首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
延河泉岩溶水系统Sr/Mg、Sr/Ca分布特征及其应用   总被引:19,自引:2,他引:19  
山西省延河泉岩溶水系统是我国北方岩溶大泉之一。依据碱土金属比值Sr Mg、Sr Ca与矿化度关系,分析了延河泉岩溶水系统Sr Mg、Sr Ca分布规律及形成条件。从补给区到径流区、排泄区,Sr Mg、Sr Ca值逐渐增高;径流条件好,Sr Mg、Sr Ca值低;径流条件差,其值高;径流滞缓区最高。并且Sr Mg、Sr Ca值主要受径流条件控制,不受人为作用的影响。因此,Sr Mg、Sr Ca是比较理想的天然示踪剂。根据Sr Mg、Sr Ca值将延河泉岩溶水系统划分为三个子系统,即下河泉子系统(泉1、2、3、5),延河泉子系统(泉4、6),南部散泉子系统(泉7、8、9)。  相似文献   

2.
洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义   总被引:25,自引:7,他引:18  
通过桂林地区盘龙洞1号石笋和丰鱼岩4号石笋的Ca、Mg、Sr 及其比值的研究,并通过与氧同位素记录的对比分析,初步认为洞穴次生化学沉积物中的Sr、Mg、Ca 及其比值的形成既取决于环境温度的变化,又取决于水文条件的变化。当大气环流系统未发生显著变化时,岩溶水文地质条件较相似,这时, Mg /Ca和Mg /Sr 比值的变化主要取决于环境温度的变化;而当大气环流系统发生显著变化时(如出现冰期和间冰期的显著变化) , Mg /Ca 和Mg / Sr 比值则主要取决于水文地质条件,即降水条件的变化。尽管在一定的条件下利用Mg、Sr、Ca指标可以获得很高分辨率的信息,但由于Mg、Sr、Ca 地球化学习性的复杂性,以及其影响因素的多元化,这种指标作为单独指标应用就会十分危险。   相似文献   

3.
微量元素是岩溶洞穴沉积中非常重要的一类古气候环境替代指标,为近20年来国内外的一个研究热点。总结前人的研究,主要取得了以下一些重要认识:(1)洞穴上覆土壤 和围岩是洞穴次生碳酸盐沉积Mg、Sr的主要来源;(2)Mg/Ca与Sr/Ca能够指示气候环境变化,但需结合其它指标综合考虑。(3)洞穴次生碳酸盐沉积Mg/Ca与Sr/Ca受多种气候环境因素(包括土壤和围岩的组成和性质、水-岩相互作用、先期碳酸盐沉积、分配系数等)影响,其古气候环境指示意义具有多解性;(4)矿物结晶作用对Mg/Ca与Sr/Ca有一定的影响,特别是文石在向方解石转变的过程中容易丢失Mg、Sr,此外,杂质的混入也将抑制Mg、Sr进入方解石,从而引起洞穴次生碳酸盐沉积Mg/Ca与Sr/Ca比值的变化。今后应进一步加强对石笋中这些微量元素的影响机制研究,尤其是对一些影响因素与微量元素含量变化之间的定量关系进行探讨。   相似文献   

4.
岩溶水中一般含有Sr^2 ,且其浓度会随着径流途径的延长而增大,在埋藏滞留区最大,相应的ρ(Ca)/ρ(sr)、ρ(Mg)/ID(Sr)值也最小。依据这一规律分析了以碳酸盐岩为热储层的郑庄地热异常区浅部地下水中ρ(Ca)/ρ(Sr)、ρ(Mg)/ρ(sr)值的分布特征,发现ρ(Ca)/ρ(Sr)、ID(Mg)/ID(sr)值异常区域与浅部地下水水温异常区域非常一致,ρ(Ca)/ρ(Sr)、ρ(Mg)/ρ(Sr)值与地下水水温呈线性关系,随着地下水水温的升高,其ρ(Ca)/ρ(Sr)、ρ(Mg)/ρ(Sr)值减小,表明ρ(Ca)/ρ(Sr)、ρ(Mg)ρ(Sr)值对岩溶型低温地热田的地热异常具有良好的示踪意义。  相似文献   

5.
豫西鸡冠洞洞穴水及现代沉积物Mg, Sr和Ba记录及其意义   总被引:4,自引:1,他引:3  
采用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体光谱仪(ICP-OES)对2009年12月-2013年8月采自河南省栾川县鸡冠洞洞穴水(滴水、池水及地下河水)和现代碳酸盐沉积物的 Ca、Mg、Sr和 Ba 微量元素地球化学指标进行了分析。结果显示:(1)鸡冠洞洞穴水的 Mg/Ca对地表环境的干湿条件变化响应迅速,具体表现为池水和地下河水 Mg/Ca旱季高而雨季低,而 Sr/Ca 和Ba/Ca的变化与降水和气温的关系并不明显;(2)鸡冠洞现代沉积物的 Mg/Ca 变化与滴水有着良好的对应关系,但现代沉积物的 Sr/Ca和 Ba/Ca可能受大气粉尘活动和地表土壤的影响,变化趋势与 Mg/Ca 相反;(3)鸡冠洞碳酸盐岩与岩溶水间 Sr/Ca和 Mg/Ca的分配系数KSr值在0.02-0.18之间,KMg值在0.01-0.03之间,KMg值与洞穴温度的正相关关系不明显。  相似文献   

6.
青藏高原湖泊水化学与盐度的相关性初步研究   总被引:3,自引:0,他引:3  
王海雷  郑绵平 《地质学报》2010,84(10):1517-1522
本文综合分析了青藏高原地区400多个湖泊的水化学成分(Mg2+、Ca2+、Sr2+、Sr/Ca和Mg/Ca)与湖水盐度的相关关系,以及这种关系随着湖水变化(不同采样时间和采样点以及蒸发实验)而产生的变化规律。认为:在青藏高原湖泊中,Mg2+与盐度具有较为稳定的正相关关系,而Ca2+、Sr2+、Sr/Ca以及Mg/Ca与盐度的相关性较弱且不稳定。而在特定的水化学类型的湖泊中,碳酸盐型湖泊的Mg2+、Ca2+以及Mg/Ca与盐度均没有明显的相关性。硫酸盐型湖泊中Mg2+和盐度呈现较高的正相关关系,而Ca2+以及Mg/Ca与盐度的相关性仍很弱。而在氯化物型湖泊中,Mg2+与盐度呈更强的正相关关系,Ca2+与盐度也呈一定的正相关关系,而Mg/Ca与盐度的相关性依然很弱。在特定的单个湖泊中,Ca2+以及Mg/Ca与盐度的相关性仍然不稳定或很弱,而Mg2+与盐度仍然保持明显的正相关关系。在青藏高原利用湖相沉积恢复特定湖区古环境演化序列的时候,Mg2+浓度是湖水古盐度一个较好的转换指标,而在应用Mg/Ca这一指标时应谨慎。  相似文献   

7.
雪玉洞岩溶地下水、地表水Ca2+、Mg2+、Sr2+变化特征研究   总被引:2,自引:1,他引:1  
通过2011年对重庆丰都雪玉洞洞内滴水和地下河河水,上覆岩层中出露的表层岩溶泉水和雪玉洞附近龙河河水等不同类型水中Ca2+、Mg2+、Sr2+浓度及Mg/Ca、Sr/Ca值的研究,发现不同水的Ca2+、Mg2+、Sr2+随外界降水条件的改变而出现明显变化。表层岩溶泉水Ca2+变化能够敏感反应外界降水条件改变,滴水对外界降雨的反应滞后接近1个月,地下河Ca2+可以反应雨季和旱季的变化,地表河水Ca2+全年比较稳定,但是对特殊干旱天气有显著响应。2011年不同类型水的Mg2+、Sr2+全年变化趋势基本一致,在降水较多的3、5、10月呈低值,在其他降水较少的月份浓度相对较高。各离子的这种变化特征主要是受到稀释效应、CO2效应以及所在地层的岩性的影响。雪玉洞不同类型水的Mg/Ca、Sr/Ca值呈现出滴水>地表河>地下河>表层岩溶泉的特点,反映出不同类型水在含水介质中滞留时间的长短,并且Mg/Ca、Sr/Ca值在降水较多的月份降低,在降水较少的月份升高;受碳酸钙的前期沉淀和运移路径差异的影响,不同类型水的Mg/Ca、Sr/Ca值变化稍有不同。因此,不同类型水的离子变化及其比值对外界降水条件变化的响应特征和时间的不同,决定了在利用元素及其比值反映外界环境变化时也要区别对待。   相似文献   

8.
颗石藻元素地球化学研究进展   总被引:2,自引:0,他引:2  
颗石藻元素地球化学研究在古海洋学研究中有着重要意义。目前开始研究的主要有Sr/Ca和Mg/Ca比值。研究发现,颗石的Sr/Ca比值主要受颗石藻生长和钙化速度控制,其次受温度影响;而Mg/Ca比值主要与温度有关,属种间受影响程度有差别。样品清洗和单种分离是颗石藻元素地球化学分析的重点和难点。倒置显微镜挑出单种颗石是目前最为方便且准确的分析方法。颗石Sr/Ca比值可以用来反映古生产力,Mg/Ca比值可以用来重建古温度。  相似文献   

9.
胶州湾沉积岩心化学元素聚集特征   总被引:1,自引:0,他引:1  
本文对胶州湾沉积岩心B3、C2、C4、B6、D4和D6进行了210^Pb放射活度的测定,在相应的岩层测定了化学元素Ca、K、Li、Mg、Na、Rb、Sr和V。结果表明,^210Pb的分布模式反映了胶州湾不同区域沉积速率和沉积环境。胶州湾沉积岩心中化学元素Ca、K、Li、Mg、Na、Rb、Sr、和V的垂直分布,在不同的区域和不同的地层年代都有明显的变化。胶州湾现在和过去沉积过程中化学元素的聚集速率发生了明显的变化,揭示了采样站位物质来源和沉积环境。反映了近百年来人类工农业活动对胶州湾环境的影响。  相似文献   

10.
通过对流域内不同类型水取样分析,发现流经不同岩层的地下水具有不同的ρ(Sr2+)、ρ(Sr)/ρ(Ca)、ρ(Sr)/ρ(Mg)值.一般来说,流经砂岩层的基岩裂隙水ρ(Sr2+)低,而ρ(Sr)/ρ(Ca)、ρ(Sr)/ρ(Mg)值较高,当砂岩中的基岩裂隙水受到灰岩岩溶水或煤系地层水补给时,其ρ(Sr2+)、ρ( Sr...  相似文献   

11.
Relative percentages of sand, silt, and clay from samples of the same till unit are not identical because of different lithologies in the source areas, sorting in transport, random variation, and experimental error. Random variation and experimental error can be isolated from the other two as follows. For each particle-size class of each till unit, a standard population is determined by using a normally distributed, representative group of data. New measurements are compared with the standard population and, if they compare satisfactorily, the experimental error is not significant and random variation is within the expected range for the population. The outcome of the comparison depends on numerical criteria derived from a graphical method rather than on a more commonly used one-way analysis of variance with two treatments. If the number of samples and the standard deviation of the standard population are substituted in at-test equation, a family of hyperbolas is generated, each of which corresponds to a specific number of subsamples taken from each new sample. The axes of the graphs of the hyperbolas are the standard deviation of new measurements (horizontal axis) and the difference between the means of the new measurements and the standard population (vertical axis). The area between the two branches of each hyperbola corresponds to a satisfactory comparison between the new measurements and the standard population. Measurements from a new sample can be tested by plotting their standard deviation vs. difference in means on axes containing a hyperbola corresponding to the specific number of subsamples used. If the point lies between the branches of the hyperbola, the measurements are considered reliable. But if the point lies outside this region, the measurements are repeated. Because the critical segment of the hyperbola is approximately a straight line parallel to the horizontal axis, the test is simplified to a comparison between the means of the standard population and the means of the subsample. The minimum number of subsamples required to prove significant variation between samples caused by different lithologies in the source areas and sorting in transport can be determined directly from the graphical method. The minimum number of subsamples required is the maximum number to be run for economy of effort.  相似文献   

12.
Summary Finite element analyses were conducted to investigate the magnitude of tensile strains imposed on landfill liners due to the formation of subsurface cavities. The study incorporated the significance of using geogrids to reduce the magnitude of strains and possibly the potential for collapse of landfill liners. Variations of key parameters included depth of overburden (D) and diameter of the cavity (B). Estimated stress distributions were compared to theoretical values obtained from a model reported in the literature. Results indicated that, contrary to conventional wisdom, the critical area based on the mechanics of arching was above the edge of the cavity where stress concentration occurred. Incorporation of geogrid reinforcement reduced the magnitude of tensile strains. The tensile force in the geogrid was dependent upon the size of the cavity, the depth of the overburden, and the applied pressure.  相似文献   

13.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

14.
《Geodinamica Acta》2013,26(1-3):127-143
The western part of the Polish Outer Carpathians is built up from the thrust, imbricated Upper Jurassic-Neogene flysch deposits. The following Outer Carpathian nappes have been distinguished: Magura Nappe, Fore-Magura group of nappes, Silesian, Subsilesian and Skole nappes. Interpretation of seismic and magnetotelluric survey from the region South of Wadowice, allows observation of relationship between basement and flysch nappes in the Outer Carpathians. It also allows identification of dislocation cutting both flysch nappes and their basement. All the Outer Carpathian nappes are thrust over the southern part of the North European Platform. The platform basement is composed of older Precambrian metamorphic rocks belonging to the Bruno-Vistulicum terrane. Sedimentary cover consists of Paleozoic, Mesozoic and Neogene sequences. The characteristic features of this boundary are horsts and troughs of general direction NW-SE, turning W-E. Faults cutting only the consolidated basement and the Paleozoic cover were formed during the Hercynian Orogeny in the Carboniferous and the Early Permian. Most of the older normal faults were covered by allochtonous flysch nappes forming thus the blind faults. During the last stage of the geodynamic development the Carpathians thrust sheets moved towards their present position. Displacement of the Carpathians northwards is related to development of dextral strike-slip faults of N—S direction. The orientation of this strike-slip fault zones zone more or less coincides with the surface position of the major faults perpendicular to the strike of the Outer Carpathian thrustsheets. The huge fault cuts formations from the Paleozoic basement through the flysch allochton between the boreholes in Sucha Beskidzka area. The displacement of nappes of the Carpathian overthrust and diapiric extrusion of plastic formations of the lower flysch units occurred along this fault.  相似文献   

15.
Stratigraphic units are defined and described for the Lower Carboniferous succession in the Walterstown-Kentstown area of Co. Meath, Ireland. A complete (unexposed) Courceyan succession from the terrestrial red bed facies of the Baronstown Formation to the Moathill Formation of the Navan Group has been penetrated in several boreholes. Although the lower part of the sequence is comparable with the Courceyan succession at Navan and Slane, the middle part of the sequence differs markedly in the Walterstown-Kentstown area and two new members, the Proudstown and Walterstown Members, are defined in the upper part of the Meath Formation. Syndepositional faulting was initiated during the Courceyan, probably in latest Pseudopolygnathus multistriatus or early Polygnathus mehli latus time. Movement on the ENE trending St. Patrick's Well Fault influenced the deposition of the Walterstown Member and the overlying Moathill Formation and was probably associated with the development of the East Midlands depocentre to the south of the area. A second episode of tectonism in the latest Courceyan or early Chadian resulted in uplift and erosion and the development of ‘block and basin’ sedimentation. Subsequent transgression of the uplifted block led to the establishment of the Kentstown Platform, bounded to the north, west and south by rocks of basinal facies. The Milverton Group (Chadian-Asbian), confined to this platform, unconformably overlies Courceyan or Lower Palaeozoic strata and is subdivided into three formations: Crufty Formation (late Chadian), Holmpatrick Formation (late Chadian-Arundian) and Mullaghfin Formation (late Arundian-Asbian). The Walterstown Fault controlled the western margin of the Kentstown Platform at this time. Contemporaneous basinal sediments of the Fingal Group (Lucan and Naul Formations) accumulated to the west of the Walterstown Fault and are much thicker than age-equivalent platform facies. Platform sedimentation ceased in latest Asbian to early Brigantian time with tectonically induced collapse and drowning of the platform; platform carbonates of the Mullaghfin Formation are onlapped northwards by coarse proximal basinal facies of the Loughshinny Formation. A distinct gravity anomaly in the Kentstown area suggests the presence of a granitoid body within the basement. The Kentstown Platform is therefore considered to have formed on a buoyant, granite-cored, footwall high analogous to the Askrigg and Alston Blocks of northern England.  相似文献   

16.
Shallow water platform limestones of the Chadian–Asbian Milverton Group are restricted to the north-eastern part of the Lower Carboniferous (Dinantian) Dublin Basin. Here, they are confined to two granite-cored fault blocks, the Kentstown and Balbriggan Blocks, known to have been active during the late Dinantian. Three areas of platform sedimentation are delimited (the Kentstown, Drogheda and Milverton areas), although in reality they probably formed part of a single carbonate platform. Resedimented submarine breccias and calciturbidites (Fingal Group) composed of shallow water allochems and intraclasts sourced from the platform accumulated, along with terrigenous muds, in the surrounding basinal areas. Sedimentological evidence suggests that the Kentstown and Balbriggan Blocks possessed tilt-block geometries and developed during an episode of basin-wide extensional faulting in late Chadian time. Rotation of the blocks during extension resulted in the erosion of previously deposited sequences in footwall areas and concomitant drowning of distal hangingwall sequences. Antithetic faults on the northern part of the Balbriggan Block aided the preferential subsidence of the Drogheda area and accounts for the anomously thick sequence of late Chadian platform sediments present there. Continued subsidence and/or sea-level rise in the late Chadian–early Arundian resulted in transgression of the Kentstown and Balbriggan Blocks; carbonate ramps developed on the hangingwall dip slopes and transgressed southward with time. Subsequent progradation and aggradation of shallow water sediments throughout the Arundian to Asbian led to the development of carbonate shelves. Several coarse conglomeratic intervals within the contemporaneous basinal sequences of the Fingal Group attest to periodic increases of sediment influx associated with the development of the shelves. Sedimentological processes controlled the development of the carbonate platforms on the hangingwall dip slopes of the Kentstown and Balbriggan Blocks, though periodic increases of sediment flux into the basinal areas may have been triggered by eustatic falls in sea level. In contrast, differential subsidence along the bounding faults of these blocks exerted a strong control on the margins of the late Dinantian shelves, maintaining relatively steep slopes and inhibiting the progradation of the shelves into the adjacent basins. Tectonically induced collapse and retreat of the platform margins occurred in the late Asbian–early Brigantian. Platform sediments are overlain by coarse-grained proximal basinal facies which fine upwards before passing into a thick shale sequence, indicating that by the late Brigantian carbonate production had almost stopped as the platforms were drowned.  相似文献   

17.
The penetration of rigid objects such as piles and penetrometers into soils creates a zone of soil disturbance around them. The extent of this disturbed zone influences the resistance of the moving rigid body. This paper presents a theoretical framework to analyze the resistance in the disturbed zone created by a shaft penetrating a clay soil. The soil is modeled as a viscous material after it reaches failure [critical state (CS)]. The results of this analysis show that the viscous drag stress component on the shaft surface is influenced by the size of disturbed zone that has reached CS around the shaft, the shear viscosity of the soil and the velocity profile (or strain rate) in the CS zone around the shaft. The size of CS zone, the velocity profile and the viscosity of soil are interdependent. Large variation in viscous drag occurs when the size of the CS soil zone is less than four times the shaft’s radius. Limiting drag occurs when the size of the CS soil zone exceeds six times the shaft’s radius. The theoretical velocity distribution of the movement of soil in the CS zone shows that the soil is dragged along with shaft in the near field (close to the shaft surface) and moves upwards in the far field.  相似文献   

18.
文中描述了产自广西桂林地区下石炭统黄金组下部的颅形贝属一新种,桂林颅形贝(Cranaena guilinensis)。新种以平直的前结合缘和背壳上发育中槽为特征。在4枚标本上发现保存有放射状的彩色条带,表明该种当时生活在温暖海域的浅水环境。对该属70个种的地质地理分布和生物多样性变化的初步分析表明,该属可能起源于早泥盆世欧美大陆西北缘的老世界区,之后的地理分布和生物多样性发展以北美地区为中心,经历了中泥盆世—晚泥盆世早期和早石炭世2次比较明显的辐射演化、迁移扩散高峰和晚泥盆世晚期的1次严重衰退。第1次高峰是中泥盆世—晚泥盆世早期,该属的生物多样性达到巅峰,生物地理分布范围扩大到欧美大陆之外的西伯利亚板块、哈萨克斯坦板块和华南板块等;第2次高峰是早石炭世,该属的生物多样性虽不及前一次,但获得了最广泛的地理分布,不仅在北方大陆有分布,而且已进入到冈瓦纳大陆边缘。晚泥盆世晚期该属的1次严重衰退显然与F/F灭绝事件有关。早石炭世之后,该属进入衰退阶段,最终在二叠纪初灭绝。  相似文献   

19.
The explanation normally given for the tectonics of Sainte-Victoire Mountain, a dozen kilometres east of Aix-en-Provence, to the north of the limestone Provence, is incorrect. To the east, the morphology of the Sainte-Victoire is subdued, whereas to the west, before the mountain breaks savagely, the morphology is that of a young mountain as appears in Alpine landscapes. This unusual aspect in the region and the large subvertical faults with vertically striated surfaces that mark the massif to the south and to the west, induce the idea of strong vertical uplifts and caste doubt on the tectonic interpretation given in 1962 by Corroy et al. According to those authors, the Sainte-Victoire is a unit of Jurassic and Cretaceous formations overthrusting 1800 m to the south conglomerates of the Late Cretaceous or Palaeocene. New observations about the conglomerate transgression over the Jurassic and Cretaceous beds, and about the faults around and on the massif do not give evidence of an overthrusting but, on the contrary, induce the idea of a uplift, perhaps still active, in the form of a ‘piano key’ inclined to the northeast. To cite this article: J. Ricour et al., C. R. Geoscience 337 (2005).  相似文献   

20.
中国中新元古代重要沉积地质事件及其意义   总被引:2,自引:2,他引:0       下载免费PDF全文
地球曾经历了3次超大陆演化过程,其中2次超大陆(哥伦比亚(Columbia)和罗迪尼亚(Rodinia))旋回涉及中新元古代,并与一系列区域性事件相联系,形成了多成因的超大陆演化模型。华北中东部新元古代沉积事件、扬子和塔里木新元古代裂谷事件、雪球事件等都被视为Rodinia超大陆的裂解响应,它们对定时三大陆块相互关系及定位其在全球超大陆的位置具有至关重要的作用,也反映了重要沉积地质事件在超大陆研究中不可或缺的作用和意义。此外,在中新元古代的Columbia和Rodinia超大陆演化过程中,还伴随发育具有广泛区域性甚至全球意义的巨厚白云岩与碳酸盐岩微生物(岩)、红层与黑色页岩、全球性臼齿亮晶碳酸盐岩和埃迪卡拉纪盖帽碳酸盐岩等沉积事件群及元素(同位素)漂移等地球化学异常事件,也包括特殊且重要的磷块岩、锰、铁矿等沉积成矿事件。由于不断显示出来在全球古大陆重建和古地理恢复方面的重要作用,它们越来越得到学术界的广泛关注和研究。文中通过系统分析中国中新元古代超大陆旋回演化中发育的部分重要或关键地质事件(群)时空发育与分布特征,并结合作者团队的实际资料和测试数据,以期揭示超大陆演化过程与重要沉积地质事件的内在联系,为超大陆聚散旋回演化和时空定位及原型沉积盆地的发育和评价提供科学证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号