首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interannual variations of sea level at Chichi-jima and five other islands in the subtropical North Pacific are calculated for 1961–95 with a model of Rossby waves excited by wind. The Rossby-wave forcing is significant east of 140°E. Strong forcing of upwelling (downwelling) Rossby wave occurs during El Niño (La Niña) and warm (cold) water anomaly in the eastern equatorial Pacific. The first and second baroclinic modes of Rossby wave are more strongly generated than the barotropic mode in the study area. A higher vertical mode of Rossby wave propagates more slowly and is more decayed by eddy dissipation. The best coefficient of vertical eddy dissipation is determined by comparing the calculated sea level with observation. The variation in sea level at Chichi-jima is successfully calculated, in particular for the long-term change of the mean level between before and after 1986 with a rise in 1986 as well as the variations with periods of two to four years after 1980. It is concluded that variations of sea level at Chichi-jima are produced by wind-forced Rossby waves, the first baroclinic wave primarily and the barotropic wave secondly. The calculation for other islands is less successful. Degree of the success in calculation almost corresponds to a spatial difference in quantity of wind data, and seems to be determined by quality of wind data.  相似文献   

2.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Trajectory of Mesoscale Eddies in the Kuroshio Recirculation Region   总被引:4,自引:1,他引:4  
Trajectories of mesoscale eddies in the Kuroshio recirculation region were investigated by using sea surface height (SSH) anomaly observed by the TOPEX/POSEIDON and ERS altimeters. Cyclonic and anticyclonic eddies have been traced on maps of the filtered SSH anomaly fields composed from the altimeter observations every ten days. Both the cyclonic and anticyclonic eddies propagate westward in the Kuroshio recirculation region from a region south of the Kuroshio Extension. The propagation speed of these eddies has been estimated as about 7 cm s−1, which is much faster than the phase speed theoretically estimated for the baroclinic first-mode Rossby wave in the study area. It was also found that in the Izu-Ogasawara Ridge region, most of eddies pass through the gap between the Hachijojima Island and Ogasawara (Bonin) Islands, and some of the eddies decay around the Izu-Ogasawara Ridge. It seems that the trajectory of the eddies is crucially affected by the bottom topography. In the region south of Shikoku and east of Kyushu, some of the eddies coalesce with the Kuroshio. It is also suggested that this coalescence may trigger the path variation of the Kuroshio in the sea south of Japan. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The variations of the velocity and path of the Kuroshio are investigated by using the data obtained after the World War II. The time scales of these variations are classified into three categories,i.e. long-, medium- and short-terms. Period of the long-term variations seems to be about 7 to 9 years. Large meanders of the Kuroshio off Enshu-nada in 1953–1955 and 1959–1962 are accompanied with the low mean velocity of the Kuroshio. These large meanders are explained as a stationary Rossby wave by applying the equation for the phase velocity of the barotropic Rossby wave with the disturbance of finite width. To obtain the above conclusion, it is assumed that the Kuroshio extends down to the depth of 2,300 db and that the east component of the over-all mean velocity of the meandering Kuroshio should be substituted for the velocity of the eastward basic current in the above equation. As for the medium-term variation of the Kuroshio, there seems to exist variations in the velocity with the periods of 4, 6, 8 and 12 months and those in the position of the Kuroshio axis with the periods of 8 and 12 months. These meanders of the Kuroshio progress towards east with the mean phase velocity of about 5 miles a day, which is nearly the same as the calculated mean phase velocity of a progressive Rossby wave.  相似文献   

5.
A mechanism of the Kuroshio Meander is discussed by comparing some observed characteristics of the Kuroshio path with short- and long-term variations of the wind field over the North Pacific. It is suggested that the meander is caused by the blocking of the Kuroshio current by the Izu-Ogasawara Ridge. The blocking occurs when the depth of the main current increases or when the vertical shear becomes weak. These structural variations are closely related to the supposed baroclinic response of the North Pacific Subtropical Gyre to long-term variations of the wind field with a period of about 56 years. The Kuroshio Meander is initiated by a trigger meander at the offiing of Shikoku Island. The trigger meander is closely related to the supposed barotropic response of the gyre to short-term variations of the wind field with a period of about 34 months.The barotropic response of the North Pacific Subtropical Gyre to the short-term variation of the wind field yields the rapid change of the vertical structure of the Kuroshio current. This change generates the trigger meander in combination with the complicated pattern of the continental slope at the offing of Shikoku Island. The trigger meander is carried away toward the Izu-Ogasawara Ridge by the Kuroshio current. When the baroclinic response of the gyre is favourable for the blocking of the main current, the trigger meander and the cold eddy grow fed by the upwelling of the deep water of the Kuroshio which is blocked at the west of the ridge. The growing stops when the scale of the trigger meander reaches to the size of the steady Rossby wave which corresponds to the over-all mean velocity of the Kuroshio at that time, because the meander exceeding the size of the steady Rossby wave moves west-ward and separates from the ridge. Then the deep water of the Kuroshio at the west of the ridge which has been under the hard constraint of the cyclonic circulation in the form of the cold eddy becomes possible to flow arround the ridge. The upwelling stops and there remains only the general dissipation process of the available potential energy in the cold eddy. Then the meander gradually decreases its size and returns to the ridge when the meander becomes smaller than the steady Rossby wave at that time. It is blocked and begins to grow there again. In this way, the Kuroshio Meander behaves as a quasi-steady Rossby wave and stagnates at the west of the ridge until the baroclinic response of the gyre becomes unfavourable for the blocking of the Kuroshio current by the ridge.  相似文献   

6.
Numerical experiments with a multi-level general circulation model have been performed to investigate basic processes of westward propagation of Rossby waves excited by interannual wind stress forcing in an idealized western North Pacific model with ocean ridges. When the wind forcing with an oscillation period of 3 years is imposed around 180°E and 30°N, far from Japan, barotropic waves excited by the wind can hardly cross the ridges, such as the Izu-Ogasawara Ridge. On the other hand, a large part of the first-mode baroclinic waves are transmitted across the ridges, having net mass transport. The propagation speed of the first-mode baroclinic wave is accelerated (decelerated) when an anticyclonic (cyclonic) circulation is formed at the sea surface, due to a deeper (shallower) upper layer, and to southward (slightly northward) drift of the circulation. Thus, when the anticyclonic circulation is formed on the northern side of the cyclonic one, they propagate almost together. The second-mode baroclinic waves converted from the first-mode ones on the ridges arrive south of Japan, although their effects are small. The resulting volume transport variation of the western boundary current (the Kuroshio) reaches about 60% of the Sverdrup transport variability estimated from the wind stress. These characteristics are common for the interannual forcing case with a longer oscillation period. In the intraseasonal and seasonal forcing cases, on the other hand, the transport variation is much smaller than those in the interannual forcing cases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Mesoscale eddies in the Kuroshio recirculation region south of Japan have been investigated by using surface current data measured by an Acoustic Doppler Current Profiler (ADCP) installed on a regular ferry shuttling between Tokyo and Chichijima, Bonin Islands, and sea surface height anomaly derived from the TOPEX/POSEIDON altimeter. Many cyclonic and anticyclonic eddies were observed in the region. Spatial and temporal scales of the eddies were determined by lag-correlation analyses in space and time. The eddies are circular in shape with a diameter of 500 km and a temporal scale of 80 days. Typical maximum surface velocity and sea surface height anomaly associated with the eddies are 15–20 cm s–1 and 15 cm, respectively. The frequency of occurrence, temporal and spatial scales, and intensity are all nearly the same for the cyclonic and anticyclonic eddies, which are considered to be successive wave-like disturbances rather than solitary eddies. Phase speed of westward propagation of the eddies is estimated as 6.8 cm s–1, which is faster than a theoretical estimate based on the baroclinic first-mode Rossby wave with or without a mean current. The spatial distribution of sea surface height variations suggests that these eddies may be generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region, though further studies are needed to clarify the generation processes.  相似文献   

8.
A nine-year-long record of the northeastward volume transport (NVT) in the region southeast of Okinawa Island from 1992 to 2001 was estimated by an empirical relation between the volume transport obtained from the ocean mooring data and the sea surface height anomaly difference across the observation line during 270 days from November 2000. The NVT had large variations ranging from −10.5 Sv (1 Sv ≡ 106 m3s−1) to 30.0 Sv around its mean of 4.5 Sv with a standard deviation of 5.5 Sv. This large variation was accompanied by mesoscale eddies from the east, having a pronounced period from 106 to 160 days. After removal of the eddy, NVT was found to fluctuate from 2 Sv to 12 Sv with a quasi-biennial period.  相似文献   

9.
It is pointed out that the rate of advance of a small transient meander east of Kyushu, which (according to the meager evidence available) seems to precede the formation of the large stable Kuroshio meander south of Kumano Nada and Enshu Nada, shows order of magnitude agreement with the barotropic Rossby wave velocity calculated on the assumption that the entire contiguous downstream flow (not merely the strong near-axis flow) behaves as a unified dynamical entity.  相似文献   

10.
张永垂  张立凤 《海洋与湖沼》2013,44(6):1409-1417
根据海洋Rossby波的西传特性, 使用一阶斜压Rossby波模型对北太平洋海表面高度的年际变异进行了回报和预测研究。回报结果表明, Rossby 波模型能够较好地模拟北太平洋海表面高度的年际变异。尤其是黑潮延伸区的下游, 模拟结果与卫星观测的相关系数达到0.8以上。预测结果表明, Rossby 波模型在两个纬向分布的海域有显著的预报能力, 分别位于高纬度中部和副热带环流西部。前者可提前5—6年, 后者可提前2—4年。此外, 重点开展了Rossby波模型在西北太平洋的预报能力研究。结果表明, Rossby波模型对中国的边缘海有着很好的预测能力, 包括南海北部、台湾以东和东海黑潮海域, 分别在提前32、40和52个月时能取得最佳的预测效果。  相似文献   

11.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   

12.
The seasonal variation of the Kuroshio transport south of Japan has been investigated using the results of an assimilation model. Annual and semiannual variations of the transport and dynamic depth anomaly are reconstructed by CEOF (complex orthogonal empirical function) analysis. In the basin west of the Izu-Ogasawara Ridge, the annual component of the variation propagates westward with the phase speed of the long Rossby wave associated with the first baroclinic mode. The variation also shows a similar tendency to that reproduced in a wind-driven, two-layer model with a ridge. This suggests that the annual variation revealed in the assimilation model is associated with the baroclinic first mode of motion excited above the Izu-Ogasawara Ridge. Furthermore, it is found that both the semiannual component and the annual component are important members determining the seasonal variation of the Kuroshio transport south of Japan. The semiannual component is revealed as a double gyre pattern in the basin west of the Izu-Ogasawara Ridge. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
An inverse calculation using hydrographic section data collected from October to December 2000 yields velocity structure and transports of the Kuroshio in the Okinawa Trough region of the East China Sea (ECS) and south of central Japan, and of the Ryukyu Current (RC) southeast of the Ryukyu Islands. The results show the Kuroshio flowing from the ECS, through the Tokara Strait (TK), with a subsurface maximum velocity of 89 cm s−1 at 460 dbar. In a section (TI) southeast of Kyushu, a subsurface maximum velocity of 92 cm s−1 at 250 dbar is found. The results also show the RC flowing over the continental slope from the region southeast of Okinawa (OS) to the region east of Amami-Ohshima (AE) with a subsurface maximum velocity of 67 cm s−1 at 400 dbar, before joining the Kuroshio southeast of Kyushu (TI). The volume transport around the subsurface velocity maximum southeast of Kyushu (TI) balances well with the sum of those in TK and AE. The temperature-salinity relationships found around these velocity cores are very similar, indicating that the same water mass is involved. These results help demonstrate the joining of the RC with the Kuroshio southeast of Kyushu. The net volume transport of the Kuroshio south of central Japan is estimated to be 64∼79 Sv (1 Sv ≡ 106 m3s−1), of which 27 Sv are supplied by the Kuroshio from the ECS and 13 Sv are supplied by the RC from OS. The balance (about 24∼39 Sv) is presumably supplied by the Kuroshio recirculation south of Shikoku, Japan.  相似文献   

14.
In order to understand long-term changes in the temperature structure of the upper western North Pacific, we compared thermal conditions in two pentads, 1938–42 (P34) and 1978–82 (P78). The 1938–42 data were taken mostly by the Japanese Imperial Navy in a series of hydrographic surveys. The 1978–82 data were mostly XBT data taken as part of the TRANSPAC program. For each pentad, the data were interpolated to a set of standard depths, put through quality control procedures and averaged on a 1o×1o grid. A large area of the central subtropical gyre was warmer during P78, while the southern subtropical gyre, in the area of the North Equatorial Current was warmer during P34. This suggests that the transports of the Kuroshio and North Equatorial currents were larger during P78. Properties of North Pacific subtropical mode water (NPSTMW) were compared between pentads. It was found that NPSTMW was thicker, more uniform in temperature and more confined geographically during P34. A greater thickness is shown to result from stronger wintertime cooling during P34. Changes in the geographic extent of NPSTMW probably result from reduced advection by the Kuroshio current system during P34. The reason for the reduced advection maybe the Kuroshio was in a large meander state for a larger fraction of the earlier pentad, which can cut off advection west of the Izu Ridge.  相似文献   

15.
Spectral properties of sea levels at Naze, Nishinoomote, Kushimoto, Uragami, Miyake-jima and HachijÔ-jima are examined for the non-large-meander (February 1964 – May 1975) and large-meander (October 1975 – December 1979) periods, and the periodicity of variation of the Kuroshio path is clarified.The large meander of the Kuroshio occurs with a primary period of about 20 years and secondary period of 7 to 8. 5 years. During the non-large-meander period, the Kuroshio alternately takes the nearshore and offshore non-large-meander paths with a primary period of 1. 6–1. 8 years. This variation is moreover composed of 110-day, around 195-day and annual periods. The 110-day variation of the Kuroshio path appears to have influence on the coastal sea levels between the Kii Peninsula and the Izu Ridge;i. e., the coastal sea levels rise and fall with one-month time lag after the Kuroshio has begun to approach and leave the Japanese coast. During the large-meander period, the 70 and 110-day variations are remarkable in sea levels south of Japan except Miyake-jima and HachijÔ-jima. The 70-day variation is highly coherent throughout the south coast of Japan; the coherent area of the 110-day variation seems to be smaller.The sea-level variations at Naze and Nishinoomote are not significantly coherent for any of the periods except for annual and semiannual cycles during both the non-large-meander and large-meander periods. That is, the sea-level variations are incoherent between the onshore and offshore sides of the Kuroshio, except for seasonal variation.  相似文献   

16.
This study discusses branching of the Kuroshio Current including North Pacific Intermediate Water (NPIW) into the South China Sea (SCS). The spreading path of the subtropical salinity minimum of NPIW is southwestward pointing to the Luzon Strait between Taiwan and Luzon islands. Using a large collection of updated hydrography, results show that the SCS is a cul-de-sac for the subtropical NPIW because even the NPIW’s upper boundary neutral density surface σ N = 26.5 is completely blocked by the Palawan sill and partly blocked by the southern Mindoro Strait. In autumn, NPIW is driven out of the Luzon Strait by the preceding anticyclonic summer monsoon due to an intraseasonal variation and seasonal phase lag response to the weaker summer monsoon. Stronger inflow under winter monsoon than outflow under summer monsoon results in a net annual transport of NPIW of about 1.1 ± 0.2 Sv (1 Sv = 106 m3s−1) into the SCS. This net transport accounts for the anomaly in NPIW transport across the World Ocean Circulation Experiment section P8 (130° E). An earlier study estimated a large westward NPIW transport of about 3.9 ± 0.2 Sv, resulting in a difference of 1.2 ± 0.2 Sv from the basin-wide mean of 2.7 ± 0.2 Sv. Observations are generally in agreement with numerical results although the intraseasonal signal seems to cause a slight bias and remains to be simulated by future model experiments.  相似文献   

17.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The traditional image of ocean circulation between Australia and Antarctica is of a dominant belt of eastward flow, the Antarctic Circumpolar Current, with comparatively weak adjacent westward flows that provide anticyclonic circulation north and cyclonic circulation south of the Antarctic Circumpolar Current. This image mostly follows from geostrophic estimates from hydrography using a bottom level of no motion for the eastward flow regime which typically yield transports near 170 Sv. Net eastward transport of about 145 Sv for this region results from subtracting those westward flows. This estimate is compatible with the canonical 134 Sv through Drake Passage with augmentation from Indonesian Throughflow (around 10 Sv).A new image is developed from World Ocean Circulation Hydrographic Program sections I8S and I9S. These provide two quasi-meridional crossings of the South Australian Basin and the Australian–Antarctic Basin, with full hydrography and two independent direct-velocity measurements (shipboard and lowered acoustic Doppler current profilers). These velocity measurements indicate that the belt of eastward flow is much stronger, 271 ± 49 Sv, than previously estimated because of the presence of eastward barotropic flow. Substantial recirculations exist adjacent to the Antarctic Circumpolar Current: to the north a 38 ± 30 Sv anticyclonic gyre and to the south a 76 ± 26 Sv cyclonic gyre. The net flow between Australia and Antarctica is estimated as 157 ± 58 Sv, which falls within the expected net transport of 145 Sv.The 38 Sv anticyclonic gyre in the South Australian Basin involves the westward Flinders Current along southern Australia and a substantial 33 Sv Subantarctic Zone recirculation to its south. The cyclonic gyre in the Australian–Antarctic Basin has a substantial 76 Sv westward flow over the continental slope of Antarctica, and 48 ± 6 Sv northward-flowing western boundary current along the Kerguelen Plateau near 57°S. The cyclonic gyre only partially closes within the Australian–Antarctic Basin. It is estimated that 45 Sv bridges westward to the Weddell Gyre through the southern Princess Elizabeth Trough and returns through the northern Princess Elizabeth Trough and the Fawn Trough – where a substantial eastward 38 Sv current is hypothesized. There is evidence that the cyclonic gyre also projects eastward past the Balleny Islands to the Ross Gyre in the South Pacific.The western boundary current along Kerguelen Plateau collides with the Antarctic Circumpolar Current that enters the Australian–Antarctic Basin through the Kerguelen–St. Paul Island Passage, forming an energetic Crozet–Kerguelen Confluence. Strongest filaments in the meandering Crozet-Kerguelen Confluence reach 100 Sv. Dense water in the western boundary current intrudes beneath the densest water of the Antarctic Circumpolar Current; they intensely mix diapycnally to produce a high potential vorticity signal that extends eastward along the southern flank of the Southeast Indian Ridge. Dense water penetrates through the Ridge into the South Australian Basin. Two escape pathways are indicated, the Australian–Antarctic Discordance Zone near 125°E and the Geelvinck Fracture Zone near 85°E. Ultimately, the bottom water delivered to the South Australian Basin passes north to the Perth Basin west of Australia and east to the Tasman Basin.  相似文献   

19.
The sea level difference between Naze and Nishinoomote and sea level anomalies (the residuals after removal of seasonal variations) around the Nansei Islands were examined in relation to the large meander in the Kuroshio south of central Japan. They are indices of surface velocity and geostrophic transport of the Kuroshio in the Tokara Strait and in the East China Sea, respectively. All of them were large during the meandering period, and each of them reached a maximum before or after the generation of the large meander in 1975. Thus the surface velocity and the geostrophic transport of the Kuroshio in the Tokara Strait and the East China Sea were large during the meandering period. The sea level difference between Naze and Nishinoomote (or Makurazaki) shows that the surface velocity and geostrophic transport in the Tokara Strait were significantly larger during the extinction stage in 1963 and during the generation stage in 1975 and were correlated with the position of the Kuroshio east of Kyûshû in 1974 and 1975 before the generation of the large meander.The surface velocity of the Kuroshio southeast of Yakushima (E-line) based on dynamic calculation referred to 1,000 db was weak during the meandering period, and was out of phase with the variation of surface velocity in the Tokara Strait monitored by tide gauge data. The analysis of GEK and hydrographic data shows that southwestward flow existed below 600 m in the slope region on the E-line and weakened during the meandering period. Thus, the out-of-phase variation in surface velocity mentioned above seems to be partly explained by the variation in velocity on the reference level at the E-line.  相似文献   

20.
Relationships of the sea level differences between Naze and Nishinoomote and between Kushimoto and Uragami with wind stress over the North Pacific are examined for interannual variability. These sea level differences are considered to be indications of Kuroshio transport in Tokara Strait and Kuroshio path south of Enshu-nada, respectively. In the sea level difference between Kushimoto and Uragami, dominant variations are found to have periods of about seven years and 3–4 years. The variation of about 7-year period, which corresponds to that in the Kuroshio path between the large meander and non-large meander, is coherent with the variation of the wind stress curl in a region about 2,400 km east of the Kii Peninsula, where negative stress curl weakens about two years before the sea level difference drops (i.e. the large meander path in the Kuroshio generates). The variation of the 3–4 year period is coherent with that of the wind stress in a large area covering the eastern equatorial Pacific, which suggests that it links with global-scale atmospheric variations. Interannual variation in sea level difference between Naze and Nishinoomote is not coherent with that between Kushimoto and Uragami, which suggests that it is not related to the variation of the Kuroshio path south of Enshu-nada, but is coherent with that of the zonally-integrated Sverdrup transport in the latitudinal zone along 30°N. It is suggested that the interannual variation of the Kuroshio transport in Tokara Strait can be explained by the barotropic response to the wind stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号