首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The technical feasibility of geothermal power production in a low enthalpy environment will be investigated in the geothermal site at Groß Schönebeck, North German Basin, where a borehole doublet was completed in 2007. In order to complete the Enhanced Geothermal System, three massive hydraulic stimulations were performed. A seismic network was deployed including a single 3-component downhole seismic sensor at only 500 m distance to the injection point. Injection rates reached up to 9 m3/min and the maximum injection well-head pressure was as high as ~60 MPa. A total of 80 very small (?1.8 < M W < ?1.0) induced seismic events were detected. The hypocenters were determined for 29 events. The events show a strong spatial and temporal clustering and a maximum seismicity rate of 22 events per day. Spectral parameters were estimated from the downhole seismometer and related to those from other types of induced seismicity. The majority of events occurred towards the end of stimulation phases indicating a similar behavior as observed at similar treatments in crystalline environments but in our case at a smaller level of seismic activity and at lower magnitudes.  相似文献   

2.
Prediction of magnitude of the largest potentially induced seismic event   总被引:1,自引:0,他引:1  
We propose a method for determining the possible magnitude of a potentially largest induced seismic event derived from the Gutenberg–Richter law and an estimate of total released seismic moment. We emphasize that the presented relationship is valid for induced (not triggered) seismicity, as the total seismic moment of triggered seismicity is not bound by the injection. The ratio of the moment released by the largest event and weaker events is determined by the constants a and b of the Gutenberg–Richter law. We show that for a total released seismic moment, it is possible to estimate number of events greater than a given magnitude. We determine the formula for the moment magnitude of a probable largest seismic event with one occurrence within the recurrence interval (given by one volumetric change caused by mining or injecting). Finally, we compare theoretical and measured values of the moment magnitudes of the largest induced seismic events for selected geothermal and hydraulic fracturing projects.  相似文献   

3.
Historical seismic data and seismogenic information are quite scarce for the low seismicity region, and modeling the parameters uncertainties based on probabilistic model is suspicious. The convex set theory-based seismic hazard analysis approach is proposed. The uncertainties of b value, the annual occurrence rate v and the upper bound magnitude Mu are described by the envelop bound convex model and the ellipsoidal bound convex model. Convex analysis method and China probabilistic seismic hazard analysis methodology are combined to perform a bound seismic hazard analysis for Ningbo city, China. The seismic intensity interval obtained using the bound seismic hazard analysis is compared with that calculated using China probabilistic seismic hazard analysis methodology. The sensitivity analysis indicates that the interval of seismic intensity is most sensitive to the annual occurrence rate v. Furthermore, the different convex models have little effect on the interval of seismic intensity.  相似文献   

4.
A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40–83° N and 20–40° E) includes 36,563 earthquake events, which are reported as 4.0–8.3 moment magnitude (MW) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude MW. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.  相似文献   

5.
Earthquakes trigger other earthquakes and build up clusters in space and time that in turn create a bias in seismic catalogues. Therefore, declustering is considered as a prerequisite in seismic studies, particularly for probabilistic seismic hazard analysis, not only to eliminate the bias but also to decouple mainshocks and triggered events. However, a declustering process is not a straightforward task due to the complex nature of earthquake phenomena. There exist several declustering methods that mostly employ subjective rules to distinguish between background seismicity and offsprings. Eventually, the final declustered catalogues usually deviate significantly according to the employed method. This issue is raising some concerns, such as how to select the most suitable declustering algorithm, or to assess how this selection affects seismic hazard assessment. In consequence, the main goal of this paper is to quantify the sensitivity of seismic hazard assessments to different declustering techniques. Accordingly, the recently compiled Turkish earthquake catalogue was declustered by making use of three declustering algorithms. A total of six declustered catalogues, two catalogues per method, one by implementing the default input parameters, and one by altering the free input parameters of the employed methods, were produced. The clusters of selected earthquakes were studied in terms of the spatial–temporal distribution of earthquake sequences. A sensitivity analysis was conducted through the major steps of seismic hazard assessment for Istanbul metropolitan city. The seismicity of Istanbul and surroundings was modeled on the basis of four areal source zones. Comparative studies showed that, while the selected declustering algorithm did not significantly affect the completeness periods of moderate to large size earthquakes, it considerably altered those of small magnitude events (e.g. Mw 4.3–5.2) and consequently the recurrence parameters of the source zones. Depending on the declustering algorithm and input parameters, the activity rate was observed to vary up to a factor of two. The differences in the declustered catalogues obtained from different declustering approaches resulted in considerable variations in seismic hazard estimations. The hazard maps at return periods of 475 and 2475 years indicated that peak ground acceleration values may vary up to 20% at some locations. Moreover, the differences in 5% damped elastic spectral accelerations at T = 0.2 for the return periods of 475 and 2475 years are about 18 and 12%, respectively, on the southern shores of Istanbul where the highest hazard levels are observed.  相似文献   

6.
Large reservoirs have the risk of reservoir induced seismicity. Accurately detecting and locating microseismic events are crucial when studying reservoir earthquakes. Automatic earthquake monitoring in reservoir areas is one of the effective measures for earthquake disaster prevention and mitigation. In this study, we first applied the automatic location workflow (named LOC-FLOW) to process 14-day continuous waveform data from several reservoir areas in different river basins of Guizhou province. Compared with the manual seismic catalog, the recall rate of seismic event detection using the workflow was 83.9%. Of the detected earthquakes, 88.9% had an onset time difference below 1 s, 81.8% has a deviation in epicenter location within 5 km, and 77.8% had a focal depth difference of less than 5 km, indicating that the workflow has good generalization capacity in reservoir areas. We further applied the workflow to retrospectively process continuous waveform data recorded from 2020 to the first half of 2021 in reservoir areas in multiple river basins of western Guizhou province and identified five times the number of seismic events obtained through manual processing. Compared with manual processing of seismic catalog, the completeness magnitude had decreased from 1.3 to 0.8, and a b-value of 1.25 was calculated for seismicity in western Guizhou province, consistent with the b-values obtained for the reservoir area in previous studies. Our results show that seismicity levels were relatively low around large reservoirs that were impounded over 15 years ago, and there is no significant correlation between the seismicity in these areas and reservoir impoundment. Seismicity patterns were notably different around two large reservoirs that were only impounded about 12 years ago, which may be explained by differences in reservoir storage capacity, the geologic and tectonic settings, hydrogeological characteristics, and active fault the reservoir areas. Prominent seismicity persisted around two large reservoirs that have been impounded for less than 10 years. These events were clustered and had relatively shallow focal depths. The impoundment of the Jiayan Reservoir had not officially begun during this study period, but earthquake location results suggested a high seismicity level in this reservoir area. Therefore, any seismicity in this reservoir area after the official impoundment deserves special attention.  相似文献   

7.
随着页岩气开采、地热能源开采、CO2封存和水库蓄水等工业活动的开展,由此产生的诱发地震危害问题日益严重。为了对诱发地震进行有效监测和管控,地震学家设计了"交通灯"系统,当地震活动达到一定阈值时,相关人员可根据系统警报及时采取应对措施,减轻地震灾害。本文调研了近年来多个国家的"交通灯"系统研究和应用进展,介绍了其发展历史、设置原理及应用案例。"交通灯"系统的发展和完善应综合考虑震级、震动强度、b值和断层分布,以及建筑结构、城镇距离、人口密度、公众反应等社会因素。同时,在诱发地震频发区域,应建设密集的专用监测台网,提高微震检测和定位能力,并引入模板匹配和人工智能等新的自动处理方法,及时产出高完备性、高精度的微震目录,对微震的时空演化进行有效监测,形成时效性较强的"交通灯"系统。  相似文献   

8.
We study the microseismicity (M L ?<?2) in the region of Landau, SW Germany. Here, due to thick sediments (~3?km) and high cultural seismic noise, the signal-to-noise ratio is in general very low for microearthquakes. To gain new insights into the occurrence of very small seismic events, we apply a three-step detection approach and are able to identify 207 microseismic events (?1?<?M L ?<?~1) with signal-to-noise ratios smaller than 3. Recordings from a temporary broadband network are used with station distances of approximately 10?km. First, we apply a short-term to long-term average detection algorithm for data reduction. The detection algorithm is affected severely by transient noise signals. Therefore, the most promising detections, selected by coinciding triggers and high-amplitude measures, are reviewed manually. Thirteen seismic events are identified in this way. Finally, we conduct a cross-correlation analysis. As master template, we use the stacked waveforms of five manually detected seismic events with a repeating waveform. This search reveals additional 194 events with a cross-correlation coefficient exceeding 0.65 which ensures a stable identification. Our analysis shows that the repeating events occurred during the stimulation of a geothermal reservoir within a source region of only about 0.5?km3. Natural background seismicity exceeding our detection level of M L ?~?0.7 is not found in the region of Landau by our analysis.  相似文献   

9.
We describe the seismicity at Iwate volcano, northeastern Japan, during the volcanic unrest of 1998 with reference to a three-dimensional P and S wave velocity model from tomographic analysis. The abnormal seismic activity beneath Iwate volcano started under the caldera in February, 1998 and migrated westward in the period February to August, 1998. Previous geodetic modeling [Sato and Hamaguchi, Chikyu Monthly 21 (1999) 312–317] suggested the growth of a dike in the time of the seismic activity. Comparing the seismicity and dike extension with the tomographic images of the P and S wave velocity structure, we find that the trace of the growing dike coincides with the region of the high Vp and high Vp/Vs ratio beneath the volcano. The seismic and geodetic data are consistent with an intrusion of magma or other fluid under the caldera in 1998. Another pressure source causing the predominant crustal deformation at Iwate volcano was detected from geodetic data, which was located in the region with high Vp/Vs ratio under the western end of the volcano through the period from February to August. It is suggested that the activation of the point pressure source probably associated with the inflation of a hot fluid reservoir relate to a geothermal region adjacent to the western edge of the volcano.  相似文献   

10.
In June/July 2000, a hydraulic stimulation experiment took place at the geothermal EGS site of Soultz-sous-Forêts (Alsace, France) in order to enhance the permeability of the fractured granitic massif at 5 km depth. As it is well known that fluid injections tend to induce microseismic events, a downhole and a surface seismological network have been installed to monitor the seismic activity during the stimulation test. 23400 m3 of fluid have been injected in the rock volume through the open-hole section (4400 m–5000 m) of the well GPK2 at increasing rates of 30 l.s−1, 40 l.s−1 and then 50 l.s−1. More than 7200 microseismic events in the magnitude range –0.9 to 2.6 have been precisely located through a simultaneous inversion of the seismic velocity structure and location parameters. The analysis of the behavior of the seismicity relative to the hydraulic parameters gives important information about the geothermal reservoir. It appears that the evolution of the seismicity strongly depends on the variations of the injection rate: An increase or a decrease leads to changes of the velocity structure, the number and magnitude of microseismic events. This involves different hydro-mechanical processes between the fluid flow and the fracture planes, which will control the final shape of the microseismic cloud. Moreover, the study of the variations of the b-value with time suggests that the stimulation experiment produces a large proportion of small earthquakes, but records of events of magnitude higher than 2 indicate that fluid injection could reactivate structures whose dimensions allow the generation of such earthquakes.  相似文献   

11.
— Seismic hazard analysis methods in mines are reviewed for the purpose of selecting the best technique. To achieve this goal, the most often-used hazard analysis procedure, which is based on the classical frequency-magnitude Gutenberg-Richter relation, as well as alternative procedures are investigated.¶Since the maximum regional seismic event magnitude m max is of paramount importance in seismic hazard analysis, this work provides a generic formula for the evaluation of this important parameter. The formula is capable of generating solutions in different forms, depending on the assumptions of the model of the magnitude distribution and/or the available information regarding past seismicity. It includes the cases (i) in which seismic event magnitudes are distributed according to the truncated frequency-magnitude Gutenberg-Richter relation, and (ii) in which no specific model of the magnitude distribution is assumed.¶Both synthetic, Monte-Carlo simulated seismic event catalogues, and actual data from the copper mine in Poland and gold mine in South Africa, are used to demonstrate the discussed hazard analysis techniques.¶Our studies show that the non-parametric technique, which is independent of the assumed model of the distribution of magnitude, provides an appropriate tool for seismic hazard assessment in mines where the magnitude distribution can be very complex.  相似文献   

12.
Prior to an earthquake, natural seismicity is correlated across multiple spatial and temporal scales. Many studies have indicated that an earthquake is hard to accurately predict by a single time-dependent precursory method. In this study, we attempt to combine four earthquake prediction methods, i.e. the Pattern Informatics (PI), Load/Unload Response Ratio (LURR), State Vector (SV), and Accelerating Moment Release (AMR) to estimate future earthquake potential. The PI technique is founded on the premise that the change in the seismicity rate is a proxy for the change in the underlying stress. We first use the PI method to quantify localized changes surrounding the epicenters of large earthquakes to objectively quantify the anomalous areas (hot spots) of the upcoming events. Next, we delineate the seismic hazard regions by integrating with regional active fault zones and small earthquake activities. Then, we further evaluate the earthquake potential in the seismic hazard regions using the LURR, SV and AMR methods. Retrospective tests of this new approach on the large earthquakes (M > 6.5) which have occurred in western China over the last 3 years show that the LURR and SV time series usually climb to an anomalously high peak months to years prior to occurrence of a large earthquake. And, the asymptote time, t c, “predicted” by the AMR method correspond to the time of the actual events. The results may suggest that the multi-methods combined approach can be a useful tool to provide stronger constraints on forecasts of the time and location of future large events.  相似文献   

13.
In this study, the seismic quiescence prior to hazardous earthquakes was analyzed along the Sumatra-Andaman subduction zone (SASZ). The seismicity data were screened statistically with mainshock earthquakes of M w?≥?4.4 reported during 1980–2015 being defined as the completeness database. In order to examine the possibility of using the seismic quiescence stage as a marker of subsequent earthquakes, the seismicity data reported prior to the eight major earthquakes along the SASZ were analyzed for changes in their seismicity rate using the statistical Z test. Iterative tests revealed that Z factors of N?=?50 events and T?=?2?years were optimal for detecting sudden rate changes such as quiescence and to map these spatially. The observed quiescence periods conformed to the subsequent major earthquake occurrences both spatially and temporally. Using suitable conditions obtained from successive retrospective tests, the seismicity rate changes were then mapped from the most up-to-date seismicity data available. This revealed three areas along the SASZ that might generate a major earthquake in the future: (i) Nicobar Islands (Z?=?6.7), (ii) the western offshore side of Sumatra Island (Z?=?7.1), and (iii) western Myanmar (Z?=?6.7). The performance of a stochastic test using a number of synthetic randomized catalogues indicated these levels of anomalous Z value showed the above anomaly is unlikely due to chance or random fluctuations of the earthquake. Thus, these three areas have a high possibility of generating a strong-to-major earthquake in the future.  相似文献   

14.
Spatial sensitivity of seismic hazard results to different models with respect to background seismic activity and earthquake occurrence in time is investigated. For the contribution of background seismic activity to seismic hazard, background area source with uniform seismicity and spatially smoothed seismicity models are taken into consideration. For the contribution of faults, through characteristic earthquakes, both the memoryless Poisson and the time dependent renewal models are utilized. A case study, involving the assessment of seismic hazard for the Bursa province in Turkey, is conducted in order to examine quantitatively the influence of these models on seismic hazard results. The spatial variation of the difference in Peak Ground Acceleration (PGA) values obtained from these different models is presented in the form of difference maps for return periods of 475 and 2475 years. Best estimate seismic hazard maps for PGA and Spectral Accelerations (SA) at 0.2 and 1.0 s are obtained by using the logic tree method.  相似文献   

15.
From recent lessons, it is evident that earthquake prediction is immature and impractical as of now. Under the circumstances, seismic hazard analysis is considered a more practical approach for earthquake hazard mitigation, by estimating the annual rate of earthquake ground motions (or seismic hazard) based on seismicity and other geological evidences. Like other earthquake studies for the high-seismicity region around Taiwan, this study aims to conduct a new seismic hazard assessment for the region using the well-established FOSM (first-order second-moment) algorithm, on the record of 55,000 earthquakes observed in the past 110 years. The new seismic hazard analysis from a different perspective shows that the annual rate for earthquake-induced PGA to exceed the current design value (i.e., 0.23g) in two major cities in Taiwan should be relatively low, with it no greater than 0.0006 per year. Besides, the FOSM estimates were found very close to those with Monte Carlo Simulation (MCS), mainly because the skewness of the three random variables (i.e., earthquake magnitude, location, and model error) considered in the probabilistic analysis is not very large.  相似文献   

16.
—?Induced microseismicity data from a large volume fluid injection into sedimentary rock was analyzed to study the fracture system, fluid pathways, and state of stress in the lower Frio formation in east Texas. Seismicity data are from two arrays of 25 3-component geophone packages sited in two monitoring boreholes. From a total of 2,894 event triggers, a subset of 54 microearthquakes was chosen for their high quality seismograms and clear P and S arrivals. Arrival times were picked with a precision of 0.5 to 1.0?ms, and microearthquakes were located with hypocentral uncertainties estimated as less than 10–20?m. Hypocenters farthest from the injection well define a nearly horizontal tube of seismicity approximately aligned in the direction of the injection well. A simultaneous inversion of arrival times for transverse isotropic velocity structure and hypocenters yielded P-wave anisotropy of ?14% and S-wave anisotropy of ?2%. Thus, velocities along vertical ray paths are higher than those along horizontal paths, probably because of lithologic differences. Single-event focal mechanisms were determined for 47 events, and many of them are normal fault type. The minimum principal stress derived from the focal mechanisms is nearly horizontal and trends approximately north-south, consistent with the regional stress state. An imaging analysis of the seismograms shows the presence of strong seismic scatterers at positions that correlate with boundaries seen in the hypocenters; both features probably result from a similar set of heterogeneities. This study demonstrates the abundance of information that can be extracted from induced seismicity data and underscores the value of induced seismicity monitoring for studying the fluid and fracture systems created by fluid injections.  相似文献   

17.
Data from 25 local catalogues and 30special studies of earthquakes in central,northern and northwestern Europe have beenincorporated into a Databank. The dataprocessing includes discriminating eventtypes, eliminating fake events and dupletsand converting different magnitudes andintensities to Mw if this is not givenby the original source. The magnitudeconversion is a key task of the study andimplies establishment of regressionequations where no local relations exist.The Catalogue contains tectonic events fromthe Databank within the area44°N–72°N,25°W–32°E and the time period1300–1993. The lower magnitude level forthe Catalogue entries is setat Mw == 3.50. The area covered by thedifferent catalogues are associated withpolygons. Within each polygon only datafrom one or a small number of the localcatalogues, supplemented by data fromspecial studies, enter the Catalogue. Ifthere are two or more such catalogues orstudies providing a solution for an event,a priority algorithm selects one entry forthe Catalogue. Then Mw is calculatedfrom one of the magnitude types, or frommacroseismic data, given by the selectedentry according to another priority scheme.The origin time, location, Mw magnitude and reference are specified for eachentry of the Catalogue. So is theepicentral intensity, I0, if providedby the original source. Following thesecriteria, a total of about 5,000earthquakes constitute the Catalogue.Although originally derived for the purposeof seismic hazard calculation within GSHAP,the Catalogue provides a data base for manytypes of seismicity and seismic hazardstudies.  相似文献   

18.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   

19.
The parametric catalogues of historical earthquakes in East Siberia contain large data gaps. Among these is a 15-year period in the late nineteenth century (1886–1901). This period was not covered by any of macroseismic catalogues known; neither acquisition nor systematization of macroseismic data was ever performed for that purpose. However, 15 years is a rather long period in which large seismic events may have occurred. The present paper deals with the previously unknown earthquake that occurred on November 13, 1898. The primary macroseismic data were taken from regional periodicals. On the strength of all the evidence obtained, the earthquake epicenter is localized in Western Transbaikalia, near the western end of the Malkhansky Range; the magnitude is estimated at M?=?5.9. The information about the large earthquake of November 13, 1898 provides filling significant gaps in knowledge for seismicity in Western Transbaikalia and a better understanding of seismic potential of faults therein. The obtained results show that the periods of seismic quiescence in catalogues may be related to insufficient information on seismicity of Eastern Siberia in the historical past rather than to the absence of large earthquakes.  相似文献   

20.
—?The injection or production of fluids can induce microseismic events in hydrocarbon and geothermal reservoirs. By deploying sensors downhole, data sets have been collected that consist of a few hundred to well over 10,000 induced events. We find that most induced events cluster into well-defined geometrical patterns. In many cases, we must apply high-precision, relative location techniques to observe these patterns. At three sedimentary sites, thin horizontal strands of activity are commonly found within the location patterns. We believe this reflects fracture containment between stratigraphic layers of differing mechanical properties or states of stress. At a massive carbonate and two crystalline sites, combinations of linear and planar features indicate networks of intersecting fractures and allow us to infer positions of aseismic fractures through their influence on the location patterns. In addition, the fine-scale seismicity patterns often evolve systematically with time. At sedimentary sites, migration of seismicity toward the injection point has been observed and may result from slip-induced stress along fractures that initially have little resolved shear. In such cases, triggering events may be critical to generate high levels of seismic activity. At one crystalline site, the early occurrence of linear features that traverse planes of activity indicate permeable zones and possible flow paths within fractures. We hope the continued development of microseismic techniques and refinement of conceptual models will further increase our understanding of fluid behavior and lead to improved resource management in fractured reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号