. The depth to the top of the palaeo‐interfluvial aquifers is mostly between 35 and 38 m below ground level (mbgl). The palaeo‐interfluvial aquifers are overlain by shallow palaeo‐channel aquifers of gray sand in which groundwater is usually As‐polluted. The palaeosol now protects the palaeo‐interfluvial aquifers from downward migration of As‐polluted groundwater in overlying shallow palaeo‐channel aquifers. The depth to the palaeo‐interfluvial aquifers of 35 to 38 mbgl makes the cost of their exploitation affordable to most of the rural poor of West Bengal, who can install a well cheaply to depths up to 60 mbgl. The protection against pollution afforded by the palaeosol means that the palaeo‐interfluvial aquifers will provide a long‐term source of low‐As groundwater to mitigate As pollution of groundwater in the shallower, heavily used, palaeo‐channel aquifers. This option for mitigation is cheap to employ and instantly available.  相似文献   

3.
Megagrooves are kilometre‐scale linear topographic lows carved in bedrock, separated by ridges, typically in areas of largely devoid of till. They have been reported from several areas covered by Pleistocene glaciations, such as Canadian Northwest (NW) Territories, Michigan and NW Scotland. Here we report two previously undocumented megagroove fields from Ungava, Canada, and northern England, and present new analyses of the megagrooves from NW Scotland. This paper seeks to determine the nature of the lithological and structural controls on the occurrence and formation of megagrooves. Analysis of both geomorphological and bedrock properties shows that megagrooves are generally:
  1. confined to well stratified or layered bedrock, such as (meta)sedimentary rocks with closely spaced joints, and tend not to occur on massive rocks such as gneiss or granite, or thick‐bedded sedimentary rocks;
  2. subparallel to palaeo‐ice flow and the strike of the strata; and tend not to occur where palaeo‐ice flow is at high angles to the strike of strata;
  3. produced by significant glacial erosion by sustained unidirectional ice flow.
Detailed analysis of megagrooves in NW Scotland shows that neither glacio‐fluvial erosion, nor differential abrasion was the dominant mechanism of formation. A mechanism, here termed ‘lateral plucking’, is suggested that involves block plucking on rock steps parallel to ice flow. Removal of joint‐bounded blocks from such rock steps involves a component of rotation along a vertical axis. Block removal may be enhanced by a direct component of shear stress onto the vertical stoss sides. The lateral plucking mechanism results in horizontal erosion at right angles to the ice flow, and enhances the groove/ridge topography. Megagrooves are potentially useful as palaeo‐ice flow indicators in areas devoid of till, and can thus complement the palaeo‐ice stream datasets which are presently largely based on soft‐sediment landform studies. British Geological Survey © NERC 2011  相似文献   

4.
River classifications provide useful frameworks to understand complex fluvial landscapes and to manage freshwater ecosystems. Alluvial floodplains for rivers in low‐relief glacially conditioned catchments of southern Ontario (Canada) are classified and tested using a sequence of multivariate statistical analyses. An original dataset of 109 floodplain sites is investigated using k‐means clustering, principal component analysis, and discriminant analysis statistical approaches. Four primary floodplain types are proposed representing basic morphological, stratigraphical, and sedimentological characteristics. Classifications are successfully discriminated by two principal dimensions: (1) stream power‐resistance; and (2) floodplain sedimentology. The latter is most efficiently represented by the availability of alluvial sand, and specifically a new variable defined as floodplain sand equivalent (FSE). Floodplain types are generally consistent with previous river classifications, however the glacial legacy requires refined classifications which account for inherited cobble bed materials and patterns of sand supply. Representing the residual variability of stream power‐resistance correlations, a third explanatory dimension of sediment transport is suggested, and may explain some within‐class variability in channel morphology. Balancing the opposing concepts of fluvial process domains and landform continuums, the potential for transitional floodplain types is also explored. The proposed first‐order alluvial floodplain classifications provide a basis from which to further investigate geomorphological diversity within the context of complex glacial legacy effects in low‐relief settings. Future research to reveal the spatial arrangement and linkages of distinct morphological groups within a regional landscape mosaic is expected to provide insights into patterns of post‐glacial fluvial adjustment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The role of wood as a driver of landform development appears to have been overlooked in the interpretation of palaeo‐landscape change along river corridors. Deforested river corridors and wood‐free rivers characterize ‘modern’, managed landscapes, but along natural river corridors both driftwood dynamics and tree reproductive strategies can have a dramatic impact on the style and rate of channel and floodplain development. Therefore, we believe that interpretations of the post‐glacial history of river valleys across the northern temperate climatic zone could be usefully reassessed, incorporating the roles of riparian trees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Lake shapes and their spatial distribution are important geomorphological indicators in previously glaciated areas. Their shapes are influenced by the underlying geological structure and processes of glacial sediment deposition or erosion. Since these processes act on large areas, distribution of lakes can reflect the intensity of glacial erosional/depositional processes and their spatial extent. Landsat imagery was used to extract lake outlines from a selected pilot‐study area on the widest ice‐free coastal margin of the south‐western Greenland north of Kangerlussuaq. Analysis included image classification and spatial analysis of lakes with elevation data using geographic information system (GIS) tools. A morphometric index was applied to extract kettle lakes as indicators of a specific glacial process – ice stagnation. Analysis of their spatial distribution helped in the reconstruction of glacial dynamics in formerly glaciated terrain. Our results show that spatial lake distribution combined with elevation analysis can be used to identify zones of glacial erosion and deposition. The highest concentrations of lakes within the study area occupy the elevation range between 164 and 361 m above sea level (a.s.l.). This zone can be identified as an area where intensive glacial erosion took place in the past. The widespread distribution of modeled kettle lake features within the same elevation range and across the study area suggests that the last deglaciation process was accompanied by abandonment of blocks of stagnant ice. This conclusion is supported by surface exposure ages obtained in the same study area and published elsewhere. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Threlkeld Knotts (c. 500 m above sea level) in the English Lake District has hitherto been considered to be a glacially‐modified intrusion of microgranite. However, its surface features are incompatible with glacial modification; neither can these nor the subsurface structures revealed by ground‐penetrating radar (GPR) be explained by post‐glacial subaerial processes acting on a glacially‐modified microgranite intrusion. Here we re‐interpret Threlkeld Knotts as a very large post‐glacial landslide involving the microgranite, with an estimated volume of about 4 × 107 m3. This interpretation is tested against published and recent information on the geology of the site, the glacial geomorphic history of the area and newly‐acquired GPR data. More than 60 large post‐Last Glacial Maximum (LGM) rock–slope failures have significantly modified the glaciated landscape of the Lake District; this is one of the largest. Recognition of this major landslide deposit in such a well‐studied environment highlights the need to continuously re‐examine landscapes in the light of increasing knowledge of geomorphic processes and with available technology in currently active or de‐glaciating environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Resolving the hydrological processes that form speleothems and the palaeo‐climate archives that they contain is difficult. Typical approaches to hydrological investigation are not suited to karst landscapes, geophysics are seldom applied, drip monitoring and modelling have limitations, and ignoring potential hydrological impacts can result in a proxy record that does not reflect the external environment. We aim to understand the processes and controls that have created a palaeo‐climate proxy record preserved in a speleothem (JC001) in the “Grotto of Oddities,” part of the Jersey Cave at the Yarrangobilly Caves, Australia, to infer the likely nature and resolution of this record. Electrical resistivity tomography (ERT), traditional surveying, and drip discharge monitoring (April 2013 to February 2015) were used to investigate the structure and hydrology of the epikarst overlying the Grotto of Oddities. Data collected through these methods were then used to construct a physically informed and parsimonious drip hydrology model. Geophysics showed that changes in hillslope above the Grotto of Oddities are collocated with a region of low resistivity, which forms an epikarstic reservoir acting to supply enhanced discharge to the speleothem. Drip monitoring showed hysteretic behaviour with a distinct threshold response, and a simple drip classification indicated that the speleothem associated with the drip has the potential to record palaeo‐seasonality or an annual–decadal signal. Discharge modelling indicated discharge was comprised of quick and slow flow, and that discharge is probably perennial. These multimethod results together indicate that the speleothem likely represents a palaeo‐climate record of a length and resolution unprecedented for nonglacial areas of the Southern Hemisphere and for Australia in particular and will significantly enhance current knowledge of the climate of southeast Australia. Although ERT methods have previously been applied in the karst landscape, to our knowledge, this represents the first application of these multiple methods in combination as an approach to assess the fidelity of a speleothem, based on an understanding of the hydrological processes for palaeo‐climate reconstruction.  相似文献   

9.
Kantaro  Fujioka  Wataru  Tokunaga  Hisayoshi  Yokose  Junzo  Kasahara  Toshinori  Sato  Ryo  Miura  Teruaki  Ishii 《Island Arc》2005,14(4):616-622
Abstract   The Hahajima Seamount, located at the junction between the Izu–Bonin and Mariana forearc slopes, is a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, northeast–southwest and northwest–southeast. These lineaments are of faults based on the topographic cross-sections and a 3-D view (whale's eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin, whereas the latter is parallel to the nearby transform fault on the subducting Pacific Plate. The rocks constituting the seamount are ultramafic rocks (mostly harzburgite), boninite, basalt, andesite, gabbro, breccia and sedimentary rocks, which characterize an island arc and an ocean basin. Gravity measurement and seismic reflection survey offer neither a definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. A northwest–southeast-trending fault and small-scale serpentine flows were observed during submersible dives at the Hahajima Seamount. The rectangular shape, size of the seamount, various kinds of rocks and geophysical measurements strongly suggest that the Hahajima Seamount is not a simple serpentine seamount controlled by various tectonic movements, as previously believed, but a tectonic block.  相似文献   

10.
The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para‐glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional‐scale inventory of supra‐glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0·1 km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra‐glacial landslide deposits to be passive strain markers we infer minimum decadal‐scale sediment yields of 190 to 7400 t km–2 yr–1 for a given glacier‐surface cross‐section impacted by episodic rock–slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en‐glacial, sub‐glacial or ice‐proximal sources. We estimate an average minimum para‐glacial erosion rate by large, episodic rock–slope failures at 0·5–0·7 mm yr–1 in the Chugach Mountains over a 50‐yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio‐isostatic surface uplift previously reported from the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Field‐based palaeoflood event reconstruction has the potential to contribute to the development of our understanding of long‐term landscape evolution. However, the reconstruction of past flow event histories (magnitude and frequency) over long‐term (Quaternary) timescales is fraught with difficulties. Here we make a preliminary exploration of some of the practicalities of flood reconstruction from fluvial terrace archives using commonly available sedimentological and geomorphological observations from a field perspective. We utilize Manning and palaeostage indicators to reconstruct historic events that can be used as benchmarks for a lesser used competence based approach, which is applied to coarse‐grained strath terrace deposits. We evaluate the results against gauged records for extreme and catastrophic events that affected the same region in 1973 and 2012. The findings suggest that the competence approach is most effectively applied to terrace deposits if the channel geometry is taken into account when sampling both in cross‐section and in longitudinal section and calibrated against the sedimentology for palaeo‐flow depth. Problems can arise where constrictive channel geometries allow boulder jams to develop, acting as sediment traps for the coarsest material and leading to downstream ‘boulder starvation’. Useful sites to target for palaeoflood reconstruction, therefore, would be upstream of such constrictive reaches where the coarsest transportable bedload has been effectively trapped. Sites to avoid would be downflow, where the deposited material would poorly represent palaeoflood competence. Underestimation from maximum boulder preservation and limited section exposure issues would appear to outweigh possible overestimation concerns related to fluid density and unsteady flow characteristics such as instantaneous acceleration forces. Flood data derived from river terrace deposits suggests that basal terrace geometries and coarse boulder lags common to many terrace sequences are likely the result of extreme flow events which are subsequently filled by lesser magnitude flood events, in this environmental setting. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross‐sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non‐stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple‐point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross‐section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple‐point statistics offer a better reproduction of sand lens geometry. However, two‐dimensional training images acquired by outcrop mapping are of limited use to generate three‐dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low‐permeability sediments.  相似文献   

13.
The main landforms within the glacially scoured Precambrian rocks of the Swedish west coast are closely connected to the principal structural pattern and have lately been explained as mainly a result of etch processes, probably during the Mesozoic and with a possible second period of etching during the Neogene. To explore the effect of multiple glacial erosion on the rock surfaces, an island with two different lithologies and with striae from different directions was selected for a detailed study, focusing on the shape of roches moutonnées. Air‐photo interpretation of bedrock lineaments and roches moutonnées combined with detailed field mapping and striae measurements are used to interpret the structural and lithological control on the resulting shape. The study reveals a significant difference in shape between roches moutonnées in augen‐granite and orthogneiss. Low elongated and streamlined roches moutonnées occur in the gneiss area, striated by a Late Weichselian ice flow from the NE. This ice flow is subparallel with both the local dominant trend of topographically well‐expressed joints and the schistosity of the gneiss. Frequently, there are no signs of quarrying on the lee‐sides of the gneiss roches moutonnées and hence they resemble the shape of whalebacks, or ruwares, as typically associated with the exposed basal weathering surface found in tropical areas. The granite roches moutonnées were formed by an older ice flow from the ESE, which closely followed the etched WNW–ESE joint system of the granite. Late Weichselian ice flow from the NE caused only minor changes of the landforms. On the contrary, marks of the early ESE ice flow are poorly preserved in the gneiss area, where it probably never had any large effect as the flow was perpendicular to both schistosity and structures and, accordingly, also to the pre‐glacial relief. The study demonstrates that coincidence between ice flow direction and pre‐glacially etched structures is most likely to determine the effects of glacial erosion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The relationship between mass movements and tectonic lineaments is investigated in the Pliocene sand and clay terrains of Montepulciano (central Italy). Satellite images and aerial photographs show six families of lineament in southern Tuscany, all of which are present in the Montepulciano area. The orientation, location and density of these are related to corresponding attributes of morphological phenomena such as retrogressive slumps, drainage density and slope angle. Rose diagrams, stereographic plots and statistical analysis all reveal a close correspondence between slumping mass movements and the directions and spatial concentrations of fracture traces. Although slopes and valley trends respond more closely to Apennine (NW-trending) and anti-Apennine (NE-trending) lineaments, the longitudinal axes of landslides are strongly orientated NNW to N, the direction of one of the most significant lineament groups in western central Italy and the local study area.  相似文献   

15.
We provide an improvement to the Hirano–Aniya catenary model for the cross‐profile morphology of a glacial valley. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
There are two main ocean-ridge discontinuities in Iceland: the Tjörnes Fracture Zone (TFZ) and the South Iceland Seismic Zone (SISZ). The TFZ is a 120-km-long and as much as 70-km-wide WNW-trending zone of high seismicity. It has three main seismic lineaments: the Husavik-Flatey Fault (HFF), the Dalvik lineament, and the Grimsey lineament. The HFF, a dextral strike-slip fault and active as a transform fault for about 9 Ma, has a cumulative transform-parallel displacement of some 60 km. Offshore, the HFF is marked by a transform (fracture-zone) valley, 5–10 km wide and 3–4 km deep. Onshore the Flateyjarskagi Peninsula the HFF is marked by a 3–5-km-wide zone of intense crustal deformation with numerous strike-slip and normal faults, transform-parallel dykes, dense sets of mineral veins, and subzones of completely crushed rocks, that is, fault cores. Where the HFF comes on land on Tjörnes there is a similar, but much thinner, zone of crushed rocks. The seismic lineaments are located a few tens of kilometres south (Dalvik) and north (Grimsey) of, and run subparallel with, the HFF. Both lineaments are composed of sets of NNW-trending sinistral faults arranged en echelon.The SISZ is a 70-km-long and 10–20-km wide zone of almost continuous seismicity located between the overlapping West and East Volcanic Zones. It produces the largest earthquakes in Iceland, some of which exceed M7, during which the N–S width of the zone may be as great as 50–60 km. The SISZ is partly covered with Holocene lava flows where the seismogenic faults occur as dextral NNE-trending and sinistral ENE-trending conjugate arrays with push-ups between their nearby ends. The same fault-segment trends occur in the Pleistocene pile north of the Holocene lava flows.The HFF is neither perpendicular to the nearby ridge segments nor parallel with the spreading vector. As a consequence, the North Volcanic Zone has propagated to the north and the Kolbeinsey Ridge to the south during the past 1 Ma, resulting in the development of the Grimsey and Dalvik lineaments. Similarly, the tip of the East Volcanic Zone has been propagating rapidly to the southwest during the past 3 Ma. The tip has been at its present location for no more than several hundred thousand years, thus making the SISZ less stable than the HFF. If the propagation of the tip of the East Volcanic Zone continues, it will eventually reach the Reykjanes Ridge, whereby either the West or the East Volcanic Zone becomes extinct. Then the SISZ dies out as a major seismic zone.  相似文献   

17.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the influences of palaeohydrology and geological‐topographic inheritance in shaping the channel of the lower River Suir, southeast Ireland. Results of acoustic surveys of the lower River Suir and Waterford Harbour reveal two scales of pseudo‐cyclic river bedforms. Longitudinal elevation profiles of the geological topography (undulating bedrock and till‐mantled bedrock) bounding the present floodplain swath reveal pseudo‐cyclicity in that terrain too. Spectral and statistical analyses are used to quantify the cyclicity of the long profile and geological‐topographic series. These methods show that the dominant cyclicity of the long profile reflects autocorrelation more than inheritance of cyclicity from the bounding geological topography. The cyclicity of the long profile mainly reflects a hydraulic control on pool‐spacing, although some cyclicity probably has been inherited from the geological‐topography. Channel‐forming palaeodischarge is estimated based on the dominant pool‐spacing revealed by spectral analysis, validated using relationships between meander wavelength, channel cross‐sectional geometry and hydraulically‐informed discharge reconstruction. The palaeodischarge estimates are in close agreement and are two orders of magnitude greater than present flood maxima. Significantly, these palaeodischarge estimates also agree closely with palaeodischarge calculated for the submerged Pleistocene palaeochannel that extends across the near‐shore continental shelf from Waterford Harbour. The pool‐sequence of the lower Suir and the submerged palaeochannel represent a former land‐system that was active during a period of low relative sea level during the last glacial. More broadly, the paper offers insights into the landscape evolution of formerly glaciated regions that experienced very wide discharge variability during and after the transition from glacial to interglacial regimes, in a context of complex relative sea level change. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
During recent years, 3‐D techniques such as LiDAR and Structure‐from‐Motion (SfM) photogrammetry have been increasingly used for gully erosion assessment. However, innovative image‐based approaches based on these advances may also be used to provide accurate cross‐sectional measurements which are less expensive and time‐demanding. In this work, we present the FreeXSapp methodology, a new piece of freely‐available software based on existing SfM tools (MicMac and PMVS2) and augmented‐reality targets (ArUco markers) which performs the automated 3‐D reconstruction, scaling, orientation and analysis of gully cross‐sections (XSs) from images taken from the gully margin using a smartphone camera. As a field application, the volume of a 60‐m‐long medium‐size gully was evaluated, where a total of 10 XSs were measured and analyzed in approximately 30 min. The relative accuracy in estimating width and depth dimensions was in the order of 0.5%, with a precision ratio (relative to the camera–XS distance) of ~1500. Overall, using this methodology showed excellent performance in terms of time and cost requirements when compared with typical 3‐D and conventional 2‐D techniques. The FreeXSapp interface is downloadable for free for Windows operating systems at http://www.uco.es/users/ccastillo/freexsapp. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号