首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
A study of Santa Ponça Bay (Balearic Islands) was conducted during summer 2002 to understand further the processes controlling recurrent Alexandrium taylori blooms near the beach. These massive algal proliferations (106 cells L−1) have become common in many anthropized pocket beaches of the Mediterranean during the summer season. Nearshore dissolved inorganic nutrient concentrations (DIN) are generally high near the shoreline (avg. DIN at 1.6 μM), yet this factor alone is insufficient to explain harmful algal bloom (HAB) occurrences at some beaches and their absence in others. It is postulated that summer conditions, and particularly, the mild breeze conditions are key factors into understanding these nearshore blooms. The advantages of this coastal environment for a migrating dinoflagellate such as A. taylori are discussed. Resilience to undergo enhanced turbulence episodes, motility, day/night migration and a favorable current regime that produces shoreward transport at sea surface are regarded as concurrent mechanisms that lead to HAB generation and maintenance.  相似文献   

2.
阿拉伯海淡水输运量的季节变化特征研究   总被引:1,自引:1,他引:0  
本文利用简单海洋模式同化再分析产品等资料,阐述了阿拉伯海与赤道西印度洋,阿拉伯海与阿曼湾之间淡水输运量的季节变化特征,揭示了阿拉伯海淡水输运量的基本平衡和季节变化特征。结果表明,阿拉伯海得到的淡水输运量(包括来自赤道西印度洋、河流)和失去的淡水输运量(包括降水量减蒸发量、向阿曼湾输运)基本相当。阿拉伯海通过海气交换失去的淡水(降水量减蒸发量)主要由来自赤道西印度洋(包括孟加拉湾)的淡水输运来补偿,赤道西印度洋向阿拉伯海的淡水输运对维持阿拉伯海的盐度基本平衡起到至关重要的作用。阿拉伯海的淡水输运量在1?6月和12月为负值,失去淡水;7?11月为正值,9月最大,得到淡水。阿拉伯海的净淡水输运量的季节变化特征表现为单峰现象。阿拉伯海与赤道西印度洋(9°N断面)的淡水输运量主要出现在表层至约200 m层,多年平均约为0.1×106 m3/s,向阿拉伯海输运。从10月至翌年3月,来自孟加拉湾的低盐水向阿拉伯海输运,该输运主要出现在印度半岛西南端近海约60 m层以浅区域。夏季和秋季,出现在索马里半岛东部海域的涡旋(大回旋)引起的输运(涡旋的西部低盐水向北输运,东部高盐水向南输运),不仅输运量是一年当中最大的,而且影响的深度可达约300 m。该输运从6月开始形成,8?9月最强,11月迅速减弱。阿拉伯海与阿曼湾的淡水输运量较小,其垂直分布呈现3层结构,表层至10 m层,高盐水向阿拉伯海输运;15~170 m层,低盐水向阿曼湾输运;175~400 m层,高盐水向阿拉伯海输运。阿曼湾湾口断面多年平均淡水输运量约为0.39×104 m3/s,向阿曼湾输运。  相似文献   

3.
基于2006年夏季和2007年冬季实测温盐数据和悬浮体浓度数据,分析东海内陆架悬浮体水平和垂直分布季节性特征,并结合MIKE3数值模拟海流结果,定量估算东海关键断面悬浮体运移通量,探讨悬浮体输运与泥质区形成和演化的关系。研究表明:东海内陆架悬浮体分布主要受流系控制,且季节变化明显;一般天气条件下,东海内陆架泥质区海域输入悬浮体净通量约为2.24×108t/a,其中夏半年悬浮体向泥质区海域输入净通量约为52.19×106t,贡献约为23.29%,冬半年净通量约为171.87×106t,贡献约为76.71%,浙闽沿岸悬浮体输运净通量均有利于东海内陆架泥质区的发育。本研究将对东海内陆架泥质区物质来源和发育演化研究提供理论支持。  相似文献   

4.
Altimeter data and output from the HYbrid Coordinate Ocean Model global assimilation run are used to study the seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. The results suggest that most eddy shedding events occur from December through March, and no eddy shedding event occurs in June, September, or October. About a month before eddy shedding, the Kuroshio intrusion extends into the South China Sea and a closed anticyclonic eddy appears inside the Kuroshio loop which then detaches from the Kuroshio intrusion. Anticyclonic eddies detached from December through February move westward at a speed of about 0.1 m s−1 after shedding, whereas eddies detached in other months either stay at the place of origin or move westward at a very slow speed (less than 0.06 m s−1). The HYCOM outputs and QuikSCAT wind data clearly show that the seasonal variation of eddy shedding is influenced by the monsoon winds. A comparison between eddy volume and integrated Ekman transport indicates that, once the integrated Ekman transport exceeds 2 × 1012 m3 (which roughly corresponds to the volume of an eddy), the Kuroshio intrusion expands and an eddy shedding event occurs within 1 month. We infer that the Ekman drift of the northeasterly monsoon pushes the Kuroshio intrusion into the SCS, creates a net westward transport into the Strait, and leads to an eddy detachment from the Kuroshio.  相似文献   

5.
根据2001年3月份南海东北部航次调查温、盐资料,分析了2001年冬末春初南海东北部温、盐结构和环流的特征.分析结果表明:观测期间南海东北部环流主要受一次海盆尺度气旋型冷环流支配,冷环流呈现双核结构,垂向尺度接近1000 m.吕宋海峡内侧断面的水交换在600 m以浅海水流入南海,在断面南部(20°N以南)中层和深层有流出,断面法向地转流向西净输运量为6.9×106m3/s;直接的黑潮入侵不超过120.5°E,但有部分的黑潮水沿陆坡达到台湾岛西南部海域,并更有一部分逸入东沙岛以西海域,与南海水混合变性.  相似文献   

6.
A mathematical model of spit growth and barrier elongation adjacent to an inlet (of arbitrary width), supplied by sediment coming from longshore sediment transport, was developed based on the spit growth model proposed by Kraus (1999). The fundamental governing equation is the conservation equation for sand, where the width of the spit is assumed constant during growth. The portion of the longshore sediment transport feeding the spit has been estimated based on the ratio between the depth of the inlet channel and the depth of active longshore transport. Sediment transport from the channel due to the inlet flow, as well as other sinks of sand (e.g., dredging), are taken into account. Measured data on spit elongation at Fire Island Inlet, United States, and at Badreveln Spit, Sweden, were used to validate the model. The simulated results agree well with the measured data at both study sites, where spit growth at Fire Island was restricted by the inlet flow and the growth at Badreveln Spit was unrestricted. The model calculation for Fire Island Inlet indicates that the dredging to maintain channel navigation is the major reason for the stable period observed from 1954 to 1994 at the Fire Island barrier. The average annual net longshore transport rate at the eastern side of the Fire Island inlet obtained in this study was about 220,000 m3/yr, of which approximately 165,000 m3/yr (75% of the net longshore transport) is deposited in the inlet feeding the spit growth, whereas the remaining portion (25%) is bypassed downdrift through the ebb shoal complex.  相似文献   

7.
The realization of North Atlantic Deep Water (NADW) replacement in the deep northern Indian Ocean is crucial to the “conveyor belt” scheme. This was investigated with the updated 1994 Levitus climatological atlas. The study was performed on four selected neutral surfaces, encompassing the Indian deep water from 2000 to 3500 m. The Indian deep water comprises three major water masses: NADW, Circumpolar Deep Water (CDW) and North Indian Deep Water (NIDW). Since NADW flowing into the southwest Indian Ocean is largely blocked by the ridges (the Madagascar Ridge in the east and Davie Ridge in the north in the Mozambique Channel) and NIDW is the only source in the northern Indian Ocean that cannot provide a large amount of volume transport, CDW has to be a major source for the Indian deep circulation and ventilation in the north. Thus the question of NADW replacement becomes that of how the advective flows of CDW from the south are changed to be upwelled flows in the north—a water-mass transformation scenario. This study considered various processes causing motion across neutral surfaces. It is found that dianeutral mixing is vital to achieve CDW transformation. Basin-wide uniform dianeutral upwelling is detected in the entire Indian deep water north of 32°S, somewhat concentrated in the eastern Indian Ocean on the lowest surface. However, the integrated dianeutral transport is quite low, about a net of 0.2 Sv (1 Sv=106 m3 s-1) across the lowermost neutral surface upward and 0.4 Sv across the uppermost surface upward north of 32°S with an error band of about 10–20% when an uncertainty of half-order change in diffusivities is assumed. Given about 10–15% of rough ridge area where dianeutral diffusivity could be about one order of magnitude higher (10-4 m2 s-1) due to internal-wave breaking, the additional amount of increased net dianeutral transport across the lowest neutral surface is still within that error band. The averaged net upward transport in the north is matched with a net downward transport of 0.3 Sv integrated in the Southern Ocean south of 45°S across the lowermost surface. With the previous works of You (1996. Deep Sea Research 43, 291–320) in the thermocline and You (Journal of Geophysical Research) in the intermediate water combined, a schematic dianeutral circulation of the Indian Ocean emerges. The integrated net dianeutral upwelling transport shows a steady increase from the deep water to the upper thermocline (from 0.2 to 4.6) north of 32°S. The dianeutral upwelling transport is accumulated upward as the northward advective transport provided from the Southern Ocean increases. As a result, the dianeutral upwelling transport north of 32°S can provide at least 4.6 Sv to south of 32°S from the upper main thermocline, most likely to the Agulhas Current system. This amount of dianeutral upwelling transport does not include the top 150–200 m, which may contribute much more volume transport to the south.  相似文献   

8.
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara–Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5–20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.  相似文献   

9.
A transect of CTD profiles crossing the North Atlantic Current (NAC) along WOCE line ACM6 near 42.5°N during August 1–7, 1993, provides geostrophic shear velocity profiles, which were absolutely referenced using simultaneous POGO transport float measurements and velocity measurements from a ship-mounted acoustic doppler current profiler (ADCP). The NAC absolute transport was 112±23×106 m3 s−1, which includes a portion of the transport of the Mann Eddy, a large permanent anticyclonic eddy commonly adjacent to the NAC. The NAC transport estimated relative to a level of no motion at the bottom would have underestimated the true total absolute transport by 20%. A surprisingly large 58×106 m3 s−1 flowed southward just inshore of the NAC. This flow, centered near 1500 dbars about 200 km offshore of the shelf-break, was fairly barotropic with a peak velocity of greater than 20 cm s−1, and the water mass characteristics were of Labrador Sea Water. These absolute transport observations suggest southward recirculation inshore of the NAC at 42.5°N and a stronger NAC than has previously been observed.  相似文献   

10.
A five-element mooring array is used to study surface boundary-layer transport over the Northern California shelf from May to August 2001. In this region, upwelling favorable winds increase in strength offshore, leading to a strong positive wind stress curl. We examine the cross-shelf variation in surface Ekman transport calculated from the wind stress and the actual surface boundary-layer transport estimated from oceanic observations. The two quantities are highly correlated with a regression slope near one. Both the Ekman transport and surface boundary layer transport imply curl-driven upwelling rates of about 3×10−4 m s−1 between the 40 and 90 m isobaths (1.5 and 11.0 km from the coast, respectively) and curl-driven upwelling rates about 1.5×10−4m s−1 between the 90 and 130 m isobaths (11.0 and 28.4 km from the coast, respectively). Thus curl-driven upwelling extends to at least 25 km from the coast. In contrast, upwelling driven by the adjustment to the coastal boundary condition occurs primarily inshore of the 40-m isobath. The upwelling rates implied by the differentiating the 40-m transport observations with the coastal boundary condition are up to 8×10−4 m s−1. The estimated upwelling rates and the temperature–nitrate relationship imply curl-driven vertical nitrate flux divergences are about half of those driven by coastal boundary upwelling.  相似文献   

11.
Sediment cores collected in 1990 from the Gulf of California have been studied using stable isotope and radiocarbon techniques to reconstruct the climate and ventilation histories since the last glacial maximum. Benthic foraminiferal δ18O from core tops in a water depth range of 145 to 1442 m increases by about 2% with increasing depth. This is consistent with a composite temperature profile constructed from several hydrocasts in the various gulf basins. However, the δ18O water/salinity relationship is not sufficiently linear in gulf locations or in nearby open Pacific Geochemical Ocean Sections Study (GEOSECS) stations to be useful in solving paleotemperature equations. Of the most common benthic foraminifera, only Planulina ariminensis has δ13C that is consistent with the measured δ13C of ΣCO2. Several cores in the depth range 500 to 900 m have the laminated Holocene and Bolling/Allerod sediments, and the nonlaminated glacial age and Younger Dryas sediments that are typical of the gulf and other locations such as Santa Barbara Basin. The best of those, Jumbo Piston Core (JPC) 56 from 818 m water depth on the western margin of Guaymas Basin, was sampled for intensive study. Oxygen isotope ratios in benthic and planktonic foraminifera show little evidence for deglacial temperature oscillations. Carbon isotope ratios are generally lower during warm epochs, but the most striking result is strongly lowered benthic and planktonic δ13C about 9500 years ago. This may reflect water column oxidation of locally released methane. Neither benthic δ13C in depth section nor paired benthic and planktonic 14C data in JPC56 are consistent with increased intermediate water ventilation during the glacial maximum and Younger Dryas. Likewise, 14C data from 5 pairs of foraminifera from the Okhotsk Sea fail to support better ventilation in that basin during the last glacial maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Interannual variations of sea level at the Nansei Islands and volume transport of the Kuroshio during 1967–95 are calculated by integrating variations carried by windforced Rossby waves. Effects of eddy dissipation and ocean ridges are considered. Ridge effect is inferred by comparing between the calculated and observed sea levels. The calculation is satisfactory to sea levels and Kuroshio transport for the whole period. They are mostly caused by Rossby waves forced by wind and modified by the ridges, and are due to barotropic wave primarily and the first baroclinic wave secondly. The calculated Kuroshio transport well represents variations of several-year scales with maximums in respective duration of the large meander (LM) of the Kuroshio, as well as bi-decadal variation that transport was small during the non-LM period of 1967–75 and large during the LM-dominant period of 1975–91. Mean volume transport of the subtropical gyre is estimated at 57 Sv (1 Sv = 106 m3s–1) and divided by the Nansei Shoto Ridge into those of the Kuroshio in the East China Sea (25.5 Sv) and a subsurface current east of this ridge (31.5 Sv). The Subtropical Countercurrent and a southward deep current east of the Izu-Ogasawara Ridge are estimated at 16 Sv and 7 Sv, respectively. The calculated transports of the Kuroshio and other subtropical currents reach maximums at every El Niño event due to strong excitement of upwelling barotropic Rossby wave.  相似文献   

13.
Distribution and flux of234Th,232Th and230Th in the water column of central Santa Monica basin observed over a period of seven years show seasonal and interannual variabilities. A steady-state model is applied to the integrated data to calculate long term average flux and model rate constants of Th isotopes. Mass balance calculations show that the basin acts like a closed system for short-lived234Th, but not for the long-lived isotopes230Th and232Th. Most230Th in the basin is transported from elsewhere. Of the incoming Th, 40–55% of the230Th and 14–26% of the232Th enter the surface water in dissolved form. In the upper 100 m, the residence time of dissolved Th with respect to adsorption onto suspended particulates, 70–80 days, is about one order of magnitude higher than the residence time of suspended particles with respect to aggregation into sinking particles, 7–10 days.  相似文献   

14.
《Marine Chemistry》2001,73(2):153-171
Particles from the Whites Point/JWPCP outfalls operated by the Los Angeles County Sanitation District (LACSD) have been discharged onto the Palos Verdes (PV) shelf, Southern California, since the late 1930s. Since the early 1950s, they have made a significant contribution to the sedimentary deposits on the shelf. In order to study the transport and diagenesis of organic carbon (OC) and associated trace metals, replicate sediment cores were collected during 1996 and 1997 at four different sites at the ∼60 m isobath on the PV shelf, and analyzed for OC, Ag, Al, Cd, Cr, Cu, Mn, Ni, Pb, and Zn. We conclude from these results that a significant fraction of OC and associated heavy metals were transported laterally on silt particles from shallower environments. Cross-shelf transport of sediments caused multiple peaks in measured profiles of OC and trace metals at site 6C, 2 km away from the outfall. The same mechanism is likely to contribute to a concentration decrease that is smaller than that expected from decreases from the Whites Point outfall emissions. Based on Pb/OC ratios in sediments, deposited in 1971, and comparisons to the outfall from the same year, we estimate that 50±10% of the OC deposited in the early 1970s, now buried at 30–50 cm depth, had oxidized since that time, implying a half-life of about 26 years for the outfall-OC, as an upper limit. The average OC oxidation rate at peak depth (about 2 mg C cm−2 year−1) is, however, only about 10% of the present-day OC accumulation rate (20 mg C cm−2 year−1), which itself is adding not much more than 1% per year to the post-1950s OC inventory (∼1500 mg cm−2). We furthermore estimate that the OC inventory in PV shelf sediments in 1971 was equivalent to about 35% of that emitted by the outfall. OC and trace metal inventories did not decrease in the period 1981 to 1997, contrary to those of other contaminants such as DDTs and PCBs.  相似文献   

15.
The proposed algorithm comprises three main steps. The first step is the evaluation of the sediment transport and budget. It was shown that the root segment of the Vistula Spit is dominated by eastward longshore sediment transport (up to 50 thousand m3/year). Over the rest of the spit, the shoreline??s orientation causes westward sediment transport (more than 100 thousand m3/year). The gradients of the longshore and cross shore sediment transport become the major contributors to the overall sediment balance. The only exception is the northeastern tip of the spit due to the appreciable imbalance of the sediment budget (13 m3m?1 yr?1). The second step in the prediction modeling is the estimation of the potential sea-level changes during the 21st century. The third step involves modeling of the shoreline??s behavior using the SPELT model [6, 7, 8]. In the most likely scenario, the rate of the recession is predicted to be about 0.3 m/year in 2010?C2050 and will increase to 0.4 m/year in 2050?C2100. The sand deficit, other than the sea-level rise, will be a key factor in the control of the shoreline??s evolution at the northeastern tip of the spit, and the amount of recession will range from 160 to 200 m in 2010?C2100.  相似文献   

16.
On the basis of hydrographic data obtained during two October cruises of 1995, a modified inverse method is used to compute the Kuroshio east of Taiwan and the currents east of the Ryukyu-gunto.The net northward volume transport(VT) of the Kuroshio through Section TK2-K2 southeast of Taiwan is about 57.8×106 m3/s.There are four current cores of the Kuroshio at Section TK2-K2.Its main core is near the south of Taiwan, and its maximum speed is about 257 cm/s at the surface.After the Kuroshio flows through Section TK2-K2, there are three branches of the Kuroshio.The main branch of the Kuroshio flows northward into Section TKa east of Su''ao.The second branch of the Kuroshio flows northward through Section TKa and then enters the East China Sea through the region between Yonakunijima and Iriomote-shima.The net northward VT of the Kuroshio through Section TK4 is about 21.6×106 m3/s.The eastern branch of the Kuroshio flows northeastward through the region between a stronger cyclonic eddy and a recirculating anticyclonic gyre, and then flows continuously northeastward to the region east of the Ryūkyū-guntō and becomes a part of the origin of the western boundary current east of the Ryūkyū-guntō.Another part of the origin of the western boundary current east of the Ryūkyū-guntō comes from a recirculating anticyclonic gyre.From the above, in the regions east of Taiwan end east of the Ryūkyū-guntō the pattern of circulation during October of 1995 differs from the pattern of circulation during early summer of 1985.There are several eddies of different scales in this computational region.For example, there is a meso-scale stronger cyclonic eddy whose center is located at about 23°N, 124°20''E.  相似文献   

17.
In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-October, 1987 by R/V Chofu Maru. The results show that: (1)A part of the Taiwan Warm Current has a tendency to converge to the shelf break; (2) the Kuroshio flows across the section C3 (PN) with a reduced current width, and the velocity of the Kuroshio at the section C3 increases and its maximum current speed is about 158 cm/s, and its volume transport here is about 26×106m3/s; (3) the Kuroshio has two current cores at the sections C3 (PN) and B2 (at the Tokara Strait); (4) the currents east of the Ryukyu Islands are found to flow northward over the Ryukyu Trench during September-October, 1987. The velocities of the currents are not strong throughout the depths. At the section C2 east of the Ryukyu Islands, the maximum current speed is at the 699 m levei and its magnitude is 25 cm/s, and i  相似文献   

18.
Prominent coastal upwelling and downwelling events due to Ekman transport were observed during the period from 14 to 18 August 1983 along the Misaki Peninsula in the Seto Inland Sea, Japan. The coastline of the Misaki Peninsula is aligned approximately in an ENE-WSW direction. When an ENE wind continued blowing for about two days, the warm water in the upper layer was pushed offshore and cold water in the lower layer upwelled along the peninsula. The estimated upwelling speed 3 m below the sea surface was 0.032 cm sec–1. On the other hand, when a WSW wind continued blowing for about two days the warm water in the upper layer sank into the lower layer along the peninsula. The estimated downwelling speed 3 m below the sea surface was 0.080 cm sec–1. The time lag between the variations of the alongshore wind and offshore current was about 0.5 days.  相似文献   

19.
Recently obtained World Ocean Circulation Experiment (WOCE) sections combined with a specially prepared pre-WOCE South Atlantic data set are used to study the dianeutral (across neutral surface) mixing and transport achieving Antarctic Intermediate Water (AAIW) being transformed to be part of the North Atlantic Deep Water (NADW) return cell. Five neutral surfaces are mapped, encompassing the AAIW from 700 to 1100 db at the subtropical latitudes.Coherent and significant dianeutral upwelling is found in the western boundary near the Brazil coast north of the separation point (about 25°S) between the anticyclonic subtropical and cyclonic south equatorial gyres. The magnitude of dianeutral upwelling transport is 10-3 Sv (1 Sv=106 m3 s-1) for 1°×1° square area. It is found that the AAIW sources from the southwestern South Atlantic and southwestern Indian Ocean do not rise significantly into the Benguela Current. Instead, they contribute to the NADW return formation by dianeutral upwelling into the South Equatorial Current. In other words, the AAIW sources cannot obtain enough heat/buoyancy to rise until they return to the western boundary region but north of the separation point. The basin-wide integration of dianeutral transport shows net upward transports, ranging from 0.25 to 0.6 Sv, across the lower and upper boundary of AAIW north of 40°S. This suggests that the equatorward AAIW is a slow rising water on a basin average. Given one order of uncertainty in evaluating the along-neutral-surface and dianeutral diffusivities from the assumed values, K=103 m2 s-1 and D=10-5 m2 s-1, the integrated dianeutral transport has an error band of about 10–20%. The relatively weak integrated dianeutral upwelling transport compared with AAIW in other oceans implies much stronger lateral advection of AAIW in the South Atlantic.Mapped Turner Angle in diagnosing the double-diffusion processes shows that the salty Central Water can flux salt down to the upper half of AAIW layer through salt-fingering. Therefore, the northward transition of AAIW can gain salt either through along-neutral-surface advection and diffusion or through salt fingering from the Central Water and heat through either along-neutral-surface advection and diffusion or dianeutral upwelling. Cabbeling and thermobaricity are found significant in the Antarctic frontal zone and contribute to dianeutral downwelling with velocity as high as −1.5×10-7 m s-1. A schematic AAIW circulation in the South Atlantic suggests that dianeutral mixing plays an essential role in transforming AAIW into NADW return formation.  相似文献   

20.
This study discusses branching of the Kuroshio Current including North Pacific Intermediate Water (NPIW) into the South China Sea (SCS). The spreading path of the subtropical salinity minimum of NPIW is southwestward pointing to the Luzon Strait between Taiwan and Luzon islands. Using a large collection of updated hydrography, results show that the SCS is a cul-de-sac for the subtropical NPIW because even the NPIW’s upper boundary neutral density surface σ N = 26.5 is completely blocked by the Palawan sill and partly blocked by the southern Mindoro Strait. In autumn, NPIW is driven out of the Luzon Strait by the preceding anticyclonic summer monsoon due to an intraseasonal variation and seasonal phase lag response to the weaker summer monsoon. Stronger inflow under winter monsoon than outflow under summer monsoon results in a net annual transport of NPIW of about 1.1 ± 0.2 Sv (1 Sv = 106 m3s−1) into the SCS. This net transport accounts for the anomaly in NPIW transport across the World Ocean Circulation Experiment section P8 (130° E). An earlier study estimated a large westward NPIW transport of about 3.9 ± 0.2 Sv, resulting in a difference of 1.2 ± 0.2 Sv from the basin-wide mean of 2.7 ± 0.2 Sv. Observations are generally in agreement with numerical results although the intraseasonal signal seems to cause a slight bias and remains to be simulated by future model experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号