首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
广西大厂锡矿铟的地球化学特征及成因机制初探   总被引:13,自引:3,他引:10  
广西大厂锡矿位于江南古陆西南缘,桂西北海西-印支期被动陆缘裂谷盆地北部的断裂凹陷盆地中,是中国重要的、以锡为主的有色金属矿床。它主要由长坡-铜坑和高峰矿床、拉么矿床、大福楼矿床和亢马矿床等组成,其铟资源量约6 000 t。文章在对长坡-铜坑矿床、高峰矿床以及拉么矿床不同类型围岩(包括花岗岩质岩石)、矿石以及不同矿床类型中矿石矿物(硫化物和氧化物)中的In、Cu、Cd、Sn、Fe、Zn等微量元素分析的基础上,结合不同类型矿床、不同矿物组合中硫化物的微量元素电子探针测试以及硫同位素分析结果,初步认为大厂锡矿岩浆源区是富铟的,在正常的沉积岩中不存在铟的初始富集;In主要赋存于闪锌矿中,与层状和块状的矿体关系密切。在成矿作用过程中,In的分布和富集对矿物组合和矿石类型具有明显的选择性。大厂铟矿的形成是富铟的岩浆源区重融产生含铟岩浆,在岩浆侵位冷却过程中,由岩浆结晶所产生的流体携带In、Cu、Fe、Zn、Sn等成矿元素从岩浆中出溶,形成含In的成矿流体。水-岩反应以及在大气降水来源流体的参与下,导致In、Cu、Fe、Zn、Sn等从成矿流体中沉淀、富集成矿。  相似文献   

2.
The strata-bound Cu−Pb−Zn polymetallic sulfide deposits occur in metamorphic rocks of greenschist phase of the middle-upper Proterozoic Langshan Group in central Inner Mongolia. δ34S values for sulfides range from −3.1‰ to +37.3‰, and an apparent difference is noticed between vein sulfides and those in bedded rocks. For example, δ34S values for bedded pyrite range from +10.6‰ to +20.0‰, while those for vein pyrite vary from −3.1‰ to +14.1‰. δ34S of bedded pyrrhotite is in the range +7.9‰–+23.5‰ in comparison with +6.5‰–+17.1‰ for vein pyrrhotite. The wide scatter of δ34S and the enrichment of heavier sulfur indicate that sulfur may have been derived from H2S as a result of bacterial reduction of sulfates in the sea water. Sulfur isotopic composition also differs from deposit to deposit in this area because of the difference in environment in which they were formed. The mobilization of bedded sulfides in response to regional metamorphism and magmatic intrusion led to the formation of vein sulfides. δ18O and δ13C of ore-bearing rocks and wall rocks are within the range typical of ordinary marine facies, with the exception of lower values for ore-bearing marble at Huogeqi probably due to diopsidization and tremalitization of carbonate rocks. Pb isotopic composition is relatively stable and characterized by lower radio-genetic lead. The age of basement rocks was calculated to be about 23.9 Ma and ore-forming age 7.8 Ma.207Pb/204Pb−206Pb/204Pb and208Pb/204Pb−206Pb/204Pb plots indicate that Pb may probably be derived from the lower crust or upper mantle. It is believed that the deposits in this region are related to submarine volcanic exhalation superimposed by later regional metamorphism and magmatic intrusion.  相似文献   

3.
The Spessart district (SW Germany), located at the southwestern margin of the Permian Kupferschiefer basin in Central Europe, hosts abundant stratabound and structurally controlled base metal mineralization. The mineralization styles identified are (1) stratabound Cu-Pb-Zn-(Ag) ores in Zechstein sedimentary rocks, (2) structurally controlled Cu-As-(Ag) ores in Zechstein sedimentary rocks, (3) crosscutting Co-Ni-(Bi)-As and Cu-Fe-As veins, (4) stratabound metasomatic Fe-Mn carbonate ores in Zechstein dolomite, (5) barren barite veins, and (6) Fe-Mn-As veins in Permian rhyolites. Building on previous work that involved mineralogical, textural, and chemical characterization of the major mineralization types, we have performed a comprehensive sulfur isotope study that applied both conventional and novel laser-ablation multi-collector inductively coupled plasma mass spectrometry techniques. The δ34S values of sulfide minerals from the different ore types are consistently negative and highly variable, in the range between −44.5‰ and −3.9‰, whereas the δ34S values of barite are all positive in the range between 4.7‰ and 18.9‰. Remarkably, stratabound and structurally controlled mineralization in Zechstein sedimentary rocks has the least negative δ34S values, whereas vein-type deposits have consistently more negative δ34S values. The observed pattern of sulfide δ34S values can be best interpreted in terms of fluid mixing at the basement-cover interface. Hydrothermal fluids originating from the crystalline basement migrated upward along subvertical fault zones and were periodically injected into groundwaters that were flowing in the post-Variscan sedimentary cover. These groundwaters had interacted with the Zechstein sedimentary rocks, resulting in fluids characterized by elevated concentrations of reduced sulfur (with negative δ34S values) and alkaline pH. Repeated mixing between both chemically contrasting fluids caused rapid and efficient precipitation of sulfide ore minerals in hydrothermal veins with highly variable but distinctly negative δ34S values.  相似文献   

4.
The Sekarna Zn–Pb deposit is located in Central Tunisia at the northeastern edge of the Cenozoic Rohia graben. Mineralization comprises two major ore types: (1) disseminated Zn–Pb sulfides that occur as lenses in sedimentary phosphorite layers and (2) cavity-filling zinc oxides (calamine-type ores) that crosscut Late Cretaceous and Early Eocene limestone. We studied Zn sulfide mineralization in the Saint Pierre ore body, which is hosted in a 5-m-thick sedimentary phosphorite unit of Early Eocene age. The sulfide mineralization occurs as replacements of carbonate cement in phosphorite. The ores comprise stratiform lenses rich in sphalerite with minor galena, Fe sulfides, and earlier diagenetic barite. Laser ablation–inductively coupled plasma mass spectrometry analyses of sphalerite and galena show a wide range of minor element contents with significant enrichment of cadmium in both sphalerite (6,000–20,000 ppm) and galena (12–189 ppm). The minor element enrichments likely reflect the influence of the immediate organic-rich host rocks. Fluid inclusions in sphalerite give homogenization temperatures of 80–130°C. The final ice melting temperatures range from −22°C to −11°C, which correspond to salinities of 15–24 wt.% NaCl eq. and suggest a basinal brine origin for the fluids. Sulfur isotope analyses show uniformly negative values for sphalerite (−11.2‰ to −9.3‰) and galena (−16‰ to −12.3‰). The δ34S of barite, which averages 25.1‰, is 4‰ higher than the value for Eocene seawater sulfate. The sulfur isotopic compositions are inferred to reflect sulfur derivation through bacterial reduction of contemporaneous seawater sulfate, possibly in restricted basins where organic matter was abundant. The Pb isotopes suggest an upper crustal lead source.  相似文献   

5.
Zn- and Cu-rich massive sulfide ores of volcanogenic origin [volcanogenic massive sulfide (VMS) deposits] occur as stratiform/stratabound lenses of variable size hosted by gneisses, amphibolites, and schists of the Areachap Group, in the Northern Cape Province of South Africa. The Areachap Group represents the highly deformed and metamorphosed remnants of a Mesoproterozoic volcanic arc that was accreted onto the western margin of the Kaapvaal Craton during the ∼1.0–1.2 Ga Namaquan Orogeny. Sulfur isotope data (δ34S) are presented for 57 sulfide separates and one barite sample from five massive sulfide occurrences in the Areachap Group. Although sulfides from each site have distinct sulfur isotope values, all δ34S values fall within a very limited range (3.0‰ to 8.5‰). Barite has a δ34S value of 18.5‰, very different from that of associated sulfides. At one of the studied sites (Kantienpan), a distinct increase in δ34S of sulfides is observed from the massive sulfide lens into the disseminated sulfides associated with a distinct footwall alteration zone. Sulfide–sulfide and sulfide–barite mineral pairs which recrystallized together during amphibolite- and lower granulite facies metamorphism are not in isotopic equilibrium. Sulfur isotope characteristics of sulfides and sulfates of the Zn–Cu ores in the Areachap Group are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and unsedimented mid-ocean ridges. It is thus concluded that profound recrystallization and textural reconstitution associated with high-grade regional metamorphism of the massive sulfide ores of the Areachap Group did not result in extensive sulfur isotopic homogenization. This is similar to observations in other metamorphosed VMS deposit districts and confirms that massive sulfide ores remain effectively a closed system for sulfur isotopes for both sulfides and sulfates during metamorphism.  相似文献   

6.
Gossan Hill is an Archean (∼3.0 Ga) Cu–Zn–magnetite-rich volcanic-hosted massive sulfide (VHMS) deposit in the Yilgarn Craton of Western Australia. Massive sulfide and magnetite occur within a layered succession of tuffaceous, felsic volcaniclastic rocks of the Golden Grove Formation. The Gossan Hill deposit consists of two stratigraphically separate ore zones that are stratabound and interconnected by sulfide veins. Thickly developed massive sulfide and stockwork zones in the north of the deposit are interpreted to represent a feeder zone. The deposit is broadly zoned from a Cu–Fe-rich lower ore zone, upwards through Cu–Zn to Zn–Ag–Au–Pb enrichment in the upper ore zone. New sulfur isotope studies at the Gossan Hill deposit indicate that the variation is wider than previously reported, with sulfide δ34S values varying between −1.6 and 7.8‰ with an average of 2.1 ± 1.4‰ (1σ error). Sulfur isotope values have a broad systematic stratigraphic increase of approximately 1.2‰ from the base to the top of the deposit. This variation in sulfur isotope values is significant in view of typical narrow ranges for Archean VHMS deposits. Copper-rich sulfides in the lower ore zone have a narrower range (δ34S values of −1.6 to 3.4‰, average ∼1.6 ± 0.9‰) than sulfides in the upper ore zone. The lower ore zone is interpreted to have formed from a relatively uniform reduced sulfur source dominated by leached igneous rock sulfur and minor magmatic sulfur. Towards the upper Zn-rich ore zone, an overall increase in δ34S values is accompanied by a wider range of δ34S values, with the greatest variation occurring in massive pyrite at the southern margin of the upper ore zone (−1.0 to 7.8‰). The higher average δ34S values (2.8 ± 2.1‰) and their wider range are explained by mixing of hydrothermal fluids containing leached igneous rock sulfur with Archean seawater (δ34S values of 2 to 3‰) near the paleoseafloor. The widest range of δ34S values at the southern margin of the deposit occurs away from the feeder zone and is attributed to greater seawater mixing away from the central upflow zone. Received: 10 June 1999 / Accepted: 28 December 1999  相似文献   

7.
The Barite Hill gold deposit, at the southwestern end of the Carolina slate belt in the southeastern United States, is one of four gold deposits in the region that have a combined yield of 110 metric tons of gold over the past 10 years. At Barite Hill, production has dominantly come from oxidized ores. Sulfur isotope data from hypogene portions of the Barite Hill gold deposit vary systematically with pyrite–barite associations and provide insights into both the pre-metamorphic Late Proterozoic hydrothermal and the Paleozoic regional metamorphic histories of the deposit. The δ34S values of massive barite cluster tightly between 25.0 and 28.0‰, which closely match the published values for Late Proterozoic seawater and thus support a seafloor hydrothermal origin. The δ34S values of massive sulfide range from 1.0 to 5.3‰ and fall within the range of values observed for modern and ancient seafloor hydrothermal sulfide deposits. In contrast, δ34S values for finer-grained, intergrown pyrite (5.1–6.8‰) and barite (21.0–23.9‰) are higher and lower than their massive counterparts, respectively. Calculated sulfur isotope temperatures for the latter barite–pyrite pairs (Δ=15.9–17.1‰) range from 332–355 °C and probably reflect post-depositional equilibration at greenschist-facies regional metamorphic conditions. Thus, pyrite and barite occurring separately from one another provide pre-metamorphic information about the hydrothermal origin of the deposit, whereas pyrite and barite occurring together equilibrated to record the metamorphic conditions. Preliminary fluid inclusion data from sphalerite are consistent with a modified seawater source for the mineralizing fluids, but data from quartz and barite may reflect later metamorphic and (or) more recent meteoric water input. Lead isotope values from pyrites range for 206Pb/204Pb from 18.005–18.294, for 207Pb/204Pb from 15.567–15.645, and for 208Pb/204Pb from 37.555–38.015. The data indicate derivation of the ore leads from the country rocks, which themselves show evidence for contributions from relatively unradiogenic, mantle-like lead, and more evolved or crustal lead. Geological relationships, and stable and radiogenic isotopic data, suggest that the Barite Hill gold deposit formed on the Late Proterozoic seafloor through exhalative hydrothermal processes similar to those that were responsible for the massive sulfide deposits of the Kuroko district, Japan. On the basis of similarities with other gold-rich massive sulfide deposits and modern seafloor hydrothermal systems, the gold at Barite Hill was probably introduced as an integral part of the formation of the massive sulfide deposit. Received: 17 August 1998 / Accepted: 12 October 2000  相似文献   

8.
Most altered clay minerals in uranium ore deposits in granites in the selected provinces of South China haveδ 18O m values ranging from 6.22 to 7.24,δDm from −60 to −70,δ 18O from +3.05 to −3.07, and from −20.2 to −37.5‰. Relative enrichment of32S in the uranium ore deposits and greater variations in Pb isotopic composition of galenas from them show that uranium ores in the granites were formed in such a way that uranium in shallow-source granites had been mobilized by heated meteoric waters and then migrated to local favourable locations along great faults to form uranium ore deposits. Zhang Shaoli, Yang Wenjin, Tang Chunjing and Xu Wenxin did part of this work.  相似文献   

9.
Vein-type tin mineralization in the Dadoushan deposit, Laochang ore field, Gejiu district, SW China, is predominantly hosted in Triassic carbonate rocks (Gejiu Formation) over cupolas of the unexposed Laochang equigranular granite intrusion. The most common vein mineral is tourmaline, accompanied by skarn minerals (garnet, diopside, epidote, phlogopite) and beryl. The main ore mineral is cassiterite, accompanied by minor chalcopyrite, pyrrhotite, and pyrite, as well as scheelite. The tin ore grade varies with depth, with the highest grades (~1.2 % Sn) prevalent in the lower part of the vein zone. Muscovite 40Ar–39Ar dating yielded a plateau age of 82.7 ± 0.7 Ma which defines the age of the vein-type mineralization. Measured sulfur isotope compositions (δ 34S = −4.1 to 3.9 ‰) of the sulfides (arsenopyrite, chalcopyrite, pyrite, and pyrrhotite) indicate that the sulfur in veins is mainly derived from a magmatic source. The sulfur isotope values of the ores are consistent with those from the underlying granite (Laochang equigranular granite, −3.7 to 0.1 ‰) but are different from the carbonate wall rocks of the Gejiu Formation (7.1 to 11.1 ‰). The calculated and measured oxygen and hydrogen isotope compositions of the ore-forming fluids (δ 18OH2O = −2.4 to 5.5 ‰, δD = −86 to −77 ‰) suggest an initially magmatic fluid which gradually evolved towards meteoric water during tin mineralization.  相似文献   

10.
Re-Os isotopes were used to constrain the source of the ore-forming elements of the Tharsis and Rio Tinto mines of the Iberian Pyrite Belt, and the timing of mineralization. The pyrite from both mines has simila]r Os and Re concentrations, ranging between 0.05–0.7 and 0.6–66 ppb, respectively. 187Re/188Os ratios range from about 14 to 5161. Pyrite-rich ore samples from the massive ore of Tharsis and two samples of stockwork ore from Rio Tinto yield an isochron with an age of 346 ± 26 Ma, and an initial 187Os/188Os ratio of about 0.69. Five samples from Tharsis yield an age of 353 ± 44 Ma with an initial 187Os/188Os ratio of about 0.37. A sample of massive sulfide ore from Tharsis and one from Rio Tinto lie well above both isochrons and could represent Re mobilization after mineralization. The pyrite Re-Os ages agree with the paleontological age of 350 Ma of the black shales in which the ores are disseminated. Our data do not permit us to determine whether the Re-Os isochron yields the original age of ore deposition or the age of the Hercynian metamorphism that affected the ores. However, the reasonable Re-Os age reported here indicates that the complex history of the ores that occurred after the severe metamorphic event that affected the Iberian Pyrite Belt massive sulfide deposits did not fundamentally disturb the Re-Os geochronologic system. The highly radiogenic initial Os isotopic ratio agrees with previous Pb isotopic studies. If the initial ratio is recording the initial and not the metamorphic conditions, then the data indicate that the source of the metals was largely crustal. The continental margin sediments that underlie the deposits (phyllite-quartzite group) or the volcanic rocks (volcanogenic-sedimentary complex) in which the ores occur are plausible sources for the ore-forming metals and should constrain the models for the genesis of these deposits. Received: 15 March 1999 / Accepted: 26 July 1999  相似文献   

11.
Apparent Re–Os ages of some magmatic sulfide ore deposits are older than the zircon and baddeleyite U–Pb ages which are interpreted as the formation age of the host intrusions. The Jinchuan Ni–Cu–PGE deposit of China, the world's third largest, is such a case. We report apparent Re–Os isochron ages of 1117 ± 67 Ma, 1074 ± 120 Ma and 867 ± 75 Ma with initial 187Os/188Os ratios of 0.120 ± 0.012, 0.162 ±0.017 and 0.235 ± 0.027 for disseminated ores, sulfides from the disseminated ores and massive ores from Jinchuan, respectively. Using these data and Re–Os ages from the literature, we find that the oldest apparent Re–Os age and lowest initial Os isotope ratio are from disseminated ores which contain small amounts of sulfide minerals, the highest initial Os isotope ratios and youngest apparent Re–Os ages, consistent with the zircon and baddeleyite U–Pb ages, are from massive ores containing 90–100 modal% sulfide, and net-textured ores with about 25 modal% sulfides yield apparent Re–Os ages and initial Os ratios intermediate between those of the disseminated and massive ores.Because Os diffusion between sulfides is inhibited by the intervening silicates even at high temperatures, re-equilibration did not occur in the disseminated ore and the samples retained the Os ratios of the contaminated magma, leading to geologically meaningless ages that are older than the formation age of the rocks. While Os-bearing sulfide minerals and magnetite show low closure temperatures of Os diffusion and the sulfide minerals in the massive ore are closely connected with each other, facilitating fast diffusion of Os, re-equilibration of Os was achieved during cooling of the ore from about 850 °C after the segregation to about 400 °C. Thus, an age corresponding to the formation time and an elevated initial Os ratio were yielded by the massive ore. Os isotopes in the net-textured ore behave in the way intermediate between the disseminated and massive ores. Pb isotope data support the Os results. Disseminated ores have heterogeneous Pb isotope ratios whereas Pb in the massive ores is more uniform, consistent with Pb isotopic equilibration in the massive ores, but not in the disseminated ores.  相似文献   

12.
The Niujiaotang zinc deposit in southeastern Guizhou, China, is a Mississippi Valley-type Zn deposit within Early Cambrian carbonate rocks. Sphalerite is enriched in cadmium (average 1.4 wt.% Cd), which occurs mostly as isomorphous impurities in the sphalerite lattice. Discrete cadmium minerals (greenockite and otavite) are rare and are found almost exclusively in the oxidation zone of the deposit, probably formed as secondary minerals during weathering–leaching processes. Geochemical data show that the sulfides are enriched in heavy sulfur, with δ34S ranging from +10.0‰ to +32.8‰ (mean +22.5‰). The consistent Pb isotopic compositions in different sulfide minerals are similar to that of Cambrian strata. The ore lead probably came from U- and Th-rich upper crustal rocks, such as the Lower Cambrian Wuxun Formation. The ore fluid is of low-temperature (101°C to 142°C) type, with a Na–Ca–Mg–Cl-dominant composition, and is interpreted as oil-field brine. The data indicate that the metals were mainly derived from the Early Cambrian strata (Qingxudong and Wuxun Formations), whereas sulfur is sourced from sulfate in Cambrian strata or oil-field brines of the Majiang petroleum paleoreservoir. The genetic model for the deposit invokes an Early Cambrian shallow-sea environment on the Yangtze Platform. Zinc and Cd in seawater were concentrated in abundant algae via unknown biological mechanisms, resulting in large amounts of Zn- and Cd-rich algal ooliths. During the Ordovician, concurrent with destruction of the Majiang petroleum paleoreservoir, oil-field brines migrated from the center of the basin to the margin leaching metals from the Cambrian strata. In the Niujiaotang area, preexisting Zn and Cd, particularly in the Qingxudong and Wuxun Formation, were further mobilized by hot brines rising along the Zaolou fault system, forming stratiform and generally conformable Zn–Cd orebodies in reactive carbonate lithologies.  相似文献   

13.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

14.
Bismuthoan galena is a variety of galena, resulting from the replacement of Bi for some Pb in galena.This mineral occurs in the No.11 orebody of the Lamo skarn-type Zn-Cu deposit in the Dachang ore field ,but only the No,11 orebody of the Lamo deposit is developed such bismuthoan galena.This is closely related to such a geochemical background that the No.11 orebody contains high Bi and Bi-sulfosalt minerals are well developed there.Eight electron microprobe analyses of five samples give 60.17-70.20%Pb(66.94% on average),10.00-16.06%Bi (12.47%),4.83-8.97%Ag(6.39%)and 13.25-13.98% S(13.65%).Its molecular formula is Pb0.76,Bi0.14,Ag0.13,1.03S.No galena so high in Bi has been reported in the literature and this is the first report in China.  相似文献   

15.
The Dongsheng sandstone-type uranium deposit is one of the large-sized sandstone-type uranium deposits discovered in the northern part of the Ordos Basin of China in recent years. Geochemical characteristics of the Dongsheng uranium deposit are significantly different from those of the typical interlayered oxidized sandstone-type uranium ore deposits in the region of Middle Asia. Fluid inclusion studies of the uranium deposit showed that the uranium ore-forming temperatures are within the range of 150–160℃. Their 3He/4He ratios are within the range of 0.02–1.00 R/Ra, about 5–40 times those of the crust. Their 40Ar/36Ar ratios vary from 584 to 1243, much higher than the values of atmospheric argon. The δ18OH2O and δD values of fluid inclusions from the uranium deposit are -3.0‰– -8.75‰ and -55.8‰– -71.3‰, respectively, reflecting the characteristics of mixed fluid of meteoric water and magmatic water. The δ18OH2O and δD values of kaolinite layer at the bottom of the uranium ore deposit are 6.1‰ and -77‰, respectively, showing the characteristics of magmatic water. The δ13CV-PDB and δ18OH2O values of calcite veins in uranium ores are -8.0‰ and 5.76‰, respectively, showing the characteristics of mantle source. Geochemical characteristics of fluid inclusions indicated that the ore-formation fluid for the Dongsheng uranium deposit was a mixed fluid of meteoric water and deep-source fluid from the crust. It was proposed that the Jurassic-Cretaceous U-rich metamorphic rocks and granites widespread in the northern uplift area of the Ordos Basin had been weathered and denudated and the ore-forming elements, mainly uranium, were transported by meteoric waters to the Dongsheng region, where uranium ores were formed. Tectonothermal events and magmatic activities in the Ordos Basin during the Mesozoic made fluids in the deep interior and oil/gas at shallow levels upwarp along the fault zone and activated fractures, filling into U-bearing clastic sandstones, thus providing necessary energy for the formation of uranium ores.  相似文献   

16.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

17.
The Janggun iron deposits, Republic of␣Korea, occur as lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. Mineralization stage of the deposits can be divided into two separate events. The skarn stage (107 Ma) consists of magnetite, pyrrhotite, base-metal sulfides, carbonates and magnesian skarn minerals. The hydrothermal stage (70 Ma) consists of base-metal sulfides, native bismuth, bismuthinite, tetrahedrite, boulangerite, bournonite and stannite. Mineral assemblages, chemical compositions and thermodynamic considerations indicate that formation temperatures, −log fs2 and −log fo2 values of ore fluids from the skarn stage were 433 to 345 °C, 8.1 to 9.7 bar and 29.4 to 31.6 bar, and the hydrothermal stage was 245 to 315 °C, 10.4 to 13.2 bar and 33.6 to 35.4 bar, respectively. Thermochemical considerations indicate that the XCO2 during magnesian skarnization ranged from 0.06 to 0.09, and the activity of H+ presumably decreased when the fluids equilibrated with host dolomitic limestone which resulted in a pH change from about 6.1 to 7.8, and decreases in fo2 and fs2. The δ34S values of ore sulfides have a wide range from 3.2 to 11.6 ‰ (CDT). Calculated 34SH2 S values of ore fluids are 2.9 to 5.4 ‰ (skarn stage) and 8.7 to 13.5 ‰ (hydrothermal stage). These are interpreted to represent an initial deep-seated, igneous source of sulfur which gave way to influence of oxidized sedimentary sulfur to hydrothermal stage. The δ13C values of carbonates in ores range from −4.6 to −2.5 ‰ (PDB). It is likely that carbon in the ore fluids was a mixture of deep-seated magmatic carbon and dissolved carbon of dolomitic limestone. The δ18OH2 O and δD values (SMOW) of water in the ore fluids were 14.7 to 1.8 and −85 to −73 ‰ during the skarn stage and 11.1 to −0.2 and −87 to −80 ‰ in the hydrothermal stage. Received: 5 March 1997 / Accepted: 28 August 1997  相似文献   

18.
Studies of sulfur and lead isotopic compositions in hydrothermal deposits are an important tool to determine the source and processes of both sulfur and lead, and to understand the origin of hydrothermal ore deposits. Here, the sulfur and lead isotopic compositions of sulfide minerals have been studied for different hydrothermal fields in the East Pacific Rise (EPR), Mid-Atlantic Ridge (MAR), Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR), and North Fiji Basin (NFB). The sulfur isotopic compositions of the studied sulfide samples are variable (δ34S 0.0 to 9.6‰, avg. δ34S 4.7‰; n = 60), being close to the associated igneous rocks (~ 0‰ for, e.g., basalt, serpentinized peridotite), which may reflect the S in the sulfide samples is derived mainly from the associated igneous rocks, and a relatively small proportion (< 36%) of seawater sulfur incorporated into these sulfides during mixing between seawater (δ34S 21‰) and hydrothermal fluid. In contrast for a mixed origin for the source of S, the majority of the lead isotopic compositions (206Pb/204Pb 17.541 ± 0.004 to 19.268 ± 0.001, 207Pb/204Pb 15.451 ± 0.001 to 15.684 ± 0.001, 208Pb/204Pb 37.557 ± 0.008 to 38.988 ± 0.002, n = 21) of the sulfides possess a basaltic Pb isotopic composition, suggesting that the lead in the massive sulfide is mainly leached from local basaltic rocks that host the sub-seafloor hydrothermal systems in sediment-free mid-ocean ridges and mature back-arc basins. Furthermore, sulfide minerals in the super-fast and fast spreading mid-ocean ridges (MORs) exhibit less spread in their the δ34S values compared to sulfides from super-slow, and slow spreading MORs, which is most easily explained as a lesser degree of fluid-rock interaction and hydrothermal fluid-seawater mixing during hydrothermal ore-forming process. Additionally, the S and Pb isotope compositions of sulfides are controlled by the fluid processes for forming seafloor massive sulfide deposits. We demonstrate that the variable sulfur and lead isotopic compositions exhibit a relationship with the sulfur and lead sources, fluid–rock interaction, and fluid–seawater mixing.  相似文献   

19.
There were strong volcanic and hot spring activities in Late proterozic in the Xiqiu mining district,Zhejiang province,The volcanic rocks and hydrothermal sedimentary cherts have high contents of the major metallogenic elements,Their atomic percentage of Cu:Zn:Pb is similar very much between volcanic rock,hydrothermal sedimentary chert and ore.Therefore,the metallization has a direct bearing on the volcanic and hot spring activities in the Xiqiu area.The δ34S values vary from -6.5‰to 2.8‰,the δ30Si Values from-0.2‰ to 0.6‰,and the δ18O Values from 8.14‰ to 22.32‰,Lead isotopes were derived mainly from the lower crust.The ores have high contents of As,Sb,Bi,Ga,Zn,and Ba,and low Al/(Al Fe Mn)ratios,with Zn/(Zn Pb)ratios approximate to unity,Therefore,the Xiqiu massive copper sulfide deposit can be ascribed to volcano-hot spring deposition.  相似文献   

20.
Sulphur isotopic compositions of 29 sulphide samples from the Broken Hill-type Pinnacles Deposit, NSW, are found to cluster at 0%. (mean −0.8‰). The restricted range of the (δ34S) values between −3.5 and + 3.7‰ with a mean of −0.8‰, is interpreted as reflecting partial oxidation of a dominantly magmatic sulphur source. δ34S data for galena samples fall into two groups: (1) isotopically heavier galenas (range −0.7 to 0.0‰; mean −0.4‰) which come mainly from the footwall Zn lode and (2) isotopically lighter galenas (range −3.5 to −0.8‰; mean −2.2‰) which are from the main Pb lode. Sphalerite, pyrrhotite and chalcopyrite have slightly heavier isotopic compositions (range −1.6 to +3.7‰ mean +0.3‰) but exhibit the same stratigraphic differentiation. These data are interpreted as representing fluctuating conditions at the site of ore deposition, in which upwelling hydrothermal fluids were subject to increasing fO2 and decreasing temperature with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号