首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The petrography, mineralogy, and geochemistry of a suite oflavas from the northwestern part of Epi Island in the VanuatuArc, southwest Pacific Ocean, are described. The more primitivemembers of this suite are rich in clinopyroxene phenocrystsand are strikingly similar to primitive lavas from MerelavaIs. in the same arc. These primitive, clinopyroxene-rich lavasare designated arc ankaramites to differentiate them from primitive,olivine-rich arc picrites which also occur in this arc system.The primitive Epi lavas are shown to have evolved from low-Kprimary melts which were saturated in both olivine and clinopyroxene.The most Mg-rich olivine (mg-number 92?2) and clinopyroxene(mg-number 94?4) in the ankaramites represent cotectic crystallizationwith Cr-rich spinels. Initial plagioclase (An94) crystallizedin equilibrium with olivine (mg-number 78–80) and theplagioclase-olivine cotectic path extends to mg-number 50 andAn58. The ankaramitic parent magma composition is calculated fromthe most primitive olivine phenocryst composition and the liquidline of descent, and has 14?5% MgO, 11% A12O3, 14?8%CaO, 0?29%K2O, and flat REE patterns. The origin of this parent magmahas been modelled with Ghiorso & Carmichael's (1985) programSILMIN. An assimilation model involving a clinopyroxenite orwehrlite assimilate and a low-K picrite host requires ca. 90%assimilate to match the phase chemistry and bulk-rock chemistryof the parental ankaramite. The required degree of superheatingnecessary to achieve this, and the apparent restriction of low-Kpicrites to Anatom Island in the far south of the arc, rendersthis model unsatisfactory. Partial melting models involvingtypical upper mantle lherzolite also fail to give satisfactoryresults, but partial melting of a wehrlite source (mg-number87-88) with < 10% normative (mol.) orthopyroxene, at 5?10kband 1325?C, closely matches the parental ankaramite composition.These results can be reconciled with melting of lower crustalcumulates by an ascending peridotite diapir, a hypothesis whichaccounts for the very low Ni contents of the parental meltsand primitive phenocrysts. The more evolved lavas define two distinct assemblages: a relativelytight grouping of high-K andesites straddling the high-K-‘shoshonite’boundary, characterized by low Zr/Rb (2?2) and high K2O/Na2Oratios (1?3–0?9), and a relatively coherent fractionationpathway to dacites straddling the ‘calc-alkaline’-high-Kboundary, with Zr/Rb = 2?9 and K2O/Na2O=0?6. Numerical modellingdemonstrates that the dacite trend is compatible with fractionationfrom an ankaramite parent, whereas the high-K andesites areincompatible with open- or closed-system fractionation fromankaramitic or picritic sources and may represent fractionated,hybrid magmas, largely derived from melting of lower crustalgabbros.  相似文献   

2.
The Wingellina Hills intrusion is a small composite gabbroic/ultramaficintrusion and forms a tectonically dismembered segment of theUpper Proterozoic Giles complex in central Australia. Its 1600m of exposed magmatic stratigraphy formed in a continuouslyfractionating, periodically replenished magma chamber. Olivinegabbro and gabbronorite units alternate with lenticular strataboundintercalations of ultramafic (peridotite and pyroxenite) cumulates.A well-developed hybrid footwall zone of intermingled gabbroand pyroxenite underlies each ultramafic unit and demonstratesthe intrusive relationships of ultramafics into gabbroic cumulatemembers. The limited range of mg-number [100 ? Mg/(Mg+Fe)] of ferromagnesiansilicates indicates that the magmatic sequence covers a rathersmall spectrum in chemical fractionation and that the WingellinaHills intrusion represents the basal portion of a formerly largerlayered complex. The mg-number of olivine ranges from 89 to77, below which olivine is replaced by cumulus orthopyroxene.Clinopyroxene covers a wider mg-number range from 91 to 77 andis systematically enriched in MgO relative to coexisting orthopyroxeneand olivine. Anorthite content in plagioclase generally correlatespositively with mg-number changes of coexisting ferromagnesiansilicates. Interstitial plagioclase in clinopyroxenites containsexsolution lamellae of pure orthoclase. These antiperthitesare among the most calcic recorded, with plagioclase hosts betweenAn60 and An80. Bulk antiperthite compositions range around An65–Ab15–Or20and straddle a high-temperature (Or20) solvus in the plagioclasetriangle. The extent of former solid solution between calcicplagioclase and orthoclase indicates crystallization and coolingof the cumulates under moderate pressure and anhydrous conditions. Cryptic mg-number variations show that the intrusion experiencedweak iron enrichment with stratigraphic height. Normal fractionationis confined to the gabbroic members of the sequence, whereasultramafic intercalations are associated with sharp chemicalreversals toward more refractory mineral compositions. Reversalsof mg-number are considerably displaced into the underlyinggabbroic units by up to 50 m relative to the basis of ultramaficintercalations, which indicates extensive postcumulus infiltrationmetasomatism following the emplacement of fresh magma. The trivalentoxides in clinopyroxene have retained their pristine stratigraphicvariation patterns through later metasomatic events and stillcoincide with the cumulus layering. Macroscopic and cryptic layering in the Wingellina Hills intrusionare consistent with a continuously fractionating magma chamberwhose differentiation path was repeatedly reset by periodicinfluxes of primitive parent melt. Ultramafic and gabbroic cumulatemembers can be derived from a single olivine-saturated parentmelt by sequential separation of olivine, olivine-clinopyroxene,and finally olivine/orthopyroxene-clinopyroxene-plagioclase.A series of orthopyroxene-rich cumulates in the mixing zonesof the two melts crystallized from hybrids of the most primitiveand most evolved end-member compositions. Liquidus temperatures calculated for the resident and replenishingmelt components yield 1250 and 1350?C, respectively. As a resultof this temperature difference, fresh influxes of hot parentliquid crystallized rapidly under strongly undercooled conditionsas they ponded on, and quenched against,the chamber floor. Rapidcooling caused a temporary acceleration of the crystallizationfront and formation of impure cumulates with high trapped meltproportions, which resulted in a close coincidence of orthocumulateunits with stratigraphic levels of primitive melt addition.Grain sizes in orthocumulates vary with the cooling rate andpass through a maximum as the degree of undercooling increases.High cooling rates also influenced the composition of some cumulusphases. Clinopyroxenes from ultramafics in the mixing zonesare enriched in iron and aluminium (despite a more primitiveparent melt) and fall outside the fractionation path, especiallyif the batch of new hot magma was small compared with the poolof cooler resident liquid. Aluminous cumulus spinel is partof a metastable crystallization sequence and only crystallizedin the most magnesian ultramafics after episodes of intraplutonicquenching.  相似文献   

3.
The approximately 150 km2 Jijal complex occupies a deep-levelsection of the Cretaceous Kohistan are obducted along the Indussuture. The complex consists of mafic garnet granulites, anda > 10 km ? 4 km slab of pyroxenites (diopsidite > websterite;? olivine), dunite, and subordinate peridotite, all of whichare devoid of plagioclase. These contain chromite either inlenses, layers, and veins or as disseminated grains. The chromiteis mostly medium grained, subhedral to euhedral, shows pull-aparttexture, and may contain inclusions of associated silicates.Chromite grains within thin sections of chromitite are generallyhomogeneous in composition, but dunite and pyroxenite samplescommonly contain chromite grains of variable composition. Thesegregated chromite has higher Cr2O3 wt%, cr-number, and mg-number,and lower fe'-number than the accessory chromite. These variationsare mainly attributed to subsolidus exchange of Mg and Fe betweenchromite and associated olivine or pyroxene, and to inheritancefrom a magmatic source, but other factors may also be responsible.In general, the chromite grains are altered along margins andfractures to ferritchromit that is enriched in cr-number (andgenerally Fe3+, Mn, and Ti) and impoverished in mg-number comparedwith the parent grains. Chromian chlorite (clinochlore, penninite,with up to 7?3 wt.% Cr2O3) is commonly associated with the alteration,as is serpentine in most silicate rocks and some chromitites.The chlorite shows considerable compositional variation fromgrain to grain and in some cases within a single grain. Clinopyroxene is low-Al, -Na and high-Ca diopside. Orthopyroxeneranges from En91 to En82 and olivine from Fo98 to Fo84 (ignoringone analysis each). The mg-number of these minerals is higherin chromitites than in dunites and pyroxenites. Several aspectsof the petrogenesis of the ultramafic rocks (e.g., the abundanceof diopsidite) are not clear, but they seem to have passed througha complex history. The high cr-numbers (>60) in the chromiteindicate that the rocks may have originated from some form ofoceanic lithosphere-island are interaction. Petrography andmineral compositional data suggest that the rocks are ultramaficcumulates derived from an are-related (?primitive) high-Mg tholeiiticmagma, possibly at pressures in excess of 8 kb.There also aresmall ultramafic bodies in the form of conformable layers andemplaced masses within the garnet granulites. These containmagnetite and pleonaste with < 10 wt.% Cr2O3, and less magnesianolivine and pyroxene than the principal ultramafic mass. Thesealso have the characteristics of island are plutonic rocks,but it is not clear whether the garnet granulites constitutea continuous sequence of are cumulates with the principal ultramaficmass or the two are produced from different source magmas.  相似文献   

4.
Rhythmically layered anorthosite and gabbro are exposed in a4–10-m thick interval at the base of the layered gabbrounit on North Arm Mountain, one of four massifs that composethe Bay of Islands ophiolite, Newfoundland. Within the rhythmicallylayered interval, up to 37 anorthosite layers 1–2 cm thickalternate with gabbroic layers 7–10 cm thick. Anorthositesare adcumulates (most contain <6ppm Zr) with 98–99%plagioclase (Plag) and 1–2% intergranular clinopyroxene(Cpx), whereas gabbros are adcumulates to mesocumulates (<6–20ppmZr) with 35–55% Plag, and the balance olivine (Ol) + Cpx? orthopyroxene (Opx). Average mineral compositions are: Olmg-number [100 ?Mg/(Mg + Fe)]=84?9, NiO=0?13wt. % Plag An =87?9; Cpx mg-number = 88?3, TiO2=0?20 wt %; and Opx mg-number= 85?7. Rare earth element (REE) concentrations in clinopyroxeneand plagioclase are low throughout the rhythmically layeredinterval (<5 times chondrites). The rhythmically layeredinterval is sandwiched between thick layers of adcumulate toorthocumulate uniform gabbro with average modal proportionsof 54% Plag-39% Cpx-3% Ol-4% Opx. Average mineral compositionsare: Ol mg-number = 75?5, NiO = 0?08 wt. %; Plag An=69%6; Cpxmg-number = 81?2, TiO2 =0?53 wt. %, and Opx mg-number = 77?5.Clinopyroxene and plagioclase REE abundances are systematicallyhigher in the uniform gabbro interval than in the rhythmicallylayered interval. Calculated fractional crystallization pathsand correlated cryptic variation patterns suggest that uniformand rhythmically layered gabbros represent 20–30% in situcrystallization of two distinct magma batches, one more evolvedand the other more primitive. When the more primitive magmaentered the crystallization site of the NA300–301 gabbros,it is estimated to have been 40?C hotter than the resident evolvedmagma, and may have been chilled by contact with a magma chambermargin composed of uniform gabbro. In this model, chilling causedthe liquid to become supercooled with respect to plagioclasenucleation temperatures, resulting in crystallization of gabbrodeficient in plagioclase relative to equilibrium cotectic proportions.Subtraction of a plagioclase-poor melagabbro enriched the liquidin normative plagioclase, which in turn led to crystallizationof an anorthosite layer. Alternating anorthosite and gabbrolayers in the rhythmically layered interval built up by coupledand sustained variations in crystal nucleation and growth rates,and associated variations in liquid compositions at the crystallizationfront. Relatively stagnant magma-flow conditions may be requiredto accumulate substantial thicknesses of rhythmically layeredcumulates by sustained oscillatory crystallization. The rarityof anorthosite-gabbro rhythmic phase layering on North Arm Mountainmay indicate that convective magma currents in the Bay of Islandsmagma chamber were too vigorous for oscillatory crystallizationto commonly occur.  相似文献   

5.
Mafic tholeiitic basalts from the Nejapa and Granada (NG) cindercone alignments provide new insights into the origin and evolutionof magmas at convergent plate margins. In comparison to otherbasalts from the Central American volcanic front, these marietholeiitic basalts are high in MgO and CaO and low in Al2Op,K2O1, Ba and Sr. They also differ from other Central Americanbasalts, in having clinopyroxene phenocrysts with higher MgO,CaO and Cr2O3 concentrations and olivine phenocrysts with higherMgO contents. Except for significantly higher concentrationsof Ba, Sr and 87Sr/86Sr, most of the tholeiites are indistinguishable in compositionfrom mid-ocean ridge basalts. In general, phenocryst mineralcompositions are also very similar between NG tholeiites andmid-ocean ridge basalts. The basalts as a whole can be dividedinto two groups based on relative TiO2-K2O concentrations. Thehigh-Ti basalts always have the lowest K2O and Ba and usuallyhave the highest Ni and Cr. All of the basalts have experienced some fractional crystallizationof olivine, plagioclase and clinopyroxene. Relative to otherCentral American basalts, the Nejapa-Granada basalts appearto have fractionated at low PT and PH2O. The source of primarymagmas for these basalts is the mantle wedge. Fluids and/ormelts may have been added to the mantle wedge from hydrothermally-altered,subducting oceanic crust in order to enrich the mantle in Sr,Ba and 87Sr/86Sr, but not in K and Rb. The role of lower crustaicontamination in causing the observed enrichments in Sr, Baand 87Sr/86Sr of NG basalts in comparison to mid-ocean ridgebasalts, however, is unclear. Rutile or a similar high-Ti accessoryphase may have been stable in the mantle source of the low-TiNG basalts, but not in that of the high-Ti basalts. Mafic tholeiiticbasalts, similar to those from Nejapa and Granada, may representmagmatic compositions parental to high-Al basalts, the mostmafic basalts at most Central American volcanoes. The characterof the residual high-Al basalts after this fractionation stepdepends critically on PH2O Both high and low-Ti andesites are also present at Nejapa. Likethe high-Ti basalts, the high-Ti andesites have lower K2O andBa and higher Ni and Cr in comparison to the low-Ti group. Thehigh-Ti andesites appear to be unrelated to any of the otherrocks and their exact origin is unknown. The low-Ti andesitesare the products of fractional crystallization of plagioclase,clinopyroxene, olivine (or orthopyroxene) and magnetite fromthe low-Ti basalts. The eruption that deposited a lapilli sectionat Cuesta del Plomo involved the explosive mixing of 3 components:high-Ti basaltic magma, low-Ti andesitic magma and high-Ti andesiticlava.  相似文献   

6.
GANDY  M. K. 《Journal of Petrology》1975,16(1):189-211
The calc-alkaline lava sequence of the eastern Sidlaw Hillsforms a small part of an extensive volcanic province of LowerOld Red Sandstone (Devonian) age in Scotland and N. England.The Sidlaw lavas ranging from olivine basalt to dacite are allporphyritic with combinations of olivine, plagioclase, clinopyroxene,orthopyroxene, and opaque oxide pheno-crysts. Chemically, thelavas are slightly more alkalic than modern calc-alkaline lavas.There is considerable variation in the ‘incompatible elements’.The differentiation of the lavas can be accounted for by fractionationof olivine+plagioclase+minor ore from a chemically variable,immediately parental magma at low pressure (c. 1 kb PH2O). Itis suggested that fractionation of variable amounts of olivineand clinopyroxene from an olivine tholeiite at moderate PH2Ocould give rise to this chemically variable, high alumina, immediatelyparental magma.  相似文献   

7.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

8.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

9.
Origin and differentiation of picritic arc magmas,Ambae (Aoba), Vanuatu   总被引:3,自引:2,他引:1  
Key aspects of magma generation and magma evolution in subduction zones are addressed in a study of Ambae (Aoba) volcano, Vanuatu. Two major lava suites (a low-Ti suite and high-Ti suite) are recognised on the basis of phenocryst mineralogy, geochemistry, and stratigraphy. Phenocryst assemblages in the more primitive low-Ti suite are dominated by magnesian olivine (mg 80 to 93.4) and clinopyroxene (mg 80 to 92), and include accessory Cr-rich spinel (cr 50 to 84). Calcic plagioclase and titanomagnetite are important additional phenocryst phases in the high-Ti suite lavas and the most evolved low-Ti suite lavas. The low-Ti suite lavas span a continuous compositional range, from picritic (up to 20 wt% MgO) to high-alumina basalts (<5 wt% MgO), and are consistent with differentiation involving observed phenocrysts. Melt compositions (aphyric lavas and groundmasses) in the low-Ti suite form a liquid-line of descent which corresponds with the petrographically-determined order of crystallisation: olivine + Cr-spinel, followed by clinopyroxene + olivine + titanomagnetite, and then plagioclase + clinopyroxene + olivine + titanomagnetite. A primary melt for the low-Ti suite has been estimated by correcting the most magnesian melt composition (an aphyric lava with 10.5 wt% MgO) for crystal fractionation, at the oxidising conditions determined from olivine-spinel pairs (fo2 FMQ + 2.5 log units), until in equilibrium with the most magnesian olivine phenocrysts. The resultant composition has 15 wt% MgO and an mg Fe2 value of 81. It requires deep (3 GPa) melting of the peridotitic mantle wedge at a potential temperature consistent with current estimates for the convecting upper mantle (T p 1300°C). At least three geochemically-distinct source components are necessary to account for geochemical differences between, and geochemical heterogeneity within, the major lava suites. Two components, one LILE-rich and the other LILE- and LREE-rich, may both derive from the subducting ocean crust, possibly as an aqueous fluid and a silicate melt respeetively. A third component is attributed to either differnt degrees of melting, or extents of incompatible-element depletion, of the peridotitic mantle wedge.  相似文献   

10.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

11.
The Micho?ch-Guanajuato Volcanic Field (MGVF) of central Mexicocontains 900 cinder and lava coes but lacks the large activecomposite volcanoes found in other portions of the Mexican VolcanicBelt (MVB). Scoriae and lavas from these cinder cones are primarilyolivine-basalts and olivine-andesites containing phenocrystsof olivine (plus Cr-rich spinel inclusions), plagioclase, and,less frequently, augite; pyroxene- and hornblende-andesitesare subordinate. Most samples are calcalkaline; however, alkalineand transitional rocks are also found. Compositional variationat individual cones is usually less than 5 per cent SiO2 andat Volc?n Paricutin (1943–1952) and Volc?n Jorullo (1759–1774),lava compositions have become more silica-rich with time. Alkaline cinder cones are generally older, but in the late Quaternary,both calc-alkaline and alkaline magmas erupted in the southernpart of the MGVF. Positive correlations between K, Zr, and Baand distance from the Middle America trench are distinct forevolved lavas; no correlations are found for less differentiatedlavas. In contrast, a correlation between decreasing Mg, Ni,and Cr and distance from the trench is found. In comparison to composite volcanoes in the MVB, the cinder-conelava are typically more basic. Four samples have mg-numbersand Ni contents which indicate possible mantle source regions.These samples include calc-alkaline, transitional and alkalinelavas, but all contain phenocrysts and/or microphenocrysts ofolivine, augite, and plagioclase; in these high-Mg lavas, spinelinclusions in olivine are Cr-rich. Those high-Mg lavas withsmall amounts of coexisting olivine, augite, and plagioclasephenocrysts plot close to a high-pressure (8 kb ? H2O) 0l-Aug-Plcotectic. Others project between this high-pressure clusterand the 1 atm. cotectic, indicating polybaric fractionation.Low-Mg lavas in the northern part of the MGVF result from fractionationat relatively shallow depths. Estimated olivine equilibrium temperatures decrease from about1200?C with increasing FeO/FeO + MgO, which is also accompaniedby an increase in H2O. Relative oxygen fugacities (relativeto NNO) calculated for lavas with Fe2O3+FeO show that NNO increasessystematically during an eruption, and this is well displayedat both Paricutin and Jorullo. The more oxidized lavas may containhornblende, and do so at Colima. The calc-alkaline lavas fromthroughout the MGVF only span the redox state of the Jorulloeruption, and all these continental magmas are 2–3 ordersof magnitude more oxidized than their submarine counterparts. Petrographic and mineralogical evidence supports the absenceof long-lived shallow magma reservoirs, consistent with theobserved small magma output rate in the MGVF.  相似文献   

12.
SEN  GAUTAM 《Journal of Petrology》1986,27(3):627-663
Electron microprobe analyses of minerals of thirteen DeccanTrap lava flows at Mahabaleshwar have been carried out in thepresent study. All of these flows have tholeiitic bulk compositionsand all, except one (represented by MB-81-17 of Mahoney et al.,1982) contain olivine, plagioclase, two pyroxenes, and Fe-Tioxide minerals. Olivine and plagioclase appear as distinct phenocrystsin all but one flow, and Ca-rich pyroxene joins as a phenocrystphase in the younger flows. Pigeonite and Fe-Ti oxide minerals(titanomagnetite and ilmenite) occur in the groundmass. Olivineoccurs as both groundmass and phenocryst phase in MB-81-17 (whichis the only flow without low-Ca pyroxene phase); in all otherflows olivine appears only as phenocryst phase. In all but one(MB-81-17) flow olivine is completely altered. MB-81-17 olivinegrains are only partly altered, and in this rock the cores ofphenocrysts are rounded and have a composition of Fo77 whereastheir euhedral rims have a composition around Fo67. The groundmassolivine grains in MB-81-17 are Fo41–32. Substantial Fe-enrichmentand zoning trends are shown by the pyroxenes in individual rocks.The cores of Ca-rich pyroxene phenocrysts of some of the flowshave as much as 4 wt. per cent A12O3 and may have crystallizedat higher (crustal) pressures. Pigeonite thermometry (Ishii,1975) suggests an average of 1050?C for crystallization of thegroundmass pigeonite (eruption temperature?). Fe-Ti oxide mineralsare mostly altered in the older flows. In the younger flows,coexisting unaltered titanomagnetite and ilmenite yield maximumtemperature estimates for the crystallization of these phaseof about 1025?C and an oxygen fugacity of 10–11.5 atm.The T-fo2 path followed by these flows seems to have been consistentlysomewhat lower than that defined by the 1 atm. fayalite-magnetitequartz curve. All of the lavas examined have experienced extensivefractional crystallization of olivine and some clinopyroxeneat relatively higher pressures. These lavas were saturated orclose to being saturated with olivine+plagioclase+clinopyroxeneduring eruption. Plagioclase accumulation, although it appearsto have occurred, has not been significant. It is suggestedthat MB-81-17 magma was contaminated by a calcite-rich rock(limestone?) whereas the lower Group 1 magmas may have beenselectively contaminated by quartz-bearing contaminant. Alternately,parental magma of MB-81-1 (with the highest Mg-number and 8= -16) may have been produced in the upper mantle into whichminor masses of old crust was well mixed. Magma mixing, crystalfractionation, and contamination processes of Mahabaleshwarbasalts and possible genetic relationships with other DeccanTrap lavas are discussed.  相似文献   

13.
Equilibrium H2O pressure (PeH2O) was fixed at values less thantotal pressure (PT) in melting experiments on mixtures of 1921Kilauea tholeiite, H2O, and CO2 (58.5 mole per cent H2O, 41.5mole per cent CO2), buffered by Ni+NiO. New determinations ofthe beginning of melting of mixtures of 1921 Kilauea tholeiiteand H2O buffered by quartz+fayalite+magnetite were made at 2and 3 kb. Microprobe analyses of coexisting glass, clinopyroxene,?olivine, ?amphibole were determined for several runs. Decreasing H2O fugacity (fH2O) to about six-tenths the fugacityof pure H2O (f?II2O) raises the solidus and the upper stabilitylimit of plagioclase. Plagioclase and clinopyroxene coexistin equilibrium with liquid-a feature not observed in the pureH2O system. Amphibole is stable to about 970 ?C at 2 kb, 1025?C at 5 kb and 1060 ?C at 8 kb. The Al (VI)+Ti contents of theamphibole increase with P, yielding kaersutite at 1050 ?C and8 kb. Calculated modes for the condensed phases reveal large differencesin the amount of glass (liquid) present and large differencesin liquid composition below and above the breakdown temperatureof amphibole at 5 and 8 kb. Liquids coexisting with amphibole,clinopyroxene, olivine, and magnetite are dacitic near the solidusand silica-rich andesites around 1000 ?C at 5 and 8 kb. Theresults of this study substantiate the model for the generationof the calc-alkaline suite by partial melting of H2O-rich basalts.  相似文献   

14.
The Petrogenesis of the Kirwan Basalts of Dronning Maud Land, Antarctica   总被引:3,自引:3,他引:0  
The 420 m thick sequence of Kirwan basalt crops out along thesouthernmost 50 km of the Kirwanveggen Escarpment (74?S, 6?W).There is little variation in major element chemistry of thesebasalts (SiO2 49?3–51?6 wt.%; MgO 5?1–6?6 wt.%),but the concentrations of certain incompatible elements (e.g.,Zr) vary by factors of approximately two or more. Most interelementplots show rather poor correlation (r<0?78), but rocks fromopposite ends of the data array can be related by 30% fractionationof plagioclase, clinopyroxene, olivine, and magnetite in theproportions 51:35:11:3. Plagioclase is much more abundant inphenocryst assemblages (85%) and it appears that selective transportof plagioclase to the surface occurred. The range in incompatible element concentrations cannot be explainedby crystal fractionation and is most probably a result of theparent liquids of these basalts being derived by slightly differentdegrees of partial melting of a common source, or alternativelyof open-system (RTF) magma processes. The strontium isotopedata for the freshest rocks (R0=0?7049–0?7065) may beexplained by 7% contamination by crustal material with an R0of 0?709 and bulk Sr of800 ppm, but there is little supportingevidence from other trace element variations for this hypothesis.Oxygen isotope determinations on whole-rock-plagioclase pairsshow that alteration has resulted in a 0?5%o shift in (18O.Alteration also appears to have resulted in a greater spreadof data, particularly for the LIL elements and Sr isotopes.The Sr and Nd isotopic composition of the suite is close tobulk Earth at 172 Ma and this, together with REE and other traceelement data, shows these basalts to be similar in compositionto the more primitive basalts among the Karoo basalt lavas.It is suggested that the Kirwan basalts were derived from asource which was similar to that of the southern Lebombo variantof the Sabie River Basalt Formation of the Karoo Volcanic Province.This part of the Karoo was closest to the Kirwanveggen beforethe break-up of Gondwanaland.  相似文献   

15.
Mineral Chemistry, and major and trace element variations ofthe basalts from Klyuchevskoy, the world's most active islandare volcano, are most consistently explained by the persistenceof a non-steady state, erupting, recharging, and fractionatingmagma chamber in which fractionation of a parental high-MgObasalt melt produces high-Al2O3 basalt. Although fractionalcrystallization is the dominant controlling mechanism, periodicrecharge with a more primitive high-MgO basalt is also an importantprocess contributing to the chemical evolution of the magmas.Hybrid basalts are the mixed product of high-Al2O3 basalt rechargedwith high-MgO basalt. The lavas range in composition from high-MgO, low-Al2O3 ( 12wt. % MgO, 14 wt. % Al2O3) to high-Al2O3, low-MgO ( 18 wt. %Al2O3, 4 wt. % MgO). The high-MgO lavas are characterized byphenocrysts of olivine (cores FO90–80 and rims FO85–75)with chromite inclusions [Cr/(Cr + Al)0.7], clinopyroxene (Wo46–42En48–42Fs15–7),and the rare occurrence of orthopyroxene (En72–70). Allthe phenocrysts are normally zoned and set in a groundmass ofplagioclase, pigeonite, clinopyroxene, magnetite, orthopyroxene.The high-Al2O3 basalts contain plagioclase (An85–55),olivine (Fo80–65), clinopyroxene (Wo45–30En50–38Fs23–11), orthopyroxene (En72–70) phenocrysts, that preserve bothnormal and reverse zoning in a groundmass of plagioclase, pigeonite,olivine, clinopyroxene, magnetite, orthopyroxene. Hybrid basaltshave characteristics of both high-MgO basalts and high-Al2O3basalts and preserve complicated normal-to-reverse, reverse-to-normal,and normally zoned phenocrysts. No hydrous minerals are presentin any of the lavas. The varied basaltic magmas erupted from Klyuchevskoy are derivedfrom a magma chamber(s) located near the base of the Kamchatkacrust (pressures 0.5–0.9 GPa) and characterized by relativelyhigh crystallization temperatures, some in excess of 1150C.Under these conditions, the fractionation of a parental high-MgOmagma, produced principally from the melting of a fluid-fluxed,peridotitic mantle wedge, results in the production of a chemicallydiverse spectrum of basalts ranging from high-MgO, low-Al2O3to high-Al2O3, low-MgO basalt, traversing the relatively primitiveend of both the calc-alkalic and tholeiitic differentiationtrends.  相似文献   

16.
Isotopic results (Sr, Nd, Pb), as well as concentrations ofmajor and trace elements (REE) are reported for whole-rock samplesand mineral separates from the onland alkaline complex of Serrade Monchique (South Portugal) and the offshore alkali basaltvolcanic suite of Mount Ormonde (Gorringe Bank). These two geneticallyrelated alkaline complexes were emplaced at the east Atlanticcontinent–ocean boundary during the Upper Cretaceous,i.e. 66–72 m.y. ago. Taken together, Serra de Monchiqueand Mount Ormonde may be seen as one of the few examples ofwithin-plate magmatism that straddles the continent–oceanboundary. Major and trace element compositions fail to revealany significant differences between onland and offshore complexes.This is particularly true regarding less differentiated samples(mg-number 0.40) which show the same progressive and continuousenrichment of their trace element patterns, with no specificanomaly (e.g. negative Nb anomaly) being present in samplesfrom the onland complex. Initial Pb and Sr isotopic compositionsalso do not allow any distinction to be made between Serra deMonchique and Mount Ormonde samples. Initial Pb isotope ratiosare moderately high (19.1 < 206Pb/204Pb < 19.8; 207Pb/204Pb= 15.6) in both cases. Moreover, once the effects of Sr contaminationby seawater are taken into account and the most contaminatedsamples discarded using data from fresh clinopyroxene separatesand results of leaching experiments, the initial Sr isotopiccompositions of Mount Ormonde samples are found to be unradiogenic(87Sr/86Sr = 0.7031±1) and identical to those obtainedat Serra de Monchique (87Sr/86Sr = 0.7032±1). In contrast,a systematic mean difference of 2 Nd units is observed betweenSerra de Monchique [Nd(T) = +4.8] and Mount Ormonde [Nd(T) =+6.6] whole-rock samples. Surprisingly, a variation is alsoobserved at Mount Ormonde between the whole-rock samples andone of the two analysed clinopyroxene separates. Whereas MountOrmonde whole-rock samples invariably yielded Nd(T) = +6.6 (meanvalue), a value of +0.5 is obtained for one clinopyroxene separate,whereas another gives +6.0. The above geochemical and isotopicresults make it possible to assign respective roles to the asthenosphere,lithosphere and crust in the petrogenesis of Serra de Monchiqueand Mount Ormonde complexes. We propose that both complexesshare a common mantle source whose isotopic characteristicsare very similar to the source of oceanic island basalts. Continentalmantle lithosphere, already characterized isotopically by studiesof peridotite massifs within the Iberian peninsula, acts asa contaminant which is evident onland on the whole-rock scale,and also present offshore as discrete clinopyroxene xenocrysts.The continental crust appears to play no role in the petrogenesisof the Serra de Monchique alkaline rocks. KEY WORDS: alkaline complexes; continental lithosphere; isotope geochemistry; passive continental margin; within-plate volcanics  相似文献   

17.
Macquarie Island is an exposure above sea-level of part of thecrest of the Macquarie Ridge. The ridge marks the Australia–Pacificplate boundary south of New Zealand, where the plate boundaryhas evolved progressively since Eocene times from an oceanicspreading system into a system of long transform faults linkedby short spreading segments, and currently into a right-lateralstrike-slip plate boundary. The rocks of Macquarie Island wereformed during spreading at this plate boundary in Miocene times,and include intrusive rocks (mantle and cumulate peridotites,gabbros, sheeted dolerite dyke complexes), volcanic rocks (N-to E-MORB pillow lavas, picrites, breccias, hyaloclastites),and associated sediments. A set of Macquarie Island basalticglasses has been analysed by electron microprobe for major elements,S, Cl and F; by Fourier transform infrared spectroscopy forH2O; by laser ablation–inductively coupled plasma massspectrometry for trace elements; and by secondary ion mass spectrometryfor Sr, Nd and Pb isotopes. An outstanding compositional featureof the data set (47·4–51·1 wt % SiO2, 5·65–8·75wt % MgO) is the broad range of K2O (0·1–1·8wt %) and the strong positive covariation of K2O with otherincompatible minor and trace elements (e.g. TiO2 0·97–2·1%;Na2O 2·4–4·3%; P2O5 0·08–0·7%;H2O 0·25–1·5%; La 4·3–46·6ppm). The extent of enrichment in incompatible elements in glassescorrelates positively with isotopic ratios of Sr (87Sr/86Sr= 0·70255–0·70275) and Pb (206Pb/204Pb =18·951–19·493; 207Pb/204Pb = 15·528–15·589;208Pb/204Pb = 38·523–38·979), and negativelywith Nd (143Nd/144Nd = 0·51310–0·51304).Macquarie Island basaltic glasses are divided into two compositionalgroups according to their mg-number–K2O relationships.Near-primitive basaltic glasses (Group I) have the highest mg-number(63–69), and high Al2O3 and CaO contents at a given K2Ocontent, and carry microphenocrysts of primitive olivine (Fo86–89·5).Their bulk compositions are used to calculate primary melt compositionsin equilibrium with the most magnesian Macquarie Island olivines(Fo90·5). Fractionated, Group II, basaltic glasses aresaturated with olivine + plagioclase ± clinopyroxene,and have lower mg-number (57–67), and relatively low Al2O3and CaO contents. Group I glasses define a seriate variationwithin the compositional spectrum of MORB, and extend the compositionalrange from N-MORB compositions to enriched compositions thatrepresent a new primitive enriched MORB end-member. Comparedwith N-MORB, this new end-member is characterized by relativelylow contents of MgO, FeO, SiO2 and CaO, coupled with high contentsof Al2O3, TiO2, Na2O, P2O5, K2O and incompatible trace elements,and has the most radiogenic Sr and Pb regional isotope composition.These unusual melt compositions could have been generated bylow-degree partial melting of an enriched mantle peridotitesource, and were erupted without significant mixing with commonN-MORB magmas. The mantle in the Macquarie Island region musthave been enriched and heterogeneous on a very fine scale. Wesuggest that the mantle enrichment implicated in this studyis more likely to be a regional signature that is shared bythe Balleny Islands magmatism than directly related to the hypotheticalBalleny plume itself. KEY WORDS: mid-ocean ridge basalts; Macquarie Island; glass; petrology; geochemistry  相似文献   

18.
The lavas of Nisyros were erupted between about 0?2 m.y B.P.and 1422 A.D., and range in composition from basaltic andesiteto rhyodacite. Most were erupted prior to caldera collapse (exactdate unknown), and the post-caldera lavas are petrographically(presence of strongly resorbed phenocrysts) and chemically (lowerTiO2 K2O, P2O5, and LIL elements) distinct from the pre-calderalavas. The pre-caldera lavas do not form a continuous seriessince lavas with SiO2 contents between 60 and 66 wt.% are absent.Nevertheless, major element variations demonstrate that fractionalcrystalliz ation (involving removal of olivine, dinopyroxene,plagioclase, and Fe-Ti oxide from the basaltic andesites andandesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite,ilmenite, apatite, and zircon from the dacites and rhyodacites)played a major role in the evolution of the pre-caldera lavas.Several lines of evidence indicate that other processes werealso important in magma evolution: (1) Quantitative modelingof major element data shows that phenocryst phases of unlikelycomposi tion or unrealistic assemblages of phenocryst phasesare required to relate the dacites and rhyodacites to the basalticandesites and andesites; (2) The proportions of olivine andclinopyroxene required in quantitative models for the initialstages of evolution differ from those observed petrographicallyand this is not likely to reflect either differential ratesof crystal settling or the curvature of cotectics along whichliquids of basaltic andesite to andesite composition lie; (3)The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in therhyod.acites are too high for these lavas to be related to thedacites by fractional crystallization alone; and (4) 87Sr/86Srratios for the andesites and rhyodacites are higher than thosefor the basaltic andesites and dacites, respectively. It isshown that fractional crystallization was accompanied by assimilation,and that magma mixing played a minor role (if any) in the evolutionof the pre-caldera lavas. Trace element and isotopic data indicatethat the andesites evolved from the basaltic andesites by AFCinvolving average crust or upper crust, whereas the rhyodacitesevolved from the dacites by AFC involving lower crust. Additionalevidence for polybaric evolution is provided by the occurrenceof distinct Ab-rich cores of plagioclase phenocrysts in thedacites and rhyodacites, which record a period of high pressurecrystallization, and by the occurrence of both normal and reverse-zonedphenocrysts in the basaltic andesites and andesites. Furthermore,calculated pressures of crystallization are {small tilde}8 kbfor the dacites and rhyodacites and 3?5–4 kb for the basalticandesites and andesites. It is concluded that the dacites andrhyodacites evolved via AFC from basaltic andesites and andesiteslargely in chambers sited near the base of the crust whereasthe basaltic andesites and andesites mostly evolved in chamberssited at mid-crustal levels. Eruption from different chambersexplains the compositional gap in the chemistry of the pre-calderalavas since eruptive products represent a more or less randomsampling of residual liquids which separate (via filter pressing)from bodies of crystallizing magma at various depths. Magmamixing was important in the evolution of the post-caldera lavas,but geochemical data require that these magmas evolved fromparental magmas which were derived from a more refractory sourcethan the parental magmas to the pre-caldera lavas. *Present address: Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten, The Netherlands  相似文献   

19.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (1?1?5 km) introducing Upper Jurassic sediments, Marlborough,New Zealand. The ultrabasic-gabbroic rocks contain lenses ofkaersutite pegmatite and sodic syenite pegmatite and are intrudedby ring dykes of titanaugite-ilmenite gabbro and lamprophyre.The margin of the intrusion is defined by a ring dyke of alkaligabbro. The plutonic rocks are cut by a swarm of hornblende-biotite-richlamprophyre dykes. Thermal metamorphism has converted the sedimentsto a hornfels ranging in grade from the albite-epidote hornfelsfacies to the upper limit of the hornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82-74),endiopside (Ca45Mg48Fe7-Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10-Ca44Mg39Fe17),plagioclase (An73-18), and ilmenitetitaniferous magnetite, withvarious amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between end-iopside and titanaugitewith the coupled substitution Ry+z+Si(Ti+4+Fe+3)+Al+3 and asympathetic increase in CaAl2SiO6 (0?2-10?2 percent) and CaTiAl2O6(2?1-8?1 per cent) with fractionation. Endiopside shows a small,progressive Mg enrichment along a trend subparallel to the CaMgSi2O6-Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1?0–5?7 per cent TiO2)kaersutite (6?4 per cent TiO2)Fe-richhastingsite (18?0–19?1 per cent FeO as total Fe). Biotiteis high in TiO2 (6?6–7?8 per cent). Ilmenite and titaniferousmagnetite (3?5–10?6 per cent TiO2) are typically homogeneousgrains; their composition can be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in Al2O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant PO2; PH2 and PO2 increased duringthe formation of the gabbroic rocks until fracturing of thechamber roof occurred. The abundance of euhedral amphibole inthe latter injection phases suggests that amphibole accumulatedfrom a hydrous SiO2 undersaturated magma when an increase inPO2, stabilized its crystallization. Plutonic complexes similar to Blue Mountain are found withinand beneath the volcanic piles of many oceanic islands, e.g.Canaries, Reunion, and Tahiti, and those intruding thick sedimentarysequences, as at Blue Mountain, e.g. the pipe-like intrusionsof the Monteregian Hills, Quebec.  相似文献   

20.
DUKE  J. M. 《Journal of Petrology》1976,17(4):499-521
The distribution of Ti4+, V3+, Cr3+, Mn2+, Fe(total), Co2+ andNi2+ among synthetic olivine, calcic clinopyroxene and maficsilicate liquid has been studied between 1125 and 1250 ?C underanhydrous conditions at 1 bar total pressure. The distributionof iron and magnesium among the three phases was concluded tobe independent of temperature and may be described by the twoequations Titanium and vanadiumdid not enter olivine in significant amounts. The mean valueof the ratio (wt. per cent TiO2 in Cpx)/(wt. per cent TiO2 inL) was 0.29?0.04 for assemblages in which the liquid had botholivine and hypersthene in the norm but the ratio was greaterif the liquid was nepheline normative. Vanadium was concentratedin the pyroxene in some experiments and in the liquid in others,but it was not possible to conclude whether the change in distributionbehavior was due to varying temperature or changing liquid composition.Equilibrium partitioning of chromium was not achieved but theresults indicate that Cr2O3 was most strongly enriched in clinopyroxeneand showed a slight preference for olivine over the liquid.The divalent transition elements were each enriched in olivinerelative to clinopyroxene and the degree of enrichment increasedin the order predicted by crystal field theory. The mean (wt.per cent oxide in 01)/(wt. per cent oxide in Cpx) ratios were2.0 for MnO, 2.4 for FeO, 3.9 for CoO and 5.6 for NiO. Manganesewas enriched in olivine relative to the liquid and in the liquidrelative to the clinopyroxene. Cobalt and nickel were more concentratedin the crystalline phases than in the liquid but the degreeof enrichment was markedly less in the experiments in whichthe liquids were more mafic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号