首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of moisture sources is of great significance for understanding climatic change and landscape evolution in desert environments. In this paper, we aim to clarify moisture origins for the Alashan(Alxa) Sand Seas(ALSS) in western Inner Mongolia and their transport pathways during the Last Glacial Maximum(LGM) and the mid-Holocene using modern analogues and paleoclimatic simulations. Precipitation data for the period 1959–2015 from meteorological stations in the study area and wind and specific humidity data from the European Center for Medium-Range Weather Forecasts(ECMWF) daily reanalysis were adopted to determine the moisture sources of summer precipitation in the ALSS. In addition paleoclimate simulations under PMIP3/CMIP5 protocols were used to detect the atmospheric circulation and precipitation at 21 ka BP and 6 ka BP over the ALSS. We also reviewed paleoclimate records from the ALSS to acquire a semi-quantitative reconstruction of the moisture history during the late Pleistocene and Holocene. Our results suggest that the summer monsoon transported water vapor from the Indian Ocean and the South China Sea to the ALSS during July and August, causing increased precipitation. The dominant moisture source was from the southwest monsoon, while the East Asian summer monsoon also partly contributed to precipitation in the ALSS. The increased humidity during the period 8.2–4.2 ka BP in the ALSS, as derived from both climate simulation outputs and sedimentary records, was caused by monsoons according to the outputs of simulations. At 21 ka BP, the moisture sources of the ALSS were greatly associated with the prevailing westerlies.  相似文献   

2.
During the summers of 1999 and 2000, sampling was carried out in Mt. Yulong, for the investigation of the spatial distribution of oxygen stable isotope in the atmospheric glacial hydro system and similar results obtained in the two years have confirmed our conclusion. There is an evident negative correlation between stable isotopic composition and air temperature precipitation amount, suggesting that there exits a strong "precipitation amount effect" in this typical monsoon temperate glacier region. There are marked differences between the δ 18 O values in winter accumulated snow, glacial meltwater, summer precipitation and glacier feeding stream. Under the control of varied climatic conditions, spatial and temporal variations of above glacial hydro mediums are apparent. Isotopic depletion or fractionation and ionic changes had occurred during the phase change and transformation processes of snow ice, ice meltwater, flowing of runoff and contact with bedrock. The variation of stable isotope in a runoff can reflect not only its own flowing process but also its different feeding sources.  相似文献   

3.
This paper reveals the temporal and spatial variations of stable isotope in precipita-tion of the Yarlung Zangbo River Basin based on the variations of δ18O in precipitation at four stations (Lhaze,Nugesha,Yangcun and Nuxia) in 2005. The results show that δ18O of pre-cipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ18O occurs in spring prior to monsoon precipitation,and the lower value occurs during monsoon precipitation. From the spatial variations,with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley,18O of precipitation is gradually depleted. Thus,δ18O of precipitation decreases gradually from the downstream to the upstream,and the lapse rate of δ18O in precipitation is approximately 0.34‰/100m and 0.7‰/100km for the two reasons. During monsoon precipitation,spatial variation of δ18O in precipitation is dominated by the amount effect in the large scale synoptic condition.  相似文献   

4.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

5.
To investigate the diurnal variation of summer precipitation in the Qilian Mountains in the northeast Tibetan Plateau,the hourly precipitation amount for this region during the summers of 2008–2014 are analyzed using an hourly merged precipitation product at 0.1°×0.1° resolution.The main results are as follows.(1) The spatial distribution and temporal variation of mean hourly precipitation amount and frequency are generally similar and hourly precipitations in the eastern and middle portions are larger and more frequent than that in the western portion.The high value area of precipitation intensity is obviously different from that of precipitation amount and frequency.(2) The spatial distribution of daytime precipitation is generally similar to that of nighttime precipitation,and the daytime precipitation is heavier than the nighttime precipitation.(3) The change rate of precipitation has a maximum at 20:00 Beijing time,and a minimum at 12:00.The hourly precipitation amount significantly correlated with frequency,especially for the middle and eastern portions.  相似文献   

6.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

7.
The net accumulation record of ice core is one of the most reliable indicators for reconstructing precipitation changes in high mountains.A 20.12 m ice core was drilled in 2006 from the accumulation zone of Laohugou Glacier No.12 in the northeastern Tibetan Plateau,China.We obtained the precipitation from the ice core net accumulation during 1960-2006,and found out the relationship between Laohugou ice core record and other data from surrounding sites of the northeastern Tibetan Plateau.Results showed that during 1960-2006,the precipitation in the high mountains showed firstly an increasing trend,while during 1980 to 2006 it showed an obvious decreasing trend.Reconstructed precipitation change in the Laohugou glacier basin was consistent with the measured data from the nearby weather stations in the lower mountain of Subei,and the correlation coefficient was 0.619(P<0.001).However,the precipitation in the high mountain was about 3 times more than that of the lower mountain.The precipitation in Laohugou Glacier No.12 of the western Qilian Mountains corresponded well to the net accumulation of Dunde ice core during the same period,tree-ring reconstructed precipitation,the measured data of multiple meteorological stations in the northeastern Tibetan Plateau,and also the changes of adjacent PDSI drought index.Precipitation changes of the Laohugou glacier basin and other sites of the northeastern Tibetan Plateau had significantly positive correlation with ENSO,which implied that the regional alpine precipitation change was very likely to be influenced by ENSO.  相似文献   

8.
Land use and cover change(LUCC) is an important indicator of the human-earth system under climate/environmental change,which also serves as a key impact factor of carbon balance,and a major source/sink of soil carbon cycles.The Heihe River Basin(HRB) is known as a typical ecologically fragile area in the arid/semi-arid regions of northwestern China,which makes it more sensitive to the LUCC.However,its sensitivity varies in a broad range of controlling factors,such as soil layers,LUCCs and calculation methods(e.g.the fixed depth method,FD,and the equivalent mass method,ESM).In this study,we performed a meta-analysis to assess the response of soil organic carbon(SOC) and total nitrogen(TN) storage to the LUCC as well as method bias based on 383 sets of SOC data and 148 sets of TN data from the HRB.We first evaluated the calculation methods and found that based on the FD method,the LUCC caused SOC and TN storage to decrease by 17.39% and 14.27%,respectively;while the losses estimated using the ESM method were 19.31% and 18.52%,respectively.The deviations between two methods were mainly due to the fact that the FD method ignores the heterogeneity of soil bulk density(BD),which may underestimate the results subsequently.We then analyzed the response of SOC and TN storage to various types of the LUCC.In particular,when woodland and grassland were converted into cultivated land or other land types,SOC and TN suffered from heavy losses,while other LUCCs had minor influences.Finally,we showed that increasing the depth of the soil layers would reduce the losses of SOC and TN storage.In summary,we identified a series of controlling factors(e.g.soil layer,the LUCC and calculation method) to evaluate the impact of the LUCC on SOC and TN storage in the HRB,which should be considered in future research.  相似文献   

9.
Studies of the past climate variation on the Tibetan Plateau(TP) are currently limited in number and low in density and temporal resolution. We investigated the climate condition from about 400 years before present(B.P.) in the central TP at the shore of Co(means "lake") Nag using aeolian sediments. A 2.7-m sand profile with 57 sediment samples and six optically stimulated luminescence(OSL) samples were studied through grain-size analysis, geochemical elements and parameters, and depositional rate estimation. A previous assumption was verified that sand deposition at the shore of Lake Co Nag originated from hills to the east. Two significant wet periods between 90–140 and about 380 years B.P. were indicated by the variation of element profiles and sediment depositional rates. Aeolian activity is sensitive to variations from different seasonal changing patterns of climate factors in the study area, and aeolian sediments respond differently to climate conditions during the cold little ice age(LIA) and the warm 20 th century. Present day dry seasons of winter and spring might be much warmer and drier compared to seasons of 400 years ago although summer precipitation has increased, resulting in significantly more aeolian activity and higher depositional rate(about 6 times compared to 380–240 years ago) of sandy sediments. Aeolian problems like blown-sand deposition and desertification may be worse in a projected warming future in the central TP as well as other cold and high altitude regions. Our results suggest an agreement with environmental evolution during the little ice age and the 20 th century in a broader scale on the TP.  相似文献   

10.
The Hunshandake Desert is located at the northern edge of the East Asian monsoon region,and its natural environment is sensitive to monsoonal changes.Geologic records suggest that desert evolution corresponding to climate change had experienced several cycles in the Holocene,and the evolutionary process can be distinguished by four dominant stages according to changing trends of the environment and climate.(1) Holocene Ameliorative Period(11.0-8.7 cal ka B.P.),when the desert area gradually shrank following an approaching warm-wet climate and strengthening summer monsoon.(2) Holocene Optimum(8.7-6.0 cal ka B.P.),when the majority of moving sand dunes were stabilized and vegetation coverage quickly expanded in a suitable warm-wet climate and a strong summer monsoon.(3) Holocene Multivariate Period(6.0-3.5 cal ka B.P.),during a low-amplitude desert transformed between moving and stabilized types under alternating functions of cold-dry with warm-wet climate,and winter monsoon with summer monsoon.(4) Holocene Decay Period(since 3.5 cal ka B.P.),when the desert area tended to expand along with a weakened summer monsoon and a dry climate.  相似文献   

11.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

12.
This paper presents a model of isotopic fractionation by freezing under near equilibrium conditions in an open system and uses the model to predict the fractionation curve and slope gradient of δ 18 O versus δD. The simulation results show that 1) the fractionation curve and slope gradient are determined by the ratio of freezing rate to input rate, 2) the isotopic value in the initial stage of freezing is determined by the isotopic value of initial water; 3) in the latter half of freezing in an open system, the isotopic value converges to a certain value determined by that of input water. These results suggest that the shape of the fractionation curve is the method to distinguish whether freezing occurred in a closed or open system. This analysis is applied to an isotopic curve observed in basal ice of Hamna Glacier, Sya drainage, East Antarctica. The isotopic curve indicates formation by regelation in an open system with a ratio of freezing/input rates of about 10/4.  相似文献   

13.
This paper reveals the temporal and spatial variations of stable isotope in precipitation of the Yarlung Zangbo River Basin based on the variations of δ^18O in precipitation at four stations (Lhaze, Nugesha, Yangcun and Nuxia) in 2005. The results show that δ^18O of precipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ^18O occurs in spring prior to monsoon precipitation, and the lower value occurs during monsoon precipitation. From the spatial variations, with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley, δ^18O of precipitation is gradually depleted. Thus, δ^18O of precipitation decreases gradually from the downstream to the upstream, and the lapse rate of δ^18O in precipitation is approximately 0.34‰/100m and 0.7%J‰/100km for the two reasons. During monsoon precipitation, spatial variation of δ^18O in precipitation is dominated by the amount effect in the large scale synoptic condition.  相似文献   

14.
Wu  Li  Sun  Xiaoling  Sun  Wei  Zhu  Cheng  Zhu  Tongxin  Lu  Shuguang  Zhou  Hui  Guo  Qingchun  Guan  Houchun  Xie  Wei  Ke  Rui  Lin  Guiping 《地理学报(英文版)》2020,30(9):1451-1466
Based on archaeological surveys of Neolithic cultural development and GIS spatial analysis,this study reproduced the main characteristics of temporal distribution and settlement selection of the sites from the Neolithic Age in Anhui and identified a relationship between environmental evolution and human activity.The results show that altitude,slope direction,and slope gradient were consistent among the settlements at different stages of the Neolithic Age in Anhui,and the sites were mostly distributed in hilly and plain areas on southeast-or south-facing slopes of low gradients close to rivers.We determined that early Neolithic Age(9.0–7.0 ka BP) sites were scattered in small numbers and likely had little cultural exchange with communities of other provinces.The environmental characteristics of various regions in Anhui indicated that the climate was warm and humid with extensive water distribution.The sites of the mid Neolithic Age(7.0–5.0 ka BP) increased rapidly with wide distribution.They were mainly distributed in the plain area north of the Huaihe River and the southwestern areas of Anhui.In the mid Neolithic Age,the warm and humid climate gradually dried,and our ancestors slowly developed cultural exchanges.The largest number of sites existed during the late Neolithic Age(5.0–4.0 ka BP),and were distributed throughout the province.During this period,the overall climate was relatively dry,but humans could still obtain water and other resources through migration.The relatively benign climate facilitated cultural interaction and exchange,which increased during this time,and the Wanjiang culture matured.We also determined that as early civilization evolved,cultures in different regions responded differently to environmental changes.In humid subtropical regions,especially in low-lying plains and areas beside lakes,rivers,and coastal areas,the relatively dry climate in the late period of the middle Holocene,prefaced by a period of high humidity,was conducive to the development of human culture.The evidence from the Neolithic settlements in Anhui therefore reflects this subtropical man-land relationship between cultural development and environmental conditions.  相似文献   

15.
Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumula  相似文献   

16.
With basic information from 8353 archaeological sites, this study describes a holistic spatial-temporal distribution pattern of archaeological sites of the prehistoric culture sequence from 9.5 ka BP (ka BP = thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) to 2.3 ka BP in the region that extends from the Yanshan Mountains to the Liaohe River Plain(i.e., the Yan-Liao region) in northern China. Based on spatial statistics analysis – including the spatial density of the sites and Geographic Information System nearest-neighbour analysis, combined with a review of environmental and climatic data – this paper analyses cultural evolution, the spatial-temporal features of the archaeological sites and human activities against the backdrop of climatic and environmental changes in this region. The results reveal that prehistoric cultural evolution in the Yan-Liao region is extensively influenced by climatic and environmental changes. The Xinglongwa, Zhaobaogou and Fuhe cultures, which primarily developed during a habitable period from 8.5 ka BP to 6.0 ka BP with strong summer monsoons, have similar maximum density values, spatial patterns and subsistence strategies dominated by hunting-gathering. Significant changes occurred in the Hongshan and Lower Xiajiadian cultures, with a significant increase in numbers and densities of sites and a slump in average nearest-neighbour ratio when the environment began to deteriorate starting in 6.0 ka BP. Additionally, with the onset of a weak summer monsoon and the predominance of primitive agriculture, sites of these two cultures present a different type of concentric circle-shaped pattern in space. As the environment continuously deteriorated with increasing aridity and the spread of steppe, more sites were distributed towards the south, and primitive agriculture was replaced by livestock husbandry in the Upper Xiajiadian culture. The most densely populated areas of the studied cultures are centralized within a limited area. The Laohahe River and Jiaolaihe River basins formed the core area in which most archaeological sites were distributed during the strong summer monsoon period and the first few thousand years of the weak summer monsoon period.  相似文献   

17.
中国南部夏季季风降水水汽来源的稳定同位素证据   总被引:2,自引:0,他引:2  
Summer monsoons (South Asian monsoon, South China Sea monsoon and Subtropical monsoon) are prominent features of summertime climate over southern China. Dif- ferent monsoons carry different inflow moisture into China and control the temporal and spatial distributions of precipitation. Analyses of meteorological data, particularly wind, tempera- ture and pressure anomalies are traditional methods of characterizing moisture sources and transport patterns. Here, we try to utilize the evidence from stable isotopes signatures to trace summer monsoons over southern China. Based on seven CHNIP (Chinese Network of Iso- topes in Precipitation) observatory stations located in southern China, monthly composite precipitation samples have been collected and analyzed for the composition of δ^18O during July, 2005. The results indicated that the spatial distributions of δ^18O in precipitation could properly portray the moisture sources together with their transport pathways. Moreover, the amount effect, altitude effect, temperature effect and the correlation between δ^18O vs. relative humidity were discussed.  相似文献   

18.
In this study, we adopt kernel density estimation, spatial autocorrelation, spatial Markov chain, and panel quantile regression methods to analyze spatial spillover effects and driving factors of carbon emission intensity in 283 Chinese cities from 1992 to 2013. The following results were obtained.(1) Nuclear density estimation shows that the overall average carbon intensity of cities in China has decreased, with differences gradually narrowing.(2) The spatial autocorrelation Moran's I index indicates significant spatial agglomeration of carbon emission intensity is gradually increasing; however, differences between regions have remained stable.(3) Spatial Markov chain analysis shows a Matthew effect in China's urban carbon emission intensity. In addition, low-intensity and high-intensity cities characteristically maintain their initial state during the transition period. Furthermore, there is a clear "Spatial Spillover" effect in urban carbon emission intensity and there is heterogeneity in the spillover effect in different regional contexts; that is, if a city is near a city with low carbon emission intensity, the carbon emission intensity of the first city has a higher probability of upward transfer, and vice versa.(4) Panel quantile results indicate that in cities with low carbon emission intensity, economic growth, technological progress, and appropriate population density play an important role in reducing emissions. In addition, foreign investment intensity and traffic emissions are the main factors that increase carbon emission intensity. In cities with high carbon intensity, population density is an important emission reduction factor, and technological progress has no significant effect. In contrast, industrial emissions, extensive capital investment, and urban land expansion are the main factors driving the increase in carbon intensity.  相似文献   

19.
Soil moisture is the key link between land hydrological and ecological processes which plays an important role in the terrestrial water cycle. As extreme weather events have increased in recent years, the stochastic simulation of soil moisture has gradually become the focus of ecohydrology research. Based on continuous monitoring of soil moisture data from 2008 to 2011, and historical precipitation data from 1991 to 2011, combined with the Rodriguez-Iturbe soil moisture dynamic stochastic model, soil moisture dynamics and its probability density function in a revegetated desert area was simulated. Results show that annual soil moisture dynamic changes of the revegetated desert area during the growing season complied with rainfall distribution; soil moisture probability presents a single-peak distribution in the plant rhizosphere layer (0–60 cm). The peak width in the 20 cm topsoil was wider than in other soils, and the distribution presented the strong fluctuations and multiple aggregates. The peak widths of 40 cm and 60 cm soil moisture probability distribution were small, which are in accordance with simulated results of the Rodriguez- Iturbe model. This confirms that the Rodriguez-Iturbe model has good applicability and can well simulate the statistical characteristics of soil moisture in an arid revegetated desert area.  相似文献   

20.
A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号