首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

2.
Soil stores a large amount of the terrestrial ecosystem carbon(C) and plays an important role in maintaining global C balance. However, very few studies have addressed the regional patterns of soil organic carbon(SOC) storage and the main factors influencing its changes in Chinese terrestrial ecosystems, especially using field measured data. In this study, we collected information on SOC storage in main types of ecosystems(including forest, grassland, cropland, and wetland) across 18 regions in China during the 1980 s(from the Second National Soil Survey of China, SNSSC) and the 2010 s(from studies published between 2004 and 2014), and evaluated its changing trends during these 30 years. The SOC storage(0–100 cm) in Chinese terrestrial ecosystems was 83.46 ± 11.89 Pg C in the 1980 s and 86.50 ± 8.71 Pg C in the 2010 s, and the net increase over the 30 years was 3.04 ± 1.65 Pg C, with an overall rate of 0.101 ± 0.055 Pg C yr~(–1). This increase was mainly observed in the topsoil(0–20 cm). Forests, grasslands, and croplands SOC storage increased 2.52 ± 0.77, 0.40 ± 0.78, and 0.07 ± 0.31 Pg C, respectively, which can be attributed to the several ecological restoration projects and agricultural practices implemented. On the other hand, SOC storage in wetlands declined 0.76 ± 0.29 Pg C, most likely because of the decrease of wetland area and SOC density. Combining these results with those of vegetation C sink(0.100 Pg C yr~(–1)), the net C sink in Chinese terrestrial ecosystems was about 0.201 ± 0.061 Pg C yr~(–1), which can offset 14.85%–27.79% of the fossil fuel C emissions from the 1980 s to the 2010 s. These first estimates of soil C sink based on field measured data supported the premise that China's terrestrial ecosystems have a large C sequestration potential, and further emphasized the importance of forest protection and reforestation to increase SOC storage capacity.  相似文献   

3.
Soil humic carbon is an important component of soil organic carbon(SOC) in terrestrial ecosystems. However, no study to date has investigated its geographical patterns and the main factors that influence it at a large scale, despite the fact that it is critical for exploring the influence of climate change on soil C storage and turnover. We measured levels of SOC, humic acid carbon(HAC), fulvic acid carbon(FAC), humin carbon(HUC), and extractable humus carbon(HEC) in the 0–10 cm soil layer in nine typical forests along the 3800-km North-South Transect of Eastern China(NSTEC) to elucidate the latitudinal patterns of soil humic carbon fractions and their main influencing factors. SOC, HAC, FAC, HUC, and HEC increased with increasing latitude(all P0.001), and exhibited a general trend of tropical subtropical temperate. The ratios of humic C fractions to SOC were 9.48%–12.27%(HAC), 20.68%–29.31%(FAC), and 59.37%–61.38%(HUC). Climate, soil texture, and soil microbes jointly explained more than 90% of the latitudinal variation in SOC, HAC, FAC, HEC, and HUC, and interactive effects were important. These findings elucidate latitudinal patterns of soil humic C fractions in forests at a large scale, and may improve models of soil C turnover and storage.  相似文献   

4.
开垦对内蒙古温带草地土壤不同有机碳组分的影响(英文)   总被引:3,自引:2,他引:1  
Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not been fully understood yet. In this paper, the role of cropping in soil organic C pool of different fractions was investigated in a meadow steppe region in Inner Mongolia of China, and the relationships between different C fractions were also discussed. The results indicated that the concentrations of different C fractions at steppe and cultivated land all decreased progressively with soil depth. After the conversion from steppe to spring wheat field for 36 years, total organic carbon (TOC) concentration at the 0 to 100 cm soil depth has decreased by 12.3% to 28.2%, and TOC of the surface soil horizon, especially those of 0-30 cm decreased more significantly (p<0.01). The dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at the depth of 0-40 cm were found to have decreased by 66.7% to 77.1% and 36.5% to 42.4%, respectively. In the S.baicalensis steppe, the ratios of soil DOC to TOC varied between 0.52% and 0.60%, and those in the spring wheat field were only in the range of 0.18%-0.20%. The microbial quotients (qMBs) in the spring wheat field, varying from 1.11% to 1.40%, were also lower than those in the S. baicalensis steppe, which were in the range of 1.50%-1.63%. The change of DOC was much more sensitive to cultivation disturbance. Soil TOC, DOC, and MBC were significantly positive correlated with each other in the S. baicalensis steppe, but in the spring wheat field, the correlativity between DOC and TOC and that between DOC and MBC did not reach the significance level of 0.05.  相似文献   

5.
Changes in soil organic carbon(SOC) in rangelands has been extensively investigated. Grazing in outlying rangeland areas has caused severe impacts on ecosystem functions. To reveal the effects of grazing on SOC, we evaluated the grassland in Xilin Gol League, Inner Mongolia, China. Grazing intensity was determined by using two image sets of vegetation index with normalized differences in grazing periods(July 12 th and 28th). The range of variation in vegetation index was then used to measure the grazing intensity. The SOC storage and density were obtained by conducting experiments on field soil samples. Results showed that 1) the grazing intensity in Xilin Gol League declined gradually from west to east; by contrast, the spatial distribution of SOC density increased gradually. 2) As grazing intensity increased, the carbon storage of rangeland decreased evidently. Minimum carbon storage was observed in grasslands classified under extreme overgrazing; by comparison, maximum values were found in areas classified under light overgrazing to moderate grazing. 3) The estimated soil carbon storage was 8.48 × 10~(11) kg, and the average carbon density was 4.08 kg/m~2. Our research demonstrated that grazing intensity likely affects soil carbon. Moderate grazing is an optimum strategy to maintain carbon storage and ensure sustainable grassland utilization.  相似文献   

6.
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area.  相似文献   

7.
中国亚热带地区造林对土壤碳周转的影响   总被引:5,自引:1,他引:4  
Afforestation in China’s subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests,plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover,we investigated SOC and its stable C isotope (δ13C) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C,δ13C and total nitrogen. Similarly to the vertical distribution of SOC in natural forests,SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC ?13C composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass 13C composition. Soil profiles with a change in photosynthetic pathway had a more complex 13C isotope composition distribution. During the 20 years after plantation establishment,the soil organic matter sources influenced both the δ13C distribution with depth,and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.  相似文献   

8.
Soil organic carbon(SOC) stocks in terrestrial ecosystems vary considerably with land use types. Grassland, forest, and cropland coexist in the agro-pastoral ecotone of Inner Mongolia, China. Using SOC data compiled from literature and field investigations, this study compared SOC stocks and their vertical distributions among three types of ecosystems. The results indicate that grassland had the largest SOC stock, which was 1.5-and 1.8-folds more than stocks in forest and cropland, respectively. Relative to the stock in 0–100 cm depth, grassland held more than 40% of its SOC stock in the upper 20 cm soil layer; forest and cropland both held over 30% of their respective SOC stocks in the upper 20 cm soil layer. SOC stocks in grazed grasslands were remarkably promoted after ≥20 years of grazing exclusion. Conservational cultivation substantially increased the SOC stocks in cropland, especially in the 0–40 cm depth. Stand ages, tree species, and forest types did not have obvious impacts on forest SOC stocks in the study area likely due to the younger stand ages. Our study implies that soil carbon loss should be taken into account during the implementation of ecological projects, such as reclamation and afforestation, in the arid and semi-arid regions of China.  相似文献   

9.
Vegetation biomass is an important component of terrestrial ecosystem carbon stocks. Grasslands are one of the most widespread biomes worldwideplaying an important role in global carbon cycling. Thereforestudying spatial patterns of biomass and their correlations to environment in grasslands is fundamental to quantifying terrestrial carbon budgets. The Eurasian steppean important part of global grasslandsis the largest and relatively well preserved grassland in the world. In this studywe analyzed the spatial pattern of aboveground biomass(AGB)and correlations of AGB to its environment in the Eurasian steppe by meta-analysis. AGB data used in this study were derived from the harvesting method and were obtained from three data sources(literatureglobal NPP database at the Oak Ridge National Laboratory Distributed Active Archive Center(ORNL)some data provided by other researchers). Our results demonstrated that:(1) as for the Eurasian steppe overallthe spatial variation in AGB exhibited significant horizontal and vertical zonality. In detailAGB showed an inverted parabola curve with the latitude and with the elevationwhile a parabola curve with the longitude. In additionthe spatial pattern of AGB had marked horizontal zonality in the Black Sea-Kazakhstan steppe subregion and the Mongolian Plateau steppe subregionwhile horizontal and vertical zonality in the Tibetan Plateau alpine steppe subregion.(2) Of the examined environmental variablesthe spatial variation of AGB was related to mean annual precipitation(MAP)mean annual temperature(MAT)mean annual solar radiation(MAR)soil Gravel contentsoil p H and soil organic content(SOC) at the depth of 0–30 cm. NeverthelessMAP dominated spatial patterns of AGB in the Eurasian steppe and its three subregions.(3) A Gaussian function was found between AGB and MAP in the Eurasian steppe overallwhich was primarily determined by unique patterns of grasslands and environment in the Tibetan Plateau. AGB was significantly positively related to MAP in the Black Sea-Kazakhstan steppe subregion(elevation 3000 m)the Mongolian Plateau steppe subregion(elevation 3000 m) and the surface(elevation ≥ 4800 m) of the Tibetan Plateau. Neverthelessthe spatial variation in AGB exhibited a Gaussian function curve with the increasing MAP in the east and southeast margins(elevation 4800 m) of the Tibetan Plateau. This study provided more knowledge of spatial patterns of AGB and their environmental controls in grasslands than previous studies only conducted in local regions like the Inner Mongolian temperate grasslandthe Tibetan Plateau alpine grasslandetc.  相似文献   

10.
Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches. Selecting Kaifeng and Zhoukou as typical cases of the Yellow River flooding area, the field survey, soil sample collection, laboratory experiment and Geographic Information System(GIS) spatial analysis methods were applied to study the spatial distribution characteristics and change mechanism of organic carbon components at different soil depths. The results revealed that the soil total organic carbon(TOC), active organic carbon(AOC) and nonactive organic carbon(NOC) contents ranged from 0.05–30.03 g/kg, 0.01–8.86 g/kg and 0.02–23.36 g/kg, respectively. The TOC, AOC and NOC contents in the surface soil layer were obviously higher than those in the lower soil layer, and the sequence of the content and change range within a single layer was TOCNOCAOC. Geostatistical analysis indicated that the TOC, AOC and NOC contents were commonly influenced by structural and random factors, and the influence magnitudes of these two factors were similar. The overall spatial trends of TOC, AOC and NOC remained relatively consistent from the 0–20 cm layer to the 20–100 cm layer, and the transition between high-and low-value areas was obvious, while the spatial variance was high. The AOC and NOC contents and spatial distribution better reflected TOC spatial variation and carbon accumulation areas. The distribution and depth of the sediment, agricultural land-use type, cropping system, fertilization method, tillage process and cultivation history were the main factors impacting the spatial variation in the soil organic carbon(SOC) components. Therefore, increasing the organic matter content, straw return, applying organic manure, adding exogenous particulate matter and conservation tillage are effective measures to improve the soil quality and attain sustainable agricultural development in the alluvial/sedimentary zone of the Yellow River.  相似文献   

11.
Soil organic carbon density(SOCD) and soil organic carbon sequestration potential(SOCP) play an important role in carbon cycle and mitigation of greenhouse gas emissions. However, the majority of studies focused on a two-dimensional scale, especially lacking of field measured data. We employed the interpolation method with gradient plane nodal function(GPNF) and Shepard(SPD) across a range of parameters to simulate SOCD with a 40 cm soil layer depth in a dryland farming region(DFR) of China. The SOCP was estimated using a carbon saturation model. Results demonstrated the GPNF method was proved to be more effective in simulating the spatial distribution of SOCD at the vertical magnification multiple and search point values of 3.0×10~6 and 25, respectively. The soil organic carbon storage(SOCS) of 40 cm and 20 cm soil layers were estimated as 22.28×10~(11) kg and 13.12×10~(11) kg simulated by GPNF method in DFR. The SOCP was estimated as 0.95×10~(11) kg considered as a carbon sink at the 20–40 cm soil layer. Furthermore, the SOCP was estimated as –2.49×10~(11) kg considered as a carbon source at the 0–20 cm soil layer. This research has important values for the scientific use of soil resources and the mitigation of greenhouse gas emissions.  相似文献   

12.
Climate change is now evident in the Qinghai-Tibet Plateau(QTP), with impacts on the alpine ecosystem, particularly on water and heat balance between the active layer and the atmosphere. Thus, we document the basic characteristics of changes in the water and heat dynamics in response to experimental warming in a typical alpine swamp meadow ecosystem. Data sets under open top chambers(OTC) and the control manipulations were collected over a complete year. The results show that annual(2008) air temperatures of OTC-1 and OTC-2 were 6.7 °C and 3.5 °C warmer than the control. Rising temperature promotes plant growth and development. The freeze-thaw and isothermal days of OTCs appeared more frequently than the control, owing to comparably higher water and better vegetation conditions. OTCs soil moisture decreased with the decrease of soil depth; however, there was an obviously middle dry aquifer of the control, which is familiar in QTP. Moreover, experimental warming led to an increase in topsoil water content due to poorly drained swamp meadow ecosystem with higher organic matter content and thicker root horizons. The results of this study will have some contributions to alpine cold ecosystem water-heat process and water cycle under climate change.  相似文献   

13.
Aboveground biomass in grasslands of the Qinghai-Tibet Plateau has displayed an overall increasing trend during 2003–2016, which is profoundly influenced by climate change. However, the responses of different biomes show large discrepancies, in both size and magnitude. By applying partial least squares regression, we calculated the correlation between peak aboveground biomass and mean monthly temperature and monthly total precipitation in the preceding 12 months for three different grassland types(alpine steppe, alpine meadow, and temperate steppe) on the central and eastern Qinghai-Tibet Plateau. The results showed that mean temperature in most preceding months was positively correlated with peak aboveground biomass of alpine meadow and alpine steppe, while mean temperature in the preceding October and February to June was significantly negatively correlated with peak aboveground biomass of temperate steppe. Precipitation in all months had a promoting effect on biomass of alpine meadow, but its correlations with biomass of alpine steppe and temperate steppe were inconsistent. It is worth noting that, in a warmer, wetter climate, peak aboveground biomass of alpine meadow would increase more than that of alpine steppe, while that of temperate steppe would decrease significantly, providing support for the hypothesis of conservative growth strategies by vegetation in stressed ecosystems.  相似文献   

14.
Yu  Xia  Zhou  Weijian  Wang  Yunqiang  Cheng  Peng  Hou  Yaoyao  Xiong  Xiaohu  Du  Hua  Yang  Ling  Wang  Ya 《地理学报(英文版)》2020,30(6):921-934
The vertical distribution and exchange mechanisms of soil organic and inorganic carbon(SOC, SIC) play an important role in assessing carbon(C) cycling and budgets. However, the impact of land use through time for deep soil C(below 100 cm) is not well known. To investigate deep C storage under different land uses and evaluate how it changes with time, we collected soil samples to a depth of 500 cm in a soil profile in the Gutun watershed on the Chinese Loess Plateau(CLP); and determined SOC, SIC, and bulk density. The magnitude of SOC stocks in the 0–500 cm depth range fell into the following ranking: shrubland(17.2 kg m~(-2)) grassland(16.3 kg m~(-2)) forestland(15.2 kg m~(-2)) cropland(14.1 kg m~(-2)) gully land(6.4 kg m~(-2)). The ranking for SIC stocks were: grassland(104.1 kg m~(-2)) forestland(96.2 kg m~(-2)) shrubland(90.6 kg m~(-2)) cropland(82.4 kg m~(-2)) gully land(50.3 kg m~(-2)). Respective SOC and SIC stocks were at least 1.6-and 2.1-fold higher within the 100–500 cm depth range, as compared to the 0–100 cm depth range. Overall SOC and SIC stocks decreased significantly from the 5 th to the 15 th year of cultivation in croplands, and generally increased up to the 70 th year. Both SOC and SIC stocks showed a turning point at 15 years cultivation, which should be considered when evaluating soil C sequestration. Estimates of C stocks greatly depends on soil sampling depth, and understanding the influences of land use and time will improve soil productivity and conservation in regions with deep soils.  相似文献   

15.
Estimation of soil organic carbon reservoir in China   总被引:6,自引:0,他引:6  
1 IntroductionResearch on global change has aroused many scientists' attention to the balance, storage and spatial distribution of carbon in the terrestrial ecosystem. The carbon stored in soil is 2.5-3 times as much as that stored in plants[1,2], so the distribution and conversion of carbon in humus has become one of the global research foci on organic carbon at present[3]. Organic carbon and nitrogen contents in soils are not only important components of soils but also the most important eco…  相似文献   

16.
Transport of organic carbon via rivers to estuary is a significant geochemical process in the global carbon cycle.This paper presents bulk total organic carbon(TOC) from the Dongjiang catchment to the adjacent Humen outlet,and discusses the applicability of δ13C and ratio of carbon to nitrogen(C/N) as indicators for sources of organic matter in the surface sediments.Survey results showed that organic carbon concentration in summer were higher than in the winter.An elevated trend of TOC occurred along the river to the Humen outlet in both surveys,and the highest mean values of dissolved and particular organic carbon(DOC~279 μmol L–1 and POC~163 μmol L–1) were observed in the urban deltaic region in summer flood flow.Winter samples had a wide range of δ13C and C/N(δ13C –24.6‰ to –30.0‰,C/N 4–13),and summer ones varied slightly(δ13C –24.2‰ to –27.6‰,C/N 6–18).As results suggest that POC in the three zones of upstream-delta-outlet dominantly came from riverbank soil,phytoplankton and agricultural C3 plants in winter,whereas main sources were from the riverbank and mangrove soil in summer.Moreover,anthropogenic sewage inputs had 11% and 7% contribution to POC in the deltaic and outlet.Transport accompanied with seasonal freshwater variation,phytoplankton production and degradation,and removal behavior caused variation of organic carbon concentration.The results also discovered that TOC export bulk in Dongjiang was approximately one quarter of Humen flux in the dry flow,and anthropogenic activity significantly impacted the river export contribution.  相似文献   

17.
To explore the optimal land-use for soil carbon(C) sequestration in Inner Mongolian grasslands,we investigated C and nitrogen(N) storage in soil and soil fractions in 8 floristically and topographically similar sites which subjected to different land-use types(free-grazing,grazing exclusion,mowing,winter grazing,and reclamation).Compared with free-grazing grasslands,C and N storage in the 0-50 cm layer increased by 18.3%(15.5 Mg C ha-1) and 9.3%(0.8 Mg N ha-1) after 10-yr of grazing exclusion,respectively,and 21.9%(18.5 Mg C ha-1) and 11.5%(0.9 Mg N ha-1) after 30-yr grazing exclusion,respectively.Similarly,soil C and N storage increased by 15.3%(12.9 Mg C ha-1) and 10.2%(0.8 Mg N ha-1) after 10-yr mowing,respectively,and 19.2%(16.2 Mg C ha-1) and 7.1%(0.6 Mg N ha-1) after 26-yr mowing,respectively.In contrast,soil C and N storage declined by 10.6%(9.0 Mg C ha-1) and 11.4%(0.9 Mg N ha-1) after 49-yr reclamation,respectively.Moreover,increases in C and N storage mainly occurred in sand and silt fractions in the 0-10 cm soil layer with grazing exclusion and mowing.Our findings provided evidence that Inner Mongolian grasslands have the capacity to sequester C and N in soil with improved management practices,which were in the order:grazing exclusion > mowing > winter grazing > reclamation.  相似文献   

18.
Determining an optimal sample size is a key step in designing field surveys, and is particularly important for detecting the spatial pattern of highly variable properties such as soil organic carbon(SOC). Based on 550 soil sampling points in the nearsurface layer(0 to 20 cm) in a representative region of northern China's agro-pastoral ecotone, we studied effects of four interpolation methods such as ordinary kriging(OK), universal kriging(UK), inverse distance weighting(IDW) and radial basis function(RBF) and random subsampling(50, 100, 200, 300, 400, and 500) on the prediction accuracy of SOC estimation.When the Shannon's Diversity Index(SHDI) and Shannon's Evenness Index(SHEI) was 2.01 and 0.67, the OK method appeared to be a superior method, which had the smallest root mean square error(RMSE) and the mean error(ME) nearest to zero. On the contrary, the UK method performed poorly for the interpolation of SOC in the present study. The sample size of 200 had the most accurate prediction; 50 sampling points produced the worst prediction accuracy. Thus, we used 200 samples to estimate the study area's soil organic carbon density(SOCD) by the OK method. The total SOC storage to a depth of 20 cm in the study area was 117.94 Mt, and its mean SOCD was 2.40 kg/m~2. The SOCD kg/(C·m~2) of different land use types were in the following order: woodland(3.29) grassland(2.35) cropland(2.19) sandy land(1.55).  相似文献   

19.
The recent economic progress in China has stimulated scientific research in sandy lands in Inner Mongolia,where the Institute of Desert Research,Chinese Academy of Sciences(now CAREERI) has a leading position.Economic progress naturally creates financial resources for research,and also a dire need for solutions to emerging environmental problems following development,where wind-blown dust from Inner Mongolia adds to the severe particle air pollution in many Chinese cities.This paper presents selected results and observations made during Chinese–Swedish cooperation projects spanning 25 years.Results and experiences from sandy land research concerning climate,vegetation,root dynamics,soil carbon balances,etc.are briefly presented.The evolution of the Naiman Desertification Research Station,520 km northeast of Beijing,from 1988 to 2013 is duly noted and commented.An overview of the ICBM soil carbon model concept follows and a few recommendations for future scientific advancement in Chinese arid lands are given.  相似文献   

20.
Increasing soil organic carbon(SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity.It has been reported by many studies that land-use changes can significantly influence the sequestration of SOC.However,the SOC sequestration potential(SOCP,the difference between the saturation and the existing content of SOC) caused by land-use change,and the effects of land-use optimization on the SOCP are still not well understood.In this research,we modeled the effects of land-use optimization on SOCP in Beijing.We simulated three land-use optimization scenarios(uncontrolled scenario,scale control scenario,and spatial restriction scenario) and assessed their effects on SOCP.The total SOCP(0–20 cm) in Beijing in 2010 was estimated as 23.82 Tg C or 18.27 t C/ha.In the uncontrolled scenario,the built-up land area of Beijing would increase by 951 km~2 from 2010 to 2030,and the SOCP would decrease by 1.73 Tg C.In the scale control scenario,the built-up land area would decrease by 25 km~2 and the SOCP would increase by 0.07 Tg C from 2010 to 2030.Compared to the uncontrolled scenario,the SOCP in 2030 of Beijing would increase by 0.77 Tg C or 0.64 t C/ha in the spatial restriction scenario.This research provides evidence to guide planning authorities in conducting land-use optimization strategies and estimating their effects on the carbon sequestration function of land-use systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号