首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用Wilcox天文台1975年到2010年间的太阳磁场数据,分析了太阳平均磁场在太阳活动极大和极小时期的短时周期性.结果显示太阳磁场主要具有9 d、13.5 d、27 d左右的周期.在太阳活动极大时期,27 d左右周期最为显著,而在太阳活动极小时期最显著的周期为13.5 d左右(1984~1986年间的太阳活动极小时期除外).这些结果说明太阳的活动区域在活动极大和极小时期具有明显不同的分布.  相似文献   

2.
太阳活动除了具有公认的11 a周期以外,还存在着一个80~120 a变化的世纪周期,也称为Gleissberg周期.使用傅里叶变换和小波分析的方法,分析了1700~2008年的年均黑子数世纪周期的变化规律.得到结果:在太阳活动世纪周期的低谷期,所对应11 a太阳周的极大年和极小年的黑子数目都比其他太阳周的低.在这300多年里,世纪周期的周期长度也有变化.由世纪周期的变化趋势,预测第24、25太阳活动周将处于世纪周期的低谷期.通过对以前3个世纪周期的谷期黑子数求平均的方法,得到第24,25太阳周极大年年均黑子数为63.6±21.1,极小年的为2.2±2.1.这些结果有助于理解当前太阳活动反常宁静这一现象.  相似文献   

3.
太阳总辐照在23和24太阳活动周的显著周期分别为35 d和26 d,进而推断太阳的准旋转周期在23和24太阳活动周也分别为35 d和26 d.太阳总辐照在24周极小期的值可能与蒙德极小期的值相近.在一个太阳旋转周到几个月的时间尺度上,太阳黑子是引起太阳总辐照变化的主要原因,但不是唯一的原因;在几天到一个太阳旋转周的时间尺度上,太阳总辐照的变化与MgⅡ特征指数是不相关的.  相似文献   

4.
太阳活动周期及其数学描述   总被引:1,自引:0,他引:1  
概述和分析了太阳活动周期的研究进展,太阳活动呈现非常复杂的周期性,其周期性范围从几天至上百年,11年周期意义比较大,也比较明显;几天至几个月的周期性可能发生在太阳活动高峰期,155天或更短的周期存在,对中期预报有帮助;几年左右的周期对气象学的研究有作用;"蒙德极小期"是否存在至今还没有定论.对太阳活动11年周期的数学描述虽然很多,从效果上看,一般情况下,参数较多的函数计算量很大,误差相对较小;参数少的函数相比参数多的函数误差大,但计算量小;目前还没有一个非常理想的函数.能够对每个活动周都能很好的描述且误差很小.  相似文献   

5.
冕洞的研究在近二十多年里取得了丰硕的成果。本文回顾了冕洞的发现及观测历史,系统阐述了冕洞的结构特征、形成及演化规律,讨论了冕洞对日地空间产生的影响,冕洞与超级活动区的关系以及冕洞在太阳活动预报中所起的作用,在此基础上利用1970—1995年的冕洞资料对冕洞的时空分布和磁极性演化规律与太阳活动周的关系,以及冕洞与太阳风速度、地磁扰动等方面进行分析研究,得出以下结论:(1)冕洞在南北半球的分布在形态上基本是对称的,但在冕洞数量上北半球稍占优势;(2)冕洞的盛衰演化呈周期性,表现为赤道冕洞周期与黑子周期是完全一致的,极冕洞周期与黑子周期相位相差180°;(3)赤道冕洞的纬度分布随太阳活动周上升而上升,当太阳活动周达到极大值时,它也达到极大,然后再随太阳活动周下降而下降,极冕洞的纬度延伸方向演化与赤道冕洞相反;(4)极冕洞的极场呈11年周期性,并且极场反转出现在太阳活动峰年期间;(5)太阳风和地磁扰动与冕洞的演化有着密切的关系  相似文献   

6.
在太阳活动与地震活动相关研究的基础上指出:在周期性太阳活动的调控下,地震活动也显示出与太阳活动相关的周期性变化。云南22年的地震周期在20世纪形成了4个大震活跃期和4个相对平静期。根据地震活动和太阳活动的若干相关规律,对云南地区在本世纪第1次大震活跃期的到来作了趋势性预测:云南在本世纪第1次大震活跃期的第1个大震(M=7.0左右)将于2012年到来,那时正是太阳活动第24周下降段的开始,离上次大震活跃期的最后一个大震(丽江,M=7.0,1996年)恰好是16年。在该大震活跃期里,还将发生若干个M=7.0左右的大震和一些较小的地震,其大震爆发的时间将遵循Tx=(Tn-Tn-1)1/2(a年)的非线性经验规律发生。  相似文献   

7.
本文介绍第21周太阳活动的概况。简要报导1976年极小期以来的太阳活动观测结果。对1977年9月、1978年2月和4—5月的三个大活动区及其黑子群的形态特征和耀斑活动分别予以描述。利用大约二年的活动周升段的黑子观测数据,对21周的活动峰期和峰值进行预测评论。  相似文献   

8.
本文讨论了地极周年运动多年变化与大气环流多年振动的关系,得到以下主要结果:(1)周年极运动多年变化与大气环流多年振动有关,(2)在太阳活动11年的偶周期内,周年极运动振幅和位相基本呈现单周期变化;而在奇周期内,似乎出现双周期变化现象;(3)太阳活动可能是引起周年极运动多年变化的扰动因子.  相似文献   

9.
探讨太阳周极小年的性质关系到确定极小值的位置及太阳周的长度,从而与太阳活动周的研究、太阳活动预报及水文、气象等地球物理现象的研究密切相关.当前对第22黑子周特征值的预报相当弥散,第22周起始极小是否已经出现的问题受到普遍关注.不同的太阳活动指标达到极值的时间不同,一般以太阳黑子数月均平滑最低值的位置来定义极小年.  相似文献   

10.
2011年6月12-16日,一年一度的美国天文学会年会在新墨西哥州的小城拉斯克鲁塞斯(Las Cruces)举行。6月14日,举行了简短的新闻发布会,会上美国国家太阳天文台的弗朗克·希尔博士(Frank Hill)说,三方面的观测研究表明,预计2020年到来的第25太阳活动周,至少推迟一二年到来,或许第25太阳活动周根本不再出现。也许太阳又一次出现类似1645—1715年的蒙德极小期(Maunder Minimum),再次进入较长的太阳活动平静期。在1645~1715年那70年中,地球经历过一次小冰川期。  相似文献   

11.
The solar system's position in the Galaxy is an exclusive one, since the Sun is close to the corotation circle, which is the place where the angular velocity of the galactic differential rotation is equal to that of density waves displaying as spiral arms. Each galaxy contains only one corotation circle; therefore, it is an exceptional place. In the Galaxy, the deviation of the Sun from the corotation is very small — it is equal to ΔR/R ≈0.03, where ΔR=R c ?R ,R c is the corotation distance from the galactic center andR is the Sun's distance from the galactic center. The special conditions of the Sun's position in the Galaxy explain the origin of the fundamental cosmogony timescalesT 1≈4.6×109 yr,T 2?108 yr,T 3?106 yr detected by the radioactive decay of various nuclides. The timescaleT 1 (the solar system's ‘lifetime’) is the protosolar cloud lifetime in a space between the galactic spiral arms. The timescaleT 2 is the presolar cloud lifetime in a spiral arm.T 3 is a timescale of hydrodynamical processes of a cloud-wave interaction. The possibility of the natural explanation of the cosmogony timescales by the unified process (on condition that the Sun is near the state of corotation) can become an argument in favour of the fact that the nearness to the corotation is necessary for the formation of systems similar to the Solar system. If the special position of the Sun is not incidental, then the corotation circles of our Galaxy, as well as those of other galaxies, are just regions where situations similar to ours are likely to be found.  相似文献   

12.
Perturbations in the motion of the Moon are computed for the effect by the oblateness of the Earth and for the indirect effect of planets. Based on Delaunay's analytical solution of the main problem, the computations are performed by a method of Fourier series operation. The effect of the oblateness of the Earth is obtained to the second order, partly adopting an analytical evaluation. Both in longitude and latitude are found a few terms whose coefficient differs from the current lunar ephemeris based on Brown's theory by about 0.01. While, concerning the indirect effect of planets, several periodic terms in the current ephemeris seem to have errors reaching 0.05.As for the secular variations of and due to the figure of the Earth and the indirect effect of planets, the newly-computed values agree within 1/cy with Brown's results reduced to the same values of the parameters. Further, the accelerations in the mean longitude, and caused by the secular changes in the eccentricity of the Earth's orbite and in the obliquity of the ecliptic are obtained. The comparison with Brown shows an agreement within 0.3/cy2 for the former cause and 0.02/cy2 for the latter. An error is found in the argument of the principal term for the perturbations due to the ecliptic motion in the current ephemeris.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

13.
It is suggested that the overall early melting of the lunar surface is not necessary for the explanation of facts and that the structure of highlands is more complicated than a solidified anorthositic ‘plot’. The early heating of the interior of the Moon up to 1000K is really needed for the subsequent thermal history with the maximum melting 3.5 × 109 yr ago, to give the observed ages for mare basalts. This may be considered as an indication that the Moon during the accumulation retained a portion of its gravitational energy converted into heat, which may occur only at rapid processes. A rapid (t < 103 yr) accretion of the Moon from the circumterrestrial swarm of small particles would give necessary temperature, but it is not compatible with the characteristic time 108 yr of the replenishment of this swarm which is the same as the time-scale of the accumulation of the Earth. It is shown that there were conditions in the circumterrestial swarm for the formation at a first stage of a few large protomoons. Their number and position is evaluated from the simple formal laws of the growth of satellites in the vicinity of a planet. Such ‘systems’ of protomoons are compared with the observed multiple systems, and the conclusion is reached that there could have been not more than 2–3 large protomoons with the Earth. The tidal evolution of protomoon orbits was short not only for the present value of the tidal phase-lag but also for a considerably smaller value. The coalescence of protomoons into a single Moon had to occur before the formation of the observed relief on the Moon. If we accept the age 3.9 × 109 yr for the excavation of the Imbrium basin and ascribe the latter to the impact of an Earth satellite, this collision had to be roughly at 30R, whereR is the radius of the Earth, because the Moon at that time had to be somewhere at this distance. Therefore, the protomoons had to be orbiting inside 20–25R, and their coalescence had to occur more than 4.0x109 yr ago. The energy release at coalescence is equivalent to several hundred degrees and even 1000 K. The process is very rapid (of the order of one hour). Therefore, the model is valid for the initial conditions of the Moon.  相似文献   

14.
Rozelot  J.P.  Godier  S.  Lefebvre  S. 《Solar physics》2001,198(2):223-240
In this paper we first emphasize why it is important to know the successive zonal harmonics of the Sun's figure with high accuracy: mainly fundamental astrometry, helioseismology, planetary motions and relativistic effects. Then we briefly comment why the Sun appears oblate, going back to primitive definitions in order to underline some discrepancies in theories and to emphasize again the relevant hypotheses. We propose a new theoretical approach entirely based on an expansion in terms of Legendre's functions, including the differential rotation of the Sun at the surface. This permits linking the two first spherical harmonic coefficients (J 2 and J 4) with the geometric parameters that can be measured on the Sun (equatorial and polar radii). We emphasize the difficulties in inferring gravitational oblateness from visual measurements of the geometric oblateness, and more generally a dynamical flattening. Results are given for different observed rotational laws. It is shown that the surface oblateness is surely upper bounded by 11 milliarcsecond. As a consequence of the observed surface and sub-surface differential rotation laws, we deduce a measure of the two first gravitational harmonics, the quadrupole and the octopole moment of the Sun: J 2=−(6.13±2.52)×10−7 if all observed data are taken into account, and respectively, J 2=−(6.84±3.75)×10−7 if only sunspot data are considered, and J 2=−(3.49±1.86)×10−7 in the case of helioseismic data alone. The value deduced from all available data for the octopole is: J 4=(2.8±2.1)×10−12. These values are compared to some others found in the literature. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005238718479  相似文献   

15.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

16.
In order to understand the reason of the existence of the electric field in the magnetosphere, and for the theoretical evaluation of its value, it is necessary to find the solution of the problem of determination of the magnetosphere boundary form in the frameworks of the continuum medium model which takes into account part of the magnetospheric plasma movement in supporting the magnetospheric boundary equilibrium. A number of problems for finding the distribution of the pressure, the density, the magnetic field and the electric field on the particular tangential discontinuity is considered in the case when the form of discontinuity is set (the direct problem) and a number of problems for finding the form of the discontinuity and the distribution of the above-mentioned physical quantities on the discontinuity is considered when the law of the change of the external pressure along the boundary is set (for example, with the help of the approximate Newton equation). The problem which is considered here, which deals with the calculation of the boundary form and with the calculation of the distribution of the corresponding physical quantities on the discontinuity of the 1st kind for the compressible fluid with the magnetic field with field lines which are perpendicular to the plane of the flow in question, concerns the last sort of problems. The comparison of the results of the calculation with the data in the equatorial cross-section of the magnetosphere demonstrates that the calculated form of the boundary, the value of the velocity of the return flow and the value of the electric field on the magnetopause, agree satisfactorily with the observational data.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号