首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
The explanation normally given for the tectonics of Sainte-Victoire Mountain, a dozen kilometres east of Aix-en-Provence, to the north of the limestone Provence, is incorrect. To the east, the morphology of the Sainte-Victoire is subdued, whereas to the west, before the mountain breaks savagely, the morphology is that of a young mountain as appears in Alpine landscapes. This unusual aspect in the region and the large subvertical faults with vertically striated surfaces that mark the massif to the south and to the west, induce the idea of strong vertical uplifts and caste doubt on the tectonic interpretation given in 1962 by Corroy et al. According to those authors, the Sainte-Victoire is a unit of Jurassic and Cretaceous formations overthrusting 1800 m to the south conglomerates of the Late Cretaceous or Palaeocene. New observations about the conglomerate transgression over the Jurassic and Cretaceous beds, and about the faults around and on the massif do not give evidence of an overthrusting but, on the contrary, induce the idea of a uplift, perhaps still active, in the form of a ‘piano key’ inclined to the northeast. To cite this article: J. Ricour et al., C. R. Geoscience 337 (2005).  相似文献   

2.
The penetration of rigid objects such as piles and penetrometers into soils creates a zone of soil disturbance around them. The extent of this disturbed zone influences the resistance of the moving rigid body. This paper presents a theoretical framework to analyze the resistance in the disturbed zone created by a shaft penetrating a clay soil. The soil is modeled as a viscous material after it reaches failure [critical state (CS)]. The results of this analysis show that the viscous drag stress component on the shaft surface is influenced by the size of disturbed zone that has reached CS around the shaft, the shear viscosity of the soil and the velocity profile (or strain rate) in the CS zone around the shaft. The size of CS zone, the velocity profile and the viscosity of soil are interdependent. Large variation in viscous drag occurs when the size of the CS soil zone is less than four times the shaft’s radius. Limiting drag occurs when the size of the CS soil zone exceeds six times the shaft’s radius. The theoretical velocity distribution of the movement of soil in the CS zone shows that the soil is dragged along with shaft in the near field (close to the shaft surface) and moves upwards in the far field.  相似文献   

3.
从北半球的冷源出发,以半球尺度来考虑北极海冰对黄河上游水量丰枯的影响,通过对北极海冰与黄河上游汛期水量的统计分析揭示其相关关系,并探讨北极海冰通过影响大气环流进而影响黄河上游水量的物理机制.  相似文献   

4.
Relative percentages of sand, silt, and clay from samples of the same till unit are not identical because of different lithologies in the source areas, sorting in transport, random variation, and experimental error. Random variation and experimental error can be isolated from the other two as follows. For each particle-size class of each till unit, a standard population is determined by using a normally distributed, representative group of data. New measurements are compared with the standard population and, if they compare satisfactorily, the experimental error is not significant and random variation is within the expected range for the population. The outcome of the comparison depends on numerical criteria derived from a graphical method rather than on a more commonly used one-way analysis of variance with two treatments. If the number of samples and the standard deviation of the standard population are substituted in at-test equation, a family of hyperbolas is generated, each of which corresponds to a specific number of subsamples taken from each new sample. The axes of the graphs of the hyperbolas are the standard deviation of new measurements (horizontal axis) and the difference between the means of the new measurements and the standard population (vertical axis). The area between the two branches of each hyperbola corresponds to a satisfactory comparison between the new measurements and the standard population. Measurements from a new sample can be tested by plotting their standard deviation vs. difference in means on axes containing a hyperbola corresponding to the specific number of subsamples used. If the point lies between the branches of the hyperbola, the measurements are considered reliable. But if the point lies outside this region, the measurements are repeated. Because the critical segment of the hyperbola is approximately a straight line parallel to the horizontal axis, the test is simplified to a comparison between the means of the standard population and the means of the subsample. The minimum number of subsamples required to prove significant variation between samples caused by different lithologies in the source areas and sorting in transport can be determined directly from the graphical method. The minimum number of subsamples required is the maximum number to be run for economy of effort.  相似文献   

5.
We have studied the clay assemblages found in the different palaeogeographic domains located at the several Tunisian margin basins, ranging in age from Palaeozoic to Neogene. This study has allowed us to characterize and highlight the relationship between the clay distribution in time and space and the geodynamic and eustatic events. Marine regressions, with the intensification of erosion, seem to be responsible for illite increases, whereas transgressions, in concordance with a warm and dry climate, coincide with the smectite dominance. The minimum marine level coincides with the abundance of palygorskite. Mineralogic changes in the clay assemblages as well as in the proportion of the different clay minerals will tentatively be related to erosive tectonic events and/or to subsiding and rifting events, marked by the inheritance or the neoformation of the several clays.  相似文献   

6.
Stratigraphic units are defined and described for the Lower Carboniferous succession in the Walterstown-Kentstown area of Co. Meath, Ireland. A complete (unexposed) Courceyan succession from the terrestrial red bed facies of the Baronstown Formation to the Moathill Formation of the Navan Group has been penetrated in several boreholes. Although the lower part of the sequence is comparable with the Courceyan succession at Navan and Slane, the middle part of the sequence differs markedly in the Walterstown-Kentstown area and two new members, the Proudstown and Walterstown Members, are defined in the upper part of the Meath Formation. Syndepositional faulting was initiated during the Courceyan, probably in latest Pseudopolygnathus multistriatus or early Polygnathus mehli latus time. Movement on the ENE trending St. Patrick's Well Fault influenced the deposition of the Walterstown Member and the overlying Moathill Formation and was probably associated with the development of the East Midlands depocentre to the south of the area. A second episode of tectonism in the latest Courceyan or early Chadian resulted in uplift and erosion and the development of ‘block and basin’ sedimentation. Subsequent transgression of the uplifted block led to the establishment of the Kentstown Platform, bounded to the north, west and south by rocks of basinal facies. The Milverton Group (Chadian-Asbian), confined to this platform, unconformably overlies Courceyan or Lower Palaeozoic strata and is subdivided into three formations: Crufty Formation (late Chadian), Holmpatrick Formation (late Chadian-Arundian) and Mullaghfin Formation (late Arundian-Asbian). The Walterstown Fault controlled the western margin of the Kentstown Platform at this time. Contemporaneous basinal sediments of the Fingal Group (Lucan and Naul Formations) accumulated to the west of the Walterstown Fault and are much thicker than age-equivalent platform facies. Platform sedimentation ceased in latest Asbian to early Brigantian time with tectonically induced collapse and drowning of the platform; platform carbonates of the Mullaghfin Formation are onlapped northwards by coarse proximal basinal facies of the Loughshinny Formation. A distinct gravity anomaly in the Kentstown area suggests the presence of a granitoid body within the basement. The Kentstown Platform is therefore considered to have formed on a buoyant, granite-cored, footwall high analogous to the Askrigg and Alston Blocks of northern England.  相似文献   

7.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

8.
Summary Finite element analyses were conducted to investigate the magnitude of tensile strains imposed on landfill liners due to the formation of subsurface cavities. The study incorporated the significance of using geogrids to reduce the magnitude of strains and possibly the potential for collapse of landfill liners. Variations of key parameters included depth of overburden (D) and diameter of the cavity (B). Estimated stress distributions were compared to theoretical values obtained from a model reported in the literature. Results indicated that, contrary to conventional wisdom, the critical area based on the mechanics of arching was above the edge of the cavity where stress concentration occurred. Incorporation of geogrid reinforcement reduced the magnitude of tensile strains. The tensile force in the geogrid was dependent upon the size of the cavity, the depth of the overburden, and the applied pressure.  相似文献   

9.
曹妃甸老龙沟潮汐通道拦门沙演变机制   总被引:2,自引:0,他引:2  
渤海湾曹妃甸老龙沟海区属于泻湖型潮汐通道体系,口门附近发育有大规模拦门沙浅滩。由于沿岸泥沙供给不足,近几十年来东坑坨等沙坝外侧海区整体呈侵蚀冲刷态势,等深线向陆蚀退。老龙沟西支深槽也以侵蚀作用为主,而拦门沙地区滩槽冲淤变化则与东坑坨演变密切相关。其中东槽冲刷发展主要是东坑坨西南尾端淤长压迫老龙沟口门,引起岬角效应增大、潮流动力增强所致,而西槽的摆动现象则主要与东槽发展所产生的挤压作用有关。由于泥沙供给不足,近年来东槽发展和西槽摆动的速度都有明显减缓。  相似文献   

10.
About 40% of the water supply of Cairo, Egypt, is drawn from a groundwater reservoir located southeast of the Nile Delta. Several thousand shallow wells supply drinking water to the farmers from the same groundwater reservoir, which is recharged by seepage from Ismailia canal, the irrigation canal network, and other wastewater lagoons in the same areas. Sewage water lagoons were located at the high ground of the area, recharging contaminated water into the aquifer. Since the groundwater in this area is used for drinking purposes, it was decided to treat the sewage water recharging the aquifer for health reasons. In this paper a solution to the problem is presented using an injection well recharging good quality water into the aquifer. A pumping well located at a distance downstream is used to pump the contaminated water out of the aquifer. A three-dimensional solute transport model was developed to study the concentration distribution with remediation time in the contaminated zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号