首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
汉江上游安康东段全新世古洪水沉积学与水文学研究   总被引:1,自引:1,他引:0  
通过沿汉江上游河谷深入的考察,在安康东段发现了典型的古洪水滞流沉积剖面.通过采集样品、实验分析,确定它们是古洪水在高水位滞流环境当中的悬移质沉积物.根据地层对比、OSL测年和相关文化层年代,确定它们分别记录了发生在BL+AL与YD事件转折阶段(12500 a B.P.)的古洪水事件和发生在1000-900 a B.P.(1000-1100AD),即北宋后期的洪水事件.根据古洪水SWD的高程恢复其洪峰水位,结合相关参数,利用面积比降法计算恢复流量.结果表明在万年尺度,汉江上游古洪水洪峰流量介于35970~47400 m3/s之间.同时,利用2010年大洪水洪痕恢复计算洪峰流量,对古洪水洪峰流量计算结果进行了验证.进而结合历史洪水和观测洪水数据,获得了汉江上游万年尺度洪水洪峰流量与频率关系.这为汉江上游的水利水电和交通工程建设以及沿岸城镇防洪减灾提供了基础性数据.  相似文献   

2.
The discharge regimes of the large rivers of northern Australia are characterized by the occurrence of extreme flood events with far‐reaching environmental and societal impacts. In January 1998 the largest flood ever recorded on the Katherine River, northern Australia, resulted in widespread inundation and resultant damage to the town of Katherine. The occurrence of the flood emphasized the unreliability of the then available flood probability estimates and prompted a palaeoflood approach to estimate the recurrence interval of the event. The location of Katherine is ideal for such a study, as the town is located immediately downstream from Katherine Gorge, which provides the necessary bedrock‐confined channel required for such an approach. In addition, previous work in Katherine Gorge had demonstrated that the gorge sections hold suitable deposits for palaeoflood stage reconstruction. The results of the present study show that at least two flow events with discharges similar to the 1998 flood have occurred within the last 600 years, and that high‐magnitude floods are a general feature of the discharge record of the Katherine River over the last c. 2000 years. Furthermore, because the study was undertaken within a few months of the occurrence of the 1998 flood, it provided the opportunity to evaluate the previously obtained flood discharge estimates and draw attention to the general uncertainties associated with palaeoflood studies. Our results emphasize that palaeoflood stage estimates based on slackwater deposits need to be treated as conservative estimates only. More specifically, with respect to the 1998 event, our study demonstrates that the controls of flood peak were more complex than simply flood routing through the gorge sections. It is clear that the areas downstream from Katherine Gorge made an important contribution to the flood peak of the 1998 event. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A remarkable accumulation of marine boulders located above the present spring tide level has occurred in two coastal lowlands of the Algarve (Portugal). The size‐interval of the particles studied here is seldom reported in the literature in association with extreme events of coastal inundation, thus making this study of relevance to many other coasts worldwide. The spreads of boulders extend several hundred meters inland and well beyond the present landward limit of storm activity. The marine origin of the boulders is demonstrated by well‐developed macro‐bioerosion sculpturing and in situ skeletal remains of endolithic shallow marine bivalves. The good state preservation of the fossils within the boulders indicates that abrasion during transport and redeposition was not significant. We envisage boulder deposition as having taken place during the Lisbon tsunami of ad 1755 through the simultaneous landward entrainment of coarse particles from nearshore followed by rapid shoreward suspended‐dominated transport and non‐graded redeposition that excluded significant sorting by weight or boulder dimensions. We use numerical hydrodynamic modeling of tsunami (and storm) waves to test the observational data on boulder dimensions (density, size, distribution) on the most likely processes of sediment deposition. This work demonstrates the effectiveness of the study of boulder deposits in tsunami reconstruction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Extreme wave events in coastal zones are principal drivers of geomorphic change. Evidence of boulder entrainment and erosional impact during storms is increasing. However, there is currently poor time coupling between pre‐ and post‐storm measurements of coastal boulder deposits. Importantly there are no data reporting shore platform erosion, boulder entrainment and/or boulder transport during storm events – rock coast dynamics during storm events are currently unexplored. Here, we use high‐resolution (daily) field data to measure and characterize coastal boulder transport before, during and after the extreme Northeast Atlantic extra‐tropical cyclone Johanna in March 2008. Forty‐eight limestone fine‐medium boulders (n = 46) and coarse cobbles (n = 2) were tracked daily over a 0.1 km2 intertidal area during this multi‐day storm. Boulders were repeatedly entrained, transported and deposited, and in some cases broken down (n = 1) or quarried (n = 3), during the most intense days of the storm. Eighty‐one percent (n = 39) of boulders were located at both the start and end of the storm. Of these, 92% were entrained where entrainment patterns were closely aligned to wave parameters. These data firmly demonstrate rock coasts are dynamic and vulnerable under storm conditions. No statistically significant relationship was found between boulder size (mass) and net transport distance. Graphical analyses suggest that boulder size limits the maximum longshore transport distance but that for the majority of boulders lying under this threshold, other factors influence transport distance. Paired analysis of 20 similar sized and shaped boulders in different morphogenic zones demonstrates that geomorphological control affects entrainment and transport distance – where net transport distances were up to 39 times less where geomorphological control was greatest. These results have important implications for understanding and for accurately measuring and modelling boulder entrainment and transport. Coastal managers require these data for assessing erosion risk. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
Water and sediment outbursts from advanced Franz Josef Glacier,New Zealand   总被引:1,自引:0,他引:1  
The Franz Josef Glacier, Westland, New Zealand, has a history of catastrophic sediment‐laden outburst ?oods associated with extreme rainfall events when the glacier toe is advanced over its own sediments. Consideration of these events and inspection of recent sediment deposits suggest that there are three distinct modes of outburst. The ?rst is associated with fans fed by over?ow along the glacier margin. As the glacier has advanced across its own fore?eld gravels, it is inferred that the primary drainage conduit has developed a reach of negative slope. In high ?ows massive boulders can block the conduit, trapping lesser clasts. The resulting backup of water causes over?ows through marginal moulins, producing the fan type of deposit. The second type of outburst deposits massive imbricated boulders at a greater or lesser distance from the glacier portal. In this case, pressure buildup drives the blockage out of the portal where the boulders deposit. Smaller materials are generally carried away. The third type consists of very shallow ?ows, and produces massive gravel deposits of uncertain provenance. In this condition, the excess pressure in the conduit results in slight uplift of the glacier and widespread discharge of water and sediment below the glacier snout; gravels and smaller sediments are laid down in a massive deposit across the fore?eld. The massive, boulder‐veneered deposit from the December 1995 outburst is interpreted in the light of the above mechanisms as a hyperconcentrated ?ow deposit from hydraulic jacking, overlain by boulders emplaced by a subsequent conduit outburst. A possible association of outbursts with the present advanced position of the glacier is suggested. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The evolution of landscapes crucially depends on the climate history. This is particularly evident in South America where landscape responses to orbital climate shifts have been well documented. However, while most studies have focused on inferring temperature variations from paleoclimate proxy data, estimates of water budget changes have been complicated because of a lack of adequate physical information. Here, we present a methodology and related results, which allowed us to extract water discharge values from the sedimentary record of the 40 Ka‐old fluvial terrace deposits in the Pisco valley, western Peru. In particular, this valley hosts a Quaternary cut‐and‐fill succession that we used, in combination with beryllium‐10 (10Be)‐based sediment flux, gauging records, channel geometries and grain size measurements, to quantitatively assess sediment and water discharge values c. 40 Ka ago in relation to present‐day conditions. We compare these discharge estimates to the discharge regime of the modern Pisco River and find that the water discharge of the paleo‐Pisco River, during the Minchin pluvial period c. 40 Ka ago, was c. 7–8 times greater than the modern Pisco River if considering the mean and the maximum water discharge. In addition, the calculations show that inferred water discharge estimates are mainly dependent on channel gradients and grain size values, and to a lesser extent on channel width measures. Finally, we found that the c. 40 Ka‐old Minchin terrace material was poorer sorted than the modern deposits, which might reflect that sediment transport during the past period was characterized by a larger divergence from equal mobility compared to the modern situation. In summary, the differences in grain size distribution and inferred water discharge estimates between the modern and the paleo‐Pisco River suggests that the 40 Ka‐old Minchin period was characterized by a wetter climate and more powerful flood events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Geomorphic evidence along bedrock-confined reaches of the Salt River in east-central Arizona provides a record of the river's largest flood events. Fine-grained flood slackwater deposits accumulated at channel margin irregularities several metres above the low-flow channel. Discharges associated with flow events responsible for the deposits were estimated by computer flow modelling. These estimates document flood magnitudes in excess of gauged historic streamflows. Relative and radiocarbon dating suggest that a flood record in excess of 600 y is preserved in the slackwater sequences. A prominent flood scar cut into grussy hillslope soils allows the extension of the prehistoric flood record to several thousand years. A maximum discharge estimate of 4600 m3s?1 affixed to the flood scar represents the largest flood event in the record, and is given a minimum recurrence interval of 1000–2000 y. The 1952 flood is the largest historic flow event experienced along the study reach and is estimated at 2900 m3s?1. Two palaeoflood events preserved in the slackwater stratigraphy exceed the 1952 event, and are given recurrence intervals of 300 and 600 y. The latter flood event had an estimated discharge of 3200 m3s?1. It is apparent that discharge estimates affixed to these infrequent, large-magnitude flood events approach a maximum with decreased probabilities (large recurrence intervals). This suggests that a physical limit on discharge may exist within the Salt River drainage basin and is perhaps directly related to drainage basin size.  相似文献   

8.
Abstract A controversial stratigraphic section, the Taneichi Formation, is exposed along the Pacific Coast of northeastern Honshu, the main island of the Japanese Archipelago. Although most sediments of the formation have long been dated as late Cretaceous, the northern section of it has been assigned to (i) the Upper Cretaceous; (ii) the Paleogene; or (iii) the Neogene. In the present report, we present the data of palynological and sedimentological studies, showing that the northern section should be assigned to the Neogene. A more important point in the present study is that we invoke some basic principles of fluvial sedimentology to resolve this stratigraphic subject. The lignite layers full of Paleogene–Miocene dinoflagellate cysts and pollen assemblages drape over the boulder‐sized (>40 cm in diameter) clasts in the northern section. However, the layers totally consist of aggregates of small lignite chips, indicating that the lignites are allochthonous materials. The mega‐clasts with derived microfossils in the lignites are thought to have been deposited as Neogene fluvial (flood) sediments in the newly formed Japanese Archipelago. Prior to the Miocene, the northern Honshu was part of the Eurasian Plate, thus the boulder‐sized clasts cannot be envisaged as long river flood deposits along the continental Paleogene Pacific Coast. Instead, the mega‐clasts with the draping lignites were probably derived from nearby Miocene highlands in the newly born island arc.  相似文献   

9.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The grainsize characteristics of dune-bedded pyroclastic surge bedsets are surveyed. The variance between coarsest and finest beds ranges from 1 to 6 phi in different surge bedsets, and it increases as the grainsize of the coarsest bed increases, reflecting an increasing velocity of emplacement. Deposits of wet surges, identified as those which contain accretionary and ash-coated lapilli, tend to be finer and show less variance, this partly because wet ash is cohesive, but mainly because wet surges tend to be weaker. Dry surge bedsets are strongly fines-depleted, wet ones less so. The lack of erosion of underlying ash layers shows that the environment is a strongly depositional one. Individual bedsets are demarcated by thin intervening fine ash-fall layers, which are the complementary ash-cloud deposits settled or flushed out after the passage and decay of each turbulent surge. Surge deposits are generally less coarse than the coarsest associated airfall deposits, which shows that they are formed by generally weaker events.This study helps interpret the dune-bedded parts of the landscape-mantling May 18th 1980 “blast” deposit of Mount St. Helens. The blast was a very violent event, but the variance and the grainsize of the coarsest bed are those of a relatively weak surge. This suggests that the dune-bedding was produced by a weak effect, such as minor turbulence in a thin pyroclastic flow coming to rest in a mountainous terrain roughened by tree stumps and fallen logs.  相似文献   

11.
Dipper Harbour Creek's lower reaches run through a narrow salt marsh on the Bay of Fundy, New Brunswick, Canada. This 2 km long section of the creek constitutes an extreme example of a tide-dominated estuary exhibiting strong downvalley morphology and sedimentology gradients. Dipper Harbour Creek drains a basin of roughly 8.8 km2, but except during the spring snowmelt freshet, tidal flow so overshadows freshwater flow within the salt marsh reach that the system essentially functions as a tidal creek. To identify and explain the main geomorphic processes controlling the creek system, records were collected in summer 1993 of tidal stage and velocity fluctuations, sand dune migration rates, bed material composition, channel cross-sectional geometry and channel sinuosity. Bed materials become progressively finer upvalley, with deposits of medium to coarse sands concentrated in the highly sinuous central reach of the creek during the summer. Current velocities within the creek are strongly flood-dominant, featuring a consistent low-stage peak in flood velocity, a secondary high-stage flood surge, and a weaker ebb peak occurring around bankfull stage. Under summer low freshwater discharge conditions, the predominant direction of bed sand transport is upvalley. The spring freshet, however, causes a major downvalley shift of sand deposits, suggesting a seasonal cycling of medium to coarse sands within Dipper Harbour Creek.  相似文献   

12.
The seventy-kilometre-long Herbert Gorge of northeastern Australia preserves a record of past floods in slackwater deposits and palaeostage indicators. Step-backwater modelling of water-surface profiles indicates that discharges ranging from 11000 to 17000 m3s?1 have occurred six times in the gorge during the last 900 years. These flood reconstructions provide insight into the role of extreme flows in shaping bedrock channel morphology. In particular, the hydraulics of extreme flows can be related to boulder transport, and to the location of large boulder bars. Large boulder bars occur throughout the Herbert Gorge, being best developed at loci of stream power minima along the inside of bends, at tributary junctions, and at obstructions in the channel caused by bedrock highs. Only the flows exceeding approximately 8000 m3 s?1 are competent to transport the boulders which constitute the bars. In the straight channel reaches, the boulder accumulations and bedrock highs have a fairly regular spacing which appears to be independent of lithologic or structural controls. The bars provide an efficient means of energy dissipation, and they are interpreted as a result of the inherent high turbulence of flow in a steep channel. The regular spacing of the bars, and their correspondence with the hydraulics of large flows, suggest that the bars and associated bedrock highs may represent a self-regulating mechanism akin to the pool-riffle sequence of alluvial channels. It may therefore be appropriate to view bedrock channels as deformable on the timescale of extreme discharges.  相似文献   

13.
Speleothems are usually composed of thin layers of calcite (or aragonite). However, cemented detrital materials interlayered between laminae of speleothemic carbonate have been also observed in many caves. Flowstones comprising discontinuous carbonate layers form due to flowing water films, while flood events introduce fluviokarstic sediments in caves that, on occasion, are recorded as clayey layers inside flowstones and stalagmites. This record provides a potential means of understanding the frequency of palaeofloods using cave records. In this work, we investigate the origin of this type of detrital deposit in El Soplao Cave (Northern Spain). The age of the lowest aragonite layer of a flowstone reveals that the earliest flood period occurred before 500 ka, though most of the flowstone formed between 422 +69/‐43 ka and 400 +66/‐42 ka. This suggests that the cave was periodically affected by palaeoflood events that introduced detrital sediments from the surface as a result of occasional extreme rainfall events, especially at around 400 ka. The mineralogical data enable an evolutionary model for this flowstone to be generated based on the alternation of flood events with laminar flows and carbonate layers precipitation that can be extrapolated to other caves in which detrital sediments inside speleothems have been found. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents work from a geomorphological investigation carried out in the Aradena Gorge, southwestern Crete, Greece. The gorge is typical of many steepland fluvial systems in the Mediterranean, with steep relief, coarse‐gravel sediments and high rates of sedimentation generated during intense winter storm events. Hillslope deposits and coarse‐gravel flood units within a 5 km section of the gorge have been mapped, dated (using lichenometry and dendrochronology), and their sedimentological characteristics recorded to establish a c. 200‐year record of flood frequency/magnitude and hillslope/channel sediment supply variability. This record has been compared with instrumented and previously published records of climate change from Crete and the Mediterranean region and used to establish the major controls on flooding and sediment dynamics within the Aradena Gorge. Rates of colluviation and sediment delivery to the channel appear to have been greater than the present sometime before c. AD 1800 and may be related to cooler climates with a more seasonal precipitation regime during the Little Ice Age (c. AD 1450 to 1850). In gorge sections where the present rate of sediment supply from hillslope colluvium is very low, the channel has incised into older alluvial and colluvial deposits. Conversely, in the few sections where sediment supply is currently very high, the channel is aggrading with a braided pattern. Major rock‐fall deposits at certain locations in the gorge have restricted any major downstream sediment transfer. Twelve periods of increased flooding during the last 150 years have been identified and these correlate quite well with negative or declining phases of the North Atlantic Oscillation (NAO). Analysis of daily precipitation data from Crete suggests negative phases of the winter NAO are characterized by an increase in the number of long‐duration, high‐intensity storms. These storms, particularly those with five‐day and greater duration, appear to be significant in triggering major floods in the Aradena Gorge. During the last 40 years the NAO index has been increasing and become locked into a positive phase. As a consequence of this, major flooding appears to have declined during the same period. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Beach‐ridge systems are important geo‐archives providing evidence for past wave climate including catastrophic storm flood events. This study investigates the morphological impacts of the 1872 Baltic storm flood on a beach‐ridge system (sandy spit) in south‐eastern Denmark and evaluates the frequency of extreme storm flood events in the area over a longer time perspective. This paper combines field studies of morphology and sedimentary deposits, studies of historical maps, digital terrain model, ground‐penetrating radar profiles, and luminescence dating. Sea water reached 2.8 m above mean sea level (amsl) during peak inundation and, based on studies of the morphological impacts of the 1872 storm flood, the event can be divided into four phases. Phase 1: increasing mean water levels and wave activity at the beach brought sediments from the beach (intertidal bars and normal berm) higher up in the profile and led to the formation of a storm‐berm. Phase 2: water levels further increased and sediment in the upper part of the profile continued to build up the storm‐berm. Phase 3: water levels now reached the top of the dune ridge and were well above the storm‐berm level. Sea water was breaching the dune ridge at several sites and wash‐over fans were generated until a level where the mean water level had dropped too much. Phase 4: the non‐vegetated wash‐over fans functioned as pathways for aeolian sand transport and relatively high dunes were formed in particular along the margins of the fan where aeolian sand was trapped by existing vegetation. The studied beach‐ridge system records about 4500 years of accumulation; the storm flood sediments described are unique suggesting that the 1872 Baltic storm flood event was an extreme event. Thus studies of beach‐ridge systems form a new source for understanding storm surge risk. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Palaeoflood reconstructions based on stage evidence are typically conducted in data‐poor field settings. Few opportunities exist to calibrate the hydraulic models used to estimate discharge from this evidence. Consequently, an important hydraulic model parameter, the roughness coefficient (e.g. Manning's n), is typically estimated by a range of approximate techniques, such as ‘visual estimation’ and semi‐empirical equations. These techniques contribute uncertainty to resulting discharge estimates, especially where the study reach exhibits sensitivity in the discharge–Manning's n relation. We study this uncertainty within a hydraulic model for a large flood of known discharge on the Mae Chaem River, northern Thailand. Comparison of the ‘calibrated’ Manning's n with that obtained from semi‐empirical equations indicates that these underestimate roughness. Substantial roughness elements in the extra‐channel zone, inundated during large events, contribute significant additional sources of flow resistance that are captured neither by the semi‐empirical equations, nor by existing models predicting stage–roughness variations. This bedrock channel exhibits a complex discharge–Manning's n relation, and reliable estimates of the former are dependent upon realistic assignment of the latter. Our study demonstrates that a large recent flood can provide a valuable opportunity to constrain this parameter, and this is illustrated when we model a palaeoflood event in the same reach, and subsequently examine the magnitude–return period consequences of discharge uncertainty within a flood frequency analysis, which contributes its own source of uncertainty. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Extreme floods are the most widespread and often the most fatal type of natural hazard experienced in Europe, particularly in upland and mountainous areas. These ‘flash flood’ type events are particularly dangerous because extreme rainfall totals in a short space of time can lead to very high flow velocities and little or no time for flood warning. Given the danger posed by extreme floods, there are concerns that catastrophic hydrometeorological events could become more frequent in a warming world. However, analysis of longer term flood frequency is often limited by the use of short instrumental flow records (last 30–40 years) that do not adequately cover alternating flood‐rich and flood‐poor periods over the last 2 to 3 centuries. In contrast, this research extends the upland flood series of South West England (Dartmoor) back to ca AD 1800 using lichenometry. Results show that the period 1820 to mid‐1940s was characterized by widespread flooding, with particularly large and frequent events in the mid‐to‐late 19th and early 20th centuries. Since ca 1850 to 1900, there has been a general decline in flood magnitude that was particularly marked after the 1930s/mid‐1940s. Local meteorological records show that: (1) historical flood‐rich periods on Dartmoor were associated with high annual, seasonal and daily rainfall totals in the last quarter of the 19th century and between 1910 and 1946, related to sub‐decadal variability of the North Atlantic Oscillation and receipt of cyclonic and southerly weather types over the southwest peninsula; and (2) the incidence of heavy daily rainfall declined notably after 1946, similar to sedimentary archives of flooding. The peak period of flooding on Dartmoor predates the beginning of gauged flow records, which has practical implications for understanding and managing flood risk on rivers that drain Dartmoor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Flood risk management is an essential responsibility of state governments and local councils to ensure the protection of people residing on floodplains. Globally, floodplains are under increasing pressure from growing populations. Typically, the engineering‐type solutions that are used to predict local flood magnitude and frequency based on limited gauging data are inadequate, especially in settings which experience high hydrological variability. This study highlights the importance of incorporating geomorphological understanding into flood risk management in southeast Queensland (SEQ), an area badly affected by extreme flood events in 2011 and 2013. The major aim of this study is to outline the hydrological and sedimentological characteristics of various ‘inundation surfaces’ that are typical of catchments in the sub‐tropics. It identifies four major inundation surfaces; within‐channel bench [Q ~ 2.33 yr average recurrence interval (ARI)]; genetic floodplain (Q = 20 yr ARI); hydraulic floodplain (20 yr < Q ≤ 200 yr ARI) and terrace (Q > 1000 yr ARI). These surfaces are considered typical of inundation areas within, and adjacent to, the large macrochannels common to this region and others of similar hydrological variability. An additional area within genetic floodplains was identified where flood surfaces coalesce and produce an abrupt reduction in channel capacity. This is referred to here as a Spill‐out Zone (SOZ). The associated vulnerability and risk of these surfaces is reviewed and recommendations made based on incorporating this geomorphological understanding into flood risk assessments. These recommendations recognize the importance to manage for risks associated with flow inundation and sediment erosion, delivery and deposition. The increasing availability of high resolution topographic data opens up the possibility of more rapid and spatially extensive assessments of key geomorphic processes which can readily be used to predict flood risk. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Raise Beck is a mountain torrent located in the central Lake District fells, northern England (drainage area of 1·27 km2). The torrent shows evidence of several major flood events, the most recent of which was in January 1995. This event caused a major channel avulsion at the fan apex diverting the main flood flow to the south, blocking the A591 trunk road and causing local flooding. The meteorological conditions associated with this event are described using local rainfall records and climatic data. Records show 164 mm of rainfall in the 24 hours preceding the flood. The peak flood discharge is reconstructed using palaeohydrological and rainfall–runoff methods, which provide discharge values of 27–74 m3 s?1, and 4–6 m3 s?1, respectively. The flood transported boulders with b‐axes up to 1400 mm. These results raise some important general questions about flood estimation in steep mountain catchments. The geomorphological impact of the event is evaluated by comparing aerial photographs from before and after the flood, along with direct field observations. Over the historical timescale the impact and occurrence of flooding is investigated using lichenometry, long‐term rainfall data, and documentary records. Two major historical floods events are identified in the middle of the nineteenth century. The deposits of the recent and historical flood events dominate the sedimentological evidence of flooding at Raise Beck, therefore the catchment is sensitive to high magnitude, low frequency events. Following the 1995 flood much of the lower catchment was channelized using rip‐rap bank protection, re‐establishing flow north towards Thirlmere. The likely success of this management strategy in containing future floods is considered, based on an analysis of channel capacities. It is concluded that the channelization scheme is only a short‐term solution, which would fail to contain the discharge of an event equivalent to the January 1995 flood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号