首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

2.
Flood mitigation involves the management and control of floodwater movement, such as redirecting flood runoff through the use of floodwalls and flood gates, rather than trying to prevent floods altogether. The prevention and mitigation of flooding can be studied on three levels: on individual properties, small communities, and whole towns or cities. The current study area is located in Hurghada on the Red Sea, which is considered an important area for coastal tourism. The study area is located at distance 7.50 km from El Gouna city along the Red Sea and east of Hurghada–Al Ismaileya road. The aim of this research is to derive the runoff flow paths across the study area and their flow magnitudes under different rainfall events of 10, 25, 50, and 100 year return periods in order to design the flood mitigation measures to protect such important areas. Field data (e.g., topographic data and rainfall intensities) were collected for the study area. The results indicated that the site is exposed to high flash flood risk and protection work is required. In order to protect the area from flood risks, locations of number of drainage channels and dams were selected and designed based on flood quantity and direction. The proposed mitigation system is capable of protecting this crucial area from flood risks and increases the national income from tourism. This study can be applied in different areas of Egypt and the world.  相似文献   

3.
Implementation of structural and non-structural flood control measures in flood-prone watersheds is on increasing demand. Different watershed areas are not necessarily hydrologically similar and impose variable effects on the outlet flow hydrograph. Meanwhile, prioritization of watershed areas in terms of flood generation is essential for economic flood control planning. Previous works have focused on the definition of a flood index that quantifies the contribution of each subwatershed unit or grid cell to the outlet flood hydrograph through the application of unit flood response (UFR) approach. In the present research, for the first time, the effect of spatial pattern of storm events on the flood index variation was assessed via a Monte Carlo uncertainty analysis. To do so, the UFR approach was carried out for a large number of randomly generated rainfall spatial pattern. The proposed methodology was adopted to the Tangrah watershed in northern Iran. The watershed is frequently hit by floods that have historically caused loss of life and properties. The results indicated that for the more frequent flood events, the flood index is quite sensitive to the spatial distribution of rainfall such that for the highest ranked subwatershed (SW6), the standardized variation of the flood index values (i.e., the uncertainty range) decreases from 1.0 to 0.5 when the rainfall depth increases from 20 to 150 mm, respectively. The results further revealed that increasing the rainfall depth from 20 to 150 mm would cause the effect of rainfall spatial distribution on subwatersheds’ flood indices to diminish. The implications are that if flood control measures are designed for more frequent floods with lower return periods, an uncertainty analysis is required to identify the range of flood index variations.  相似文献   

4.
One-way floodgates installed on flood mitigation drains in regions affected by acid sulphate soils restrict carbonate/bicarbonate buffering, thereby creating reservoirs of acid water (pH < 4.5) that discharge during the ebb tide. The drain water quality and hydrodynamic conditions prior to and following floodgate modifications that allowed for controlled saline intrusion are described with reference to data collected from intensively drained and floodgated coastal lowlands located in southeastern New South Wales, Australia. Cl:SO4 ratios taken from groundwater samples depicted an acidic environment with little soil buffering capacity. Prior to modification, water quality upstream of the one-way floodgate was consistently acidic (average pH 4.6) with high concentrations of aluminum and iron that fluctuated with precipitation. Over a two-week period before modifications, floodgate leakage permitted alkaline water to intrude upstream of the floodgate and react with H+ ions. This period showed the strongest supporting field evidence for tidal buffering via modified floodgates. After installing vertical lifting, two-way floodgates average drain water pH increased to 5.89 and aluminum and iron concentrations decreased by more than 30%. A large rainfall (131.8 mm) during the post-modification period caused acidic groundwater flushing, however, in comparison to the pre-modification period, recovery time and average pH were markedly improved. Preliminary investigations of groundwater salinity in response to tidal intrusion has shown that electrical conductivity fluctuates with rainfall and it is predominately limited to 10 m perpendicular to the drain.  相似文献   

5.
防洪效益评估对防洪工程投资决策与减灾对策制定具有重要意义。建立集成了与太湖流域防洪效益评估相关的系列模型和方法,包括含降雨产流与平原净雨计算的水文分析方法、由河网水动力学模型和平原区域洪水分析模型组成的大尺度水力学模型、综合流域社会经济和淹没因素的洪灾损失评估模型。模拟了太湖流域遇特大洪水的灾害损失,开展了不同防洪工程应对流域性特大洪水减灾效益的预测分析。结果表明:1999年型200年一遇降雨将会给太湖流域造成高达568.29亿元的直接经济损失,外排动力增强30%至100%的防洪效益介于26.69亿元到45.70亿元之间,新建圩区、太浦河拓宽的防洪效益依次减小,而圩区泵排能力增加30%的防洪效益仅为0.65亿元。基于研究成果提出了增设外排泵站、加强圩区科学调度、通过保险分担风险等应对特大洪水的对策措施建议,为太湖流域特大洪水的防治提供支撑和参考。  相似文献   

6.
防洪效益评估对防洪工程投资决策与减灾对策制定具有重要意义。建立集成了与太湖流域防洪效益评估相关的系列模型和方法,包括含降雨产流与平原净雨计算的水文分析方法、由河网水动力学模型和平原区域洪水分析模型组成的大尺度水力学模型、综合流域社会经济和淹没因素的洪灾损失评估模型。模拟了太湖流域遇特大洪水的灾害损失,开展了不同防洪工程应对流域性特大洪水减灾效益的预测分析。结果表明:1999年型200年一遇降雨将会给太湖流域造成高达568.29亿元的直接经济损失,外排动力增强30%至100%的防洪效益介于26.69亿元到45.70亿元之间,新建圩区、太浦河拓宽的防洪效益依次减小,而圩区泵排能力增加30%的防洪效益仅为0.65亿元。基于研究成果提出了增设外排泵站、加强圩区科学调度、通过保险分担风险等应对特大洪水的对策措施建议,为太湖流域特大洪水的防治提供支撑和参考。  相似文献   

7.
A review of the assessment and mitigation of floods in Sindh, Pakistan   总被引:1,自引:0,他引:1  
  相似文献   

8.
In arid regions, flash floods often occur as a consequence of excessive rainfall. Occasionally causing major loss of property and life, floods are large events of relatively short duration. Makkah area in western Saudi Arabia is characterized by high rainfall intensity that leads to flash floods. This study quantifies the hydrological characteristics and flood probability of some major wadis in western Saudi Arabia, including Na’man, Fatimah, and Usfan. Flood responses in these wadis vary due to the nature and rainfall distribution within these wadis. Rainfall frequency analysis was performed using selected annual maximums of 24-h rainfall from eight stations located in the area. Two of the most applied methods of statistical distribution, Gumbel’s extreme value distribution and log Pearson type III distribution, were applied to maximum daily rainfall data over 26 to 40 years. The Gumbel’s model was found to be the best fitting model for identifying and predicting future rainfall occurrence. Rainfall estimations from different return periods were identified. Probable maximum floods of the major wadis studied were also estimated for different return periods, which were extrapolated from the probable maximum precipitation.  相似文献   

9.
Many developing countries are very vulnerable to flood risk since they are located in climatic zones characterised by extreme precipitation events, such as cyclones and heavy monsoon rainfall. Adequate flood mitigation requires a routing mechanism that can predict the dynamics of flood waves as they travel from source to flood-prone areas, and thus allow for early warning and adequate flood defences. A number of cutting edge hydrodynamic models have been developed in industrialised countries that can predict the advance of flood waves efficiently. These models are not readily applicable to flood prediction in developing countries in Asia, Africa and Latin America, however, due to lack of data, particularly terrain and hydrological data. This paper explores the adaptations and adjustments that are essential to employ hydrodynamic models like LISFLOOD-FP to route very high-magnitude floods by utilising freely available Shuttle Radar Topographic Mission digital elevation model, available topographical maps and sparse network of river gauging stations. A 110 km reach of the lower Damodar River in eastern India was taken as the study area since it suffers from chronic floods caused by water release from upstream dams during intense monsoon storm events. The uncertainty in model outputs, which is likely to increase with coarse data inputs, was quantified in a generalised likelihood uncertainty estimation framework to demonstrate the level of confidence that one can have on such flood routing approaches. Validation results with an extreme flood event of 2009 reveal an encouraging index of agreement of 0.77 with observed records, while most of the observed time series records of a 2007 major flood were found to be within 95 % upper and lower uncertainty bounds of the modelled outcomes.  相似文献   

10.
Comparison of TRMM-based flood indices for Gaziantep,Turkey   总被引:1,自引:0,他引:1  
Floods are the most common natural disasters threatening the welfare of humanity. Gaziantep, a city located in a semi-arid region of Turkey, is occasionally flooded, and in May 2014, a flood not only caused property damage, but also resulted in the death of a lady who became trapped in flood waters. The fatality and property damage of flash floods arise from the limited response time for remediation. Despite improvements in numerical weather predictions, forecasting flash floods is not easy. Due to its frequent observations, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) real-time (RT) 3B42RT data are tested for Gaziantep flood predictions in this study. During TRMM era, six floods occurred in Gaziantep. Three-hourly 3B42RT data covering the 2000- to 2014-year period indicated high rain rates during months in which floods were observed. Also daily variation of rainfall was well represented. High-intensity rain (HIR), cumulative distribution functions (CDF) and Gaziantep Flood Index (GAFI) indices are developed for flood characterization. HIR, calculated as 10 mm/h, detected October and December of 2010 floods. CDFs with 99, 98.5, 95 and 91.3% indicated 4 floods occurred in August 2005, June 2007, October 2010 and December 2010, respectively. GAFI was able to detect 4 out of 6 occurrences (August 2005, June 2007, October 2010 and December 2010) as values ranging from 1 to 2.63 are selected for monthly precipitation. In the missed occurrence, 3B42RT did not indicate any rainfall. Although only rain rates are used in flood characterization, the results are promising, and the simplicity of the methodology favors its usage. Also, methodology can easily be implemented to TRMM following missions such as Global Precipitation Measurement Mission.  相似文献   

11.
Based on the daily precipitation data of 38 weather stations in the Huai River Basin from 1961 to 2010, this study used SPI index, P-III curve to determine the flood/drought years, under what situations for droughts and floods easily happen, and to analyze the evolution law of flood and drought during inter-annual and intra-annual based on the characteristic of monthly precipitation. The results showed that: (1) annual rainfall of the Huai River Basin presented decreasing trend, maximum rainfall appeared from June to August, and multi-year average precipitation increased gradually from north to south; (2) the variation of monthly precipitation during flood years was more severe than other typical years, and precipitation in drought years showed nearly 50 % decline compared with normal years; (3) high rainfall of flood years was mainly caused by the increase in rainfall in flood season, and the strategy of flood control and drought relief was “short-term flood prevention and long-term drought relief”; (4) while precipitation of most months in drought year was reduced, the relevant strategies “annual basin-wide of long-term drought prevention” should be carried out; (5) combination events of floods and droughts occurred frequently. Persistent drought dominated in spring and summer while droughts and floods that happened alternately were mainly in summer and autumn.  相似文献   

12.
In arid and semiarid areas, the only surface and groundwater recharge source is the runoff generated through flash floods. Lack of hydrological data in such areas makes runoff estimation extremely complicated. Flash floods are considered catastrophic phenomena posing a major hazardous threat to cities, villages, and their infrastructures. The objective of this study is to assess the flash flood hazard and runoff in Wadi Halyah and its sub-basins. Integration of morphometric parameters, geo-informatics, and hydrological models has been done to overcome the challenge of scarcity of data.Advanced Spaceborne Thermal Emission and Reflection (ASTER) data was used to prepare a digital elevation model (DEM) with 30-m resolution, and geographical information system (GIS) was used in the evaluation of network, geometry, texture, and relief features of the morphometric parameters. Thirty-eight morphometric parameters were estimated and have been linked together for producing nine effective parameters for evaluation of the flash flood hazard in the study basin.Flash flood hazard in Wadi Halyah and its sub-basins was identified and grouped into three classes depending on nine effective parameters directly influencing the flood prone areas. Calculated runoff volume of Wadi Halyah ranges from 26.7 × 106 to 111.4 × 106 m3 with an inundation area of 15 and 27 km2 at return periods of 5 and 100 years, respectively. Mathematical relationships among rainfall depth, runoff volume, infiltration losses, and rainfall excess demonstrate a strong directly proportional relationships with correlation coefficient of about 0.99.  相似文献   

13.
Land use has changed in the Daqinghe watershed during 1956–2005, and it has influenced the flood peak and volume. In order to reveal the effects of land use change on flood characteristics in Daqinghe watershed, we selected 2 sub-watersheds and used remote-sensed land use data of 1980 and 1996 to analyze changes in land use and also selected several combinations of similar rainfall events and the corresponding flood events to show how changes in land use affect floods. The forest and urban area increased and other types decreased, and flood peaks and volumes tended to decrease under similar rainfall events. To quantify the extent of change in land use affecting floods, a hydrological model incorporating the land use was established. The model combines infiltration excess and saturation excess runoff generation mechanism in each type of land use, and the simulation results agreed well with the measured flood processes in the two selected watersheds. Several floods of different return intervals were selected to be modeled under the 1980 and 1996 land use conditions. The results show that both flood peak and volume decreased under the 1996 land use condition in comparison with the 1980 land use condition in the two watersheds. Most of the flood peaks decreased <5 %, but the volume decreased to a greater extent. This result can be helpful in modifying design flood.  相似文献   

14.
洪涝灾害历来是影响中国的主要自然灾害之一。根据历史文献记载及观测资料,从天气过程、水文过程、受灾情况等方面对1917年海河流域洪涝灾害的自然过程作了详细梳理。得出以下结论: (1) 1917年洪涝灾害呈现由台风袭扰→集中降水→山洪暴发/河流决口→积水/淹没→受灾的成灾过程。 (2) 7月份2次台风带来大范围暴雨,集中性降水出现于7月20—28日,沿燕山、太行山分布,而9月份2次台风带来的暴雨则使灾情更加严重。 (3) 1917年海河流域各河于7月中旬开始涨溢、决口,9月中旬上游降雨结束后,中下游水位趋于稳定并下降,10月份以后洪水才迟缓退去,而洪水泛滥引发的涝灾影响一直延续到1918年。 (4) 1917年洪涝灾害在海河南系和北系都有发生,南系尤为严重,共造成156个县受灾。受灾田亩级数在5级以上的区域主要集中于海河干流沿线、南运河沿线以及河北省文安县等低洼地区。  相似文献   

15.
Flood events, fatalities and damages in India from 1978 to 2006   总被引:1,自引:1,他引:0  
High temporal and spatial variability of rainfall qualifies India to be highly vulnerable to floods. Recurring floods of various magnitudes play havoc with the lives and property of the people, leading to unplanned development and unchecked environmental degradation, thwarting and retarding the overall development of the country. Therefore, the purpose of the present study is to analyze the types and trends in terms of flood events, frequency, number of people killed, injured, missing and economic damage both in space and time on the basis of a nationwide database published by India Meteorological Department, Pune, from 1978 to 2006. Analysis of these long-term data has revealed that 2,443 flood events claimed about 44,991 lives with the average of 1,551 lives each year. In terms of population size, these figures translate into a loss of 1.5 human lives per million of the population. A majority (56 %) of flood fatalities were caused during severe flood events. However, the frequency of these events was just 19 % in comparison with heavy rainfall events (65 %). In spatial context, flood-related fatalities are distributed all over the country with highest fatalities in Uttar Pradesh (17 %), Maharashtra (13 %), and Bihar and Gujarat (10 % each). Most fatalities occurred during the summer season monsoon months of August (30 %) followed by July (29 %) and September (20 %). The country suffered a cumulative flood-related economic loss of about 16 billion US$ between 1978 and 2006 and a maximum economic loss of 1.6 billion US$ in the year 2000 alone. The study further suggests that both flood events and fatalities have increased in India over a period of time.  相似文献   

16.
Pakistan has experienced severe floods over the past decades due to climate variability. Among all the floods, the flood of 2010 was the worst in history. This study focuses on the assessment of (1) riverine flooding in the district Jhang (where Jhelum and Chenab rivers join, and the district was severely flood affected) and (2) south Asiatic summer monsoon rainfall patterns and anomalies considering the case of 2010 flood in Pakistan. The land use/cover change has been analyzed by using Landsat TM 30 m resolution satellite imageries for supervised classification, and three instances have been compared, i.e., pre-flooding, flooding, and post-flooding. The water flow accumulation, drainage density and pattern, and river catchment areas have been calculated by using Shutter Radar Topography Mission digital elevation model 90 m resolution. The standard deviation of south Asiatic summer monsoon rainfall patterns, anomalies and normal (1979–2008) has been calculated for July, August, and September by using rainfall data set of Era interim (0.75° × 0.75° resolution). El Niño Southern Oscillation has also been considered for its role in prevailing rainfall anomalies during the year 2010 over Upper Indus Basin region. Results show the considerable changing of land cover during the three instances in the Jhang district and water content in the rivers. Abnormal rainfall patterns over Upper Indus Basin region prevailed during summer monsoon months in the year 2010 and 2011. The El Niño (2009–2010) and its rapid phase transition to La Niña (2011–2012) may be the cause of severity and disturbances in rainfall patterns during the year 2010. The Geographical Information System techniques and model based simulated climate data sets have been used in this study which can be helpful in developing a monitoring tool for flood management.  相似文献   

17.
Typhoon-induced extreme storm runoffs often cause flood hazards. In this study, a hydrological model (HEC-HMS) was applied to Shihmen watershed located in Taiwan. Three typhoon-induced storm events, with return period ranging from 1 to 90 years, were used in case studies to characterize storm runoff. With a 5-year storm for model calibration, model parameters were carefully calibrated through the comparison between model simulated and observed flows at a stream gage station. The calibrated model was then verified for a 90-year storm and a 1-year storm event. Results indicate that the calibrated and verified HEC-HMS hydrological model is capable of providing satisfactory predictions of the typhoon-induced extreme storm runoff to support reservoir operation and flood hazard mitigation. Based on model simulations, typhoon-induced water table increases for different initial water volumes at Shihmen Reservoir was derived by adding storm-runoff volume to the reservoir’s initial elevation-volume rating curve. Water tables above the top elevation of the dam in the reservoir indicate the need for immediate water releases to avoid the risk of overflow over the dam.  相似文献   

18.
In this investigation, four scenarios were used to quantify the balance between the benefits of levees for flood protection and their potential to increase flood risk using Hazards U.S. Multi-Hazard flood-loss software and hydraulic modeling of the Middle Mississippi River (MMR). The goals of this study were (1) to quantify the flood exposure under different flood-control configurations and (2) to assess the relative contributions of various engineered structures and flood-loss strategies to potential flood losses. Removing all the flood-control structures along the MMR, without buyouts or other mitigation, reduced the average flood stages between 2.3 m (100-year flood) and 2.5 m (500-year), but increased the potential flood losses by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by 155 million for the 100-year flood, but were decreased by $109 million for the 500-year flood. Thus, agricultural levees along the MMR protect against small- to medium-size floods (up to the ~100-year flood level) but cause more damage than they prevent during large floods such as the 500-year flood. Buyout costs for the all the buildings within the 500-year floodplain downstream of urban flood-control structures near St. Louis are ~40% less than the cost of repairing the buildings damaged by the 500-year flood. This suggests large-scale buyouts could be the most cost-effective option for flood loss mitigation for properties currently protected by agricultural levees.  相似文献   

19.
Nowadays, in parts of Iran, rivers and flood plains are being used as sand and silt mines, and the removal of river bed materials is performed without studying its effects on hydraulic behavior. On the other hand, the flood plain lands are in danger of floods and bank erosion. Zaremrood River in Tajan watershed due to removal of river bed material, two planes of before and after removal with scale of 1:1,000, has been used as basic data. The field investigation was emphasized on the end part of Zaremrood with a length of 5 km and starts from Ghandikola village to Ahoodasht Bridge. Using total station and field observations, the characteristics of reaches and cross sections of right bank, left bank, and main bed of river are written separately. Using software of HEC-RAS, ArcView 3.2, and extension HEC-GeoRAS, the flood zoning with different return periods to investigate water velocity and its changes, geometrical simulation of the bed, sides and flood way of rivers, and then by entering the results of HEC-GeoRAS into hydraulic software HEC-RAS for two before and after planes have been performed, and flow velocity was analyzed for three return periods of 10, 50, and 100 years. The results of this research showed that the velocities due to removal for floods with different return periods have increased, whereas water height and level during removal period have decreased.  相似文献   

20.
Pakistan is exposed to numerous hazards, but the problem of recurrent floods has been causing massive losses to lives and other properties. Swat valley is no exception to it. In this paper, an attempt has been made to analyse the causes and associated socio-economic impacts of floods on the Swat valley, Pakistan. Swat valley falls in the Hindukush region, North-west-Pakistan. The valley has been studied with special reference to its physical and socio-economic environment. Similarly, three-sample villages were also randomly selected from the active floodplain for micro-level analysis. The sample villages include Ningolai, Delay and Ghureijo. All the three-sample communities are located on the right bank of river Swat. This area is located in the active flood zone of Swat valley. The analysis revealed that in the study area, floods occur during summer season, which is mainly caused by heavy rainfall as well as rapid melting of snow and glacier. Besides these, there are some floods intensifying factors, which accelerate intensity of floods and enhance resultant damages in the valley. It was found that during flood season, water overflows the natural levees and trigger tremendous loses to housing, agricultural land, standing crops and other properties. The flood-related Government Departments have only implemented limited structural mitigation measures. However, in addition to structural measure, land-use zoning and flood abatement strategies would largely help in reducing the adverse consequences of this recurrent phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号