首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flood events play a substantial role in the circulation of catchment phosphate (PO43?). The purpose of the research was to analyze the factors determining PO43? hysteresis patterns (direction and width) during four types of floods: short and long rainfall floods and snowmelt floods on frozen and thawed soil. The research took place in small catchments (forested, agricultural, mixed‐use) in the Carpathian Foothills in Poland. Anticlockwise hysteresis was identified in the forested catchment during short and long rainfall floods. Under the same conditions, the clockwise direction was observed in the agricultural catchment. In the mixed‐use catchment, the direction of PO43? hysteresis loops was various, driven by the share of water flowing from each part of the catchment. For snowmelt floods, the PO43? hysteresis pattern was similar in all the streams studied (usually clockwise). The direction of PO43? hysteresis loops depends on water circulation patterns, which are determined by the different influx times of particular runoff components. The stream recharge mechanism during a flood event is affected both by the factor initiating the event (precipitation, snowmelt) as well as by land use in the given catchment. Hysteresis loop width was determined by the pool of PO43? in a given catchment during the time period immediately preceding a flood event as well as by the quantity of PO43? flushed out of the soil. The greater a catchment's pool of PO43? and the greater its ability to flush PO43? out of the soil and into surface flow, the wider the hysteresis loops. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Water draining from a large agricultural catchment of 1 110 km2 in southwest France was sampled over an 18‐month period to determine the temporal variability in suspended sediment (SS) and dissolved (DOC) and particulate organic carbon (POC) transport during flood events, with quantification of fluxes and controlling factors, and to analyze the relationships between discharge and SS, DOC and POC. A total of 15 flood events were analyzed, providing extensive data on SS, POC and DOC during floods. There was high variability in SS, POC and DOC transport during different seasonal floods, with SS varying by event from 513 to 41 750 t; POC from 12 to 748 t and DOC from 9 to 218 t. Overall, 76 and 62% of total fluxes of POC and DOC occurred within 22% of the study period. POC and DOC export from the Save catchment amounted to 3090 t and 1240 t, equivalent to 1·8 t km?2 y?1 and 0·7 t km?2 y?1, respectively. Statistical analyses showed that total precipitation, flood discharge and total water yield were the major factors controlling SS, POC and DOC transport from the catchment. The relationships between SS, POC and DOC and discharge over temporal flood events resulted in different hysteresis patterns, which were used to deduce dissolved and particulate origins. In both clockwise and anticlockwise hysteresis, POC mainly followed the same patterns as discharge and SS. The DOC‐discharge relationship was mainly characterized by alternating clockwise and anticlockwise hysteresis due to dilution effects of water originating from different sources in the whole catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
E. Morin  H. Yakir 《水文科学杂志》2014,59(7):1353-1362
Abstract

t Spatio-temporal storm properties have a large impact on catchment hydrological response. The sensitivity of simulated flash floods to convective rain-cell characteristics is examined for an extreme storm event over a 94 km2 semi-arid catchment in southern Israel. High space–time resolution weather radar data were used to derive and model convective rain cells that then served as input into a hydrological model. Based on alterations of location, direction and speed of a major rain cell, identified as the flooding cell for this case, the impacts on catchment rainfall and generated flood were examined. Global sensitivity analysis was applied to identify the most important factors affecting the flash flood peak discharge at the catchment outlet. We found that the flood peak discharge could be increased three-fold by relatively small changes in rain-cell characteristics. We assessed that the maximum flash flood magnitude that this single rain cell can produce is 175 m3/s, and, taking into account the rest of the rain cells, the flash flood peak discharge can reach 260 m3/s.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Morin, E. and Yakir, H., 2013. Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrological Sciences Journal, 59 (7), 1275–1284. http://dx.doi.org/10.1080/02626667.2013.841315  相似文献   

4.
Arid regions generally lack surface water records for developing flood characteristics for hydraulic design purposes. Consequently good records of floods, particularly large ones, are a data asset to arid zone hydrology. A large rainfall and runoff event which occurred on 23 April 1985 has been fully recorded on Wadi Ghat, a 597 km2 catchment in southwest Saudi Arabia. Maximum point rainfall intensity was 115.4 mm hr?1. The peak discharge was 3200 m3 s?1. Point rainfall has an expected frequency of occurrence in excess of once every 200 years. The peak discharge is expected to occur on an average once in 143 years.  相似文献   

5.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Guoqiang Wang  Zongxue Xu 《水文研究》2011,25(16):2506-2517
A grid‐based distributed hydrological model, PDTank model, is used to simulate hydrological processes in the upper Tone River catchment. The Tone River catchment often suffers from heavy rainfall events during the typhoon seasons. The reservoirs located in the catchment play an important role in flood regulation. Through the coupling of the PDTank model and a reservoir module that combines the storage function and operation function, the PDTank model is used for flood forecasting in this study. By comparing the hydrographs simulated using gauging and radar rainfall data, it is found that the spatial variability of rainfall is an important factor for flood simulation and the accuracy of the hydrographs simulated using radar rainfall data is slightly improved. The simulation of the typhoon flood event numbered No. 9 shows that the reservoirs in the catchment attenuate the peak flood discharge by 423·3 m3/s and validates the potential applicability of the distributed hydrological model on the assessment of function of reservoirs for flood control during typhoon seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A water harvesting system for research purposes has been established in the Lisan Peninsula of the Dead Sea in the middle of the Jordan Rift Valley, where no authorized guideline is available for designing water harvesting systems. Rainfall and runoff, which occurred as flash floods, were observed at the downstream end of a gorge with a 1.12 km2 barren catchment area from October 2014 through July 2019. Due to the extremely arid environment, runoff from the catchment is ephemeral, and the flash flood events can be clearly distinguishable from each other. Thirteen flash flood events with a total runoff volume of more than 100 m3 were successfully recorded during the five rainy seasons. Pearson and Spearman correlations between duration, total rainfall depths at two points, total runoff volume, maximum runoff discharge, bulk runoff coefficient, total variation in runoff discharge and maximum variation in runoff discharge of each flash flood event were examined, revealing no straightforward relationship between rainfall and runoff. The performance of the conventional SCS runoff curve number method was also deficient in reproducing any rainfall–runoff relationship. Therefore, probability distribution fitting was performed for each random variable, focusing on the lognormal distribution with three parameters and the generalized extreme value distribution. The maximum goodness-of-fit estimation turns out to be a more rational and efficient method in obtaining the parameter values of those probability distributions rather than the standard maximum likelihood estimation, which has known disadvantages. Results support the design of the water harvesting system and provide quantitative information for designing and operating similar systems in the future.  相似文献   

8.
The debris flow of 28 August 1997 which occurred in the Riale Buffaga, a torrent channel in the territory of the village of Ronco s./Ascona (Ticino, Switzerland), has been simulated with a good degree of reliability due to the existence of morphologic surveys of the torrent channel preceding the flood event and the presence of a rain gauge that registered the rainfall event at a resolution of 10 minutes. With these data it is possible to conduct a quantitative analysis of the effect of a forest fire on the hydrogeological response of a given catchment. In the case at hand, a 10‐year rainfall event caused a 100‐ to 200‐year flood event. This result clearly quantifies the possible consequences of a forest fire in terms of territorial safety. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

10.
Sediment loads have been measured in six Swiss mountain torrents over several decades. Most of these torrent catchments are situated in the prealpine belt. They have catchment areas of between 0·5 and 1·7 km2. Bedslopes at the measuring sites vary between 5 and 17 per cent, and peak discharges up to 12 m3 s−1 have been recorded. Geophone sensors installed in the Erlenbach stream allow bedload transport activity to be monitored and sediment volumes associated with each flood event to be determined. A detailed analysis of the measurements in this stream results in an empirical equation in which the sediment load per flood event is expressed as a function of the effective runoff volume (discharges above the threshold for bedload motion) and of the normalized peak discharge. For the total of 143 investigated flood events in the Erlenbach stream, the deviation of the predicted from the measured value is within a factor of two for more than two-thirds of all events. A distinction can be made between summer and winter events in analysing the bedload transport events. The summer events, mainly caused by thunderstorms, transport comparatively larger sediment loads than the winter events. For the other investigated streams, the periods of the deposited sediment volume surveys cover in general several flood events. An analysis is performed analogous to that for the Erlenbach stream. The sediment loads show a similar dependency on the two factors effective runoff volume and normalized peak discharge. However, the exponents of these factors in the power law expressions differ from stream to stream. A comparison of the investigated stream shows that some of the variation can be explained by considering the bedslope above the measuring site. The inclusion of a bedslope factor is in agreement with laboratory investigations on bedload transport. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Extreme floods are the most widespread and often the most fatal type of natural hazard experienced in Europe, particularly in upland and mountainous areas. These ‘flash flood’ type events are particularly dangerous because extreme rainfall totals in a short space of time can lead to very high flow velocities and little or no time for flood warning. Given the danger posed by extreme floods, there are concerns that catastrophic hydrometeorological events could become more frequent in a warming world. However, analysis of longer term flood frequency is often limited by the use of short instrumental flow records (last 30–40 years) that do not adequately cover alternating flood‐rich and flood‐poor periods over the last 2 to 3 centuries. In contrast, this research extends the upland flood series of South West England (Dartmoor) back to ca AD 1800 using lichenometry. Results show that the period 1820 to mid‐1940s was characterized by widespread flooding, with particularly large and frequent events in the mid‐to‐late 19th and early 20th centuries. Since ca 1850 to 1900, there has been a general decline in flood magnitude that was particularly marked after the 1930s/mid‐1940s. Local meteorological records show that: (1) historical flood‐rich periods on Dartmoor were associated with high annual, seasonal and daily rainfall totals in the last quarter of the 19th century and between 1910 and 1946, related to sub‐decadal variability of the North Atlantic Oscillation and receipt of cyclonic and southerly weather types over the southwest peninsula; and (2) the incidence of heavy daily rainfall declined notably after 1946, similar to sedimentary archives of flooding. The peak period of flooding on Dartmoor predates the beginning of gauged flow records, which has practical implications for understanding and managing flood risk on rivers that drain Dartmoor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

13.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide.  相似文献   

16.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Influence of the rainfall regime on erosion and transfer of suspended sediment in a 905‐km² mountainous catchment of the southern French Alps was investigated by combining sediment monitoring, rainfall data, and sediment fingerprinting (based on geochemistry and radionuclide concentrations). Suspended sediment yields were monitored between October 2007 and December 2009 in four subcatchments (22–713 km²). Automatic sediment sampling was triggered during floods to trace the sediment origin in the catchment. Sediment exports at the river catchment outlet (330 ± 100 t km‐2 yr‐1) were mainly driven (80%) by widespread rainfall events (long duration, low intensities). In contrast, heavy, local and short duration storms, generated high peak discharges and suspended sediment concentrations in small upstream torrents. However, these upstream floods had generally not the capacity to transfer the sediment down to the catchment outlet and the bulk of this fine sediment deposited along downstream sections of the river. This study also confirmed the important contribution of black marls (up to 70%) to sediment transported in rivers, although this substrate only occupies c. 10% of the total catchment surface. Sediment exports generated by local convective storms varied significantly at both intra‐ and inter‐flood scales, because of spatial heterogeneity of rainfall. However, black marls/marly limestones contribution remained systematically high. In contrast, widespread flood events that generate the bulk of annual sediment supply at the outlet were characterized by a more stable lithologic composition and by a larger contribution of limestones/marls, Quaternary deposits and conglomerates, which corroborates the results of a previous sediment fingerprinting study conducted on riverbed sediment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
《国际泥沙研究》2022,37(6):715-728
Rainfall-induced floods may trigger intense sediment transport on erodible catchments, especially on the Loess Plateau in China, which in turn modifies the floods. However, the role of sediment transport in modifying floods has to date remained poorly understood. Concurrently, traditional hydrodynamic models for rainfall-induced floods typically ignore sediment transport, which may lead to inaccurate results for highly erodible catchments. Here, a two-dimensional (2D) coupled shallow water hydro-sediment-morphodynamic (SHSM) model, based on the Finite Volume Method on unstructured meshes and parallel computing, is proposed and applied to simulate rainfall-induced floods in the Zhidan catchment on the Loess Plateau, Shaanxi Province, China. For six historical floods of return periods up to 2 years, the numerical results compare well with observations of discharge hydrographs at the catchment outlet. The computed runoff-sediment yield relation is quantitatively reasonable as compared with other catchments under similar geographical conditions. It is revealed that neglecting sediment transport leads to underestimation of peak discharge of the flood by 14%–45%, whilst its effect on the timing of the peak discharge varies for different flood events. For 18 design floods with return periods of 10–500 years, sediment transport may lead to higher peak discharge by around 9%–15%. The temporal pattern of concentrated rainfall in a short period may lead to a larger exponent value of the power function for the runoff-sediment yield relation. The current finding leads us to propose that incorporating sediment transport in rainfall-induced flood modeling is warranted. The SHSM model is applicable to flood and sediment modeling at the catchment scale in support of risk management and water and soil management.  相似文献   

19.
There is still wide uncertainty about past flash‐flood processes in mountain regions owing to the lack of systematic databases on former events. This paper presents a methodology to reconstruct peak discharge of flash floods and illustrates a case in an ungauged catchment in the Spanish Central System. The use of dendrogeomorphic evidence (i.e. scars on trees) together with the combined use of a two‐dimensional (2D) numerical hydraulic model and a terrestrial laser scan (TLS) has allowed estimation of peak discharge of a recent flash flood. The size and height distribution of scars observed in the field have been used to define three hypothetical scenarios (Smin or minimum scenario; Smed or medium scenario; and Smax or maximum scenario), thus illustrating the uncertainty involved in peak‐discharge estimation of flash floods in ungauged torrents. All scars analysed with dendrogeomorphic techniques stem from a large flash flood which took place on 17 December 1997. On the basis of the scenarios, peak discharge is estimated to 79 ± 14 m3 s?1. The average deviation obtained between flood stage and expected scar height was ? 0·09 ± 0·53 m. From the data, it becomes obvious that the geomorphic position of trees is the main factor controlling deviation rate. In this sense, scars with minimum deviation were located on trees growing in exposed locations, especially on unruffled bedrock where the model predicts higher specific kinetic energy. The approach used in this study demonstrates the potential of tree‐ring analysis in palaeohydrology and for flood‐risk assessment in catchments with vulnerable goods and infrastructure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Book reviews     
Abstract

Statistical and deterministic modelling estimates of flood magnitudes and frequencies that can affect flood-plain ecology in the upper Ahuriri River catchment, a mountainous high country catchment in the New Zealand Southern Alps, were evaluated. Statistical analysis of 46 years of historical data showed that floods are best modelled by the generalized extreme value and lognormal distributions. We evaluated application of the HEC-HMS model to this environment by modelling flood events of various frequencies. Model results were validated and compared with the statistical estimates. The SCS curve number method was used for losses and runoff generation, and the model was very sensitive to curve number. The HEC-HMS flood estimates matched the statistical estimates reasonably well, and, over all return periods, were on average approximately 1% greater. However, the model generally underestimated flood peaks up to the 25-year event and overestimated magnitudes above this. The results compared well with other regional estimates, including studies based on L-moments, and showed that this catchment has smaller floods than other similarly-sized catchments in the Southern Alps.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Caruso, B.S., Rademaker, M., Balme, A., and Cochrane, T.A., 2013. Flood modelling in a high country mountain catchment, New Zealand: comparing statistical and deterministic model estimates for ecological flows. Hydrological Sciences Journal, 58 (2), 328–341.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号