首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A numerical model has been used to calculate the atmospheric response to forcing at periods in the region of 12-13.5 h. The results show that the response is enhanced in the neighbourhood of 13 h. These results have been compared with lunar tidal analyses of mesospheric wind data and geomagnetic variations at a number of stations. It is found that the N2 lunar tidal component (period 12.66 h) is significantly enhanced relative to the main lunar tidal component M2 (period 12.42 h) in both types of data, compared with what would be expected from the gravitational tidal potential. This supports the predictions of the numerical model. An appreciable phase shift is also found in the experimental data between the N2 and M2 tides, agreeing in sense with what would be expected for a resonance at a period around 13 h.  相似文献   

2.
The natural geomagnetic field is constantly disturbed. The total registered effect of geomagnetic variations depends on both planetary and local processes. Planetary sources and sources in the Earth’s core respond to tidal effects. In the accepted model, the complex MHD processes in the Earth’s outer core are approximated by the assumed ring current in the equatorial plain of the liquid core. The geomagnetic variation originating as a result of tidal deformations of ring currents are ~10?4 and 0.10–1 nT in the liquid core and magnetosphere, respectively. The calculated values coincide in order of magnitude with the processed geomagnetic measurements at Paratunka observatory (Kamchatka region).  相似文献   

3.
利用云南11个地磁台站的秒采样观测数据,计算和分析了地磁垂直强度极化值Yzh在2019年8月13日、14日通海MS5.0地震前及2019年9月8日墨江MS5.9地震前的时空变化特征。研究表明,地磁台站Yzh值的幅度在震前会出现同步增强现象。而与以往的极化震例研究相比,Yzh值的高值异常在震前出现时间要更早些,可能会在震前2~5个月出现,距发震时间越近,产生的异常幅值可能越大,异常持续时间也越长。同时,研究还发现2次地震主要发生在异常空间等值线的高值区内,尤其在零值阈值线附近,这可能对今后发震地点的预测有一定的指示意义。对比异常产生时段内的Dst指数,认为该高值异常并非由空间电流体系所引起。  相似文献   

4.
Results of observations of tidal strains of the crust in the tectonically active Elbrus area of the Northern Caucasus carried out with the use of the Baksan SSAI laser interferometer strainmeter over the period from 2003 through 2006 are presented. Harmonic analysis is performed with the help of the ETERNA software package. Statistically significant time variations in the amplitudes of the main tidal waves M 2 and O 1 are revealed. The influence of the topography on tidal strains in the Baksan gorge is estimated at 22% (an increase in the measured strain values). The reduced amplitude factors of the main diurnal (O 1) and semidiurnal (M 2) waves are underestimated. Numerical modeling of tidal anomalies produced by regional heterogeneous inclusions is performed in a 2-D approximation. The observed anomaly of the M 2 wave (12%) is shown to be due to the influence of the main magma-controlling fault associated with the deep magma source of the Elbrus dormant volcano.  相似文献   

5.
The results of processing and analyzing the instrumental observations of the Earth’s magnetic field at the Geophysical Observatory Mikhnevo of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (IGD RAS) for 2010–2015 are presented. Quasi-harmonic components with the periods close to the lunar–solar tidal waves are revealed in the spectra of geomagnetic variations over a period of 0.4 to 30 days. The elliptical S1 tidal wave which is detected in the geomagnetic variations has modulations with periods of 1/3, 1/2, and 1 year. The spectra of the geomagnetic variations contain peaks corresponding to the free oscillations of the Earth. The analysis of the time series of the magnetic field for the period of the strong earthquakes in the absence of geomagnetic disturbances revealed the fine structure of the Earth’s fundamental spheroidal mode 0S2, which splits into five singlets. The established features of the spectrum of geomagnetic variations are helping the development of the new method for studying the deep structure of the Earth and the properties of the inner geospheres for estimating the viscosity of the Earth’s outer core and dynamics of the current systems in the outer (liquid) core, as well as for exploring, with the use of empirical data, the general regularities governing the regimes of energy exchange processes in the geospheres.  相似文献   

6.
The variations in the geomagnetic cutoff rigidity in Irkutsk, Alma-Ata, and Beijing in October–November 2003 were calculated using ground-based measurements of cosmic ray intensity from the worldwide network of stations and GOES spacecraft. The calculated variations in geomagnetic cutoff rigidity are presented together with D st variations of the geomagnetic field. The obtained results are compared to calculations performed using the Tsyganenko model of the magnetosphere.  相似文献   

7.
The diurnal-variation anomalies of the vertical-component in geomagnetic field are mainly the changes of phase and amplitude before strong earthquakes. On the basis of data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of appearance time of the minima of diurnal variations (i.e, low-point time) of the geomagnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before over 30 strong earthquakes with M S≥6.6 such as Kunlunshan M S=8.1 earthquake on November 14, 2001; Bachu-Jashi M S=6.8 earthquake on February 24, 2003; Xiaojin M S=6.6 earthquake on September 22, 1989, etc. There are good relations between such rare phenomena of geomagnetic anomalies and the occurrence of earthquakes. It has been found that most earthquakes occur in the vicinity of the boundary line of sudden change of the low-point displacement and generally within four days before and after the 27th or 41st day counting from the day of appearance of the anomaly. In addition, the anomalies of diurnal-variation amplitude near the epicentral area have been also studied before Kunlunshan M S=8.1 earthquake and Bachu-Jiashi M S=6.8 earthquake. Foundation item: National Science Technology Tackle Key Project during the Tenth Five-year Plan (2001BA601B01-05-04)  相似文献   

8.
Gravity tide records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been analyzed and compared to the theoretical body tide model (DDW) of Dehant el al. (1999). The use of more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published values. Also, the calibration values have been revisited at those sites. Precise ocean tide loading (OTL) corrections based on up-to-date global ocean models and improved regional ocean model have been obtained for the main tidal harmonics O1, K1, M2, S2. We also point out the importance of using the most accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data series. Finally, the comparison of the tidal observations with the theoretical body tide models has been done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote.  相似文献   

9.
A three-dimensional shelf circulation model is used to examine the effect of seasonal changes in water-column stratification on the tidal circulation over the Scotian Shelf and Gulf of St. Lawrence. The model is driven by tidal forcing specified at the model’s lateral open boundaries in terms of tidal sea surface elevations and depth-averaged currents for five major tidal constituents (M2, N2, S2, K1, and O1). Three numerical experiments are conducted to determine the influence of baroclinic pressure gradients and changes in vertical mixing, both associated with stratification, on the seasonal variation of tidal circulation over the study region. The model is initialized with climatological hydrographic fields and integrated for 16 months in each experiment. Model results from the last 12 months are analyzed to determine the dominant semidiurnal and diurnal tidal components, M2 and K1. Model results suggest that the seasonal variation in the water-column stratification affects the M2 tidal circulation most strongly over the shelf break and over the deep waters off the Scotian Shelf (through the development of baroclinic pressure gradients) and along Northumberland Strait in the Gulf of St. Lawrence (through changes in vertical mixing and bottom stress). For the K1 constituent, the baroclinic pressure gradient and vertical mixing have opposing effects on the tidal circulation over several areas of the study region, while near the bottom, vertical mixing appears to play only a small role in the tidal circulation.  相似文献   

10.
The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geomagnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan MS8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the MS8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anomalies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.  相似文献   

11.
During the MLTCS (Mesosphere-Lower Thermosphere Coupling Study) campaign the EISCAT UHF radar was continuously operated over 7 days (30 July-5 August 1992) in the CP-1 mode. The long time series obtained of the fundamental ionospheric parameters field-aligned ion velocity (Vi), ion and electron temperature (T and Te), and electron density (Ne) are useful in investigating tidal variations in the E- and F-region since the geomagnetic activity was particularly low during the time of measurement. Maximum entropy spectra of the parameters were calculated for the relatively quiet interval from 1 August to 4 August 1992 and indicated dominant variations with harmonics of 24 hours. In the electron density spectrum especially, harmonics up to the sixth order (4-h period) are clearly visible. The phase and amplitude height profiles (100-450 km) of the diurnal, semidiurnal, and terdiurnal variations were determined by Fourier transform for a 24-h data set beginning at 12:00 UT on 3 August 1992 when the contaminating influences of electric fields were negligible. The tidal variations of the ion temperatures are compared with the corresponding variations of the neutral temperature predicted by the MSISE-90 model. A remarkable result is the dominance of terdiurnal temperature oscillations at E-region heights on 3–4 August 1992, while the measured diurnal and semidiurnal variations were negligible. The finding was confirmed by the analysis of further EISCAT data (2-3 August 1989, 2–3 July 1990, 31 March- 1 April 1992) which also showed a dominant terdiurnal temperature tide in the E-region. This is different from numerous observations of tides in the E-region at mid-latitudes where the diurnal and especially the semidiurnal temperature oscillations were dominant.  相似文献   

12.
The spatio-temporal evolution of geomagnetic pulsation bursts at frequencies of 1–3 Hz, observed at the Mondy (MLT ≈ 1200; Mlat = 46.8°; L = 2.16) and Borok (MLT ≈ 0820; Mlat = 54.0°; L = 2.94) midlatitude observatories and Lovozero auroral observatory (MLT ≈ 0820; Mlat = 64.2°; L = 5.36), has been studied. The considered bursts were registered in daytime sector of the magnetosphere after sudden impulses (SIs) caused by dramatic increases in the solar wind dynamic pressure and registered on board the WIND satellite. The SI onset time corresponds to the Sc* time shown in the Geomagnetic Indices Bulletin. The possible relationship between the excitation of these bursts and the variations in the particle partial density in the range of energies 0.03–45 keV per unit charge has been studied. The bursts were registered on board the LANL geosynchronous satellites. A comparison of the particle partial density variations measured on the satellites and the variation temperature anisotropy (A = T/T − 1) with the variations in the pulsation burst amplitude on the ground indicated that the partial density maximum and the minimum (A ≤ 0) of the electron temperature anisotropy index in the vicinity of local noon coincide in time with the pulsation generation instant. A comparison of the electron partial density variations on the LANL-1994 and LANL-97A geosynchronous satellites spaced in longitude and the spatio-temporal variations in the development of bursts make it possible to assume that 1–3 Hz geomagnetic pulsations are excited in the vicinity of local noon and subsequently propagate along the ionospheric waveguide.  相似文献   

13.
This study examines connections between mean sea level (MSL) variability and diurnal and semidiurnal tidal constituent variations at 17 open-ocean and 9 continental shelf tide gauges in the western tropical Pacific Ocean, a region showing anomalous rise in MSL over the last 20 years and strong interannual variability. Detrended MSL fluctuations are correlated with detrended tidal amplitude and phase fluctuations, defined as tidal anomaly trends (TATs), to quantify the response of tidal properties to MSL variation. About 20 significant amplitude and phase TATs are found for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). Lesser constituents (O1 and S2) show trends at nearly half of all gauges. Fluctuations in MSL shift amplitudes and phases; both positive and negative responses occur. Changing overtides suggest that TATs are influenced by changing shallow water friction over the equatorial Western Pacific and the eastern coast of Australia (especially near the Great Barrier Reef). There is a strong connection between semidiurnal TATs at stations around the Solomon Islands and changes in thermocline depth, overtide generation, and the El Niño Southern Oscillation (ENSO). TATs for O1, K1, and M2 are related to each other in a manner that suggests transfer of energy from M2 to the two diurnals via resonant triad interactions; these cause major tidal variability on sub-decadal time scales, especially for M2. The response of tides to MSL variability is not only spatially complex, it is frequency dependent; therefore, short-term responses may not predict long-term behavior.  相似文献   

14.
A high-resolution three-dimensional model of the Clyde Sea and the adjacent North Channel of the Irish Sea is used to compute the major diurnal and semidiurnal tides in the region, the associated energy fluxes and thickness of the bottom boundary layer. Initially, the accuracy of the model is assessed by performing a detailed comparison of computed tidal elevations and currents in the region, against an extensive database that exists for the M2, S2, N2, K1 and O1 tides. Subsequently, the model is used to compute the tidal energy flux vectors in the region. These show that the major energy flux is confined to the North Channel region, with little energy flux into the Clyde Sea. Comparison with the observed energy flux in the North Channel shows that its across-channel distribution and its magnitude are particularly sensitive to the phase difference between elevation and current. Consequently, small changes in the computed values of these parameters due to slight changes of the order of the uncertainty in the open-boundary values to the model, can significantly influence the computed energy flux. The thickness of the bottom boundary layer in the region is computed using a number of formulations. Depending upon the definition adopted, the empirical coefficient C used to determine its thickness varies over the range 0.1 to 0.3, in good agreement with values found in the literature. In the North Channel, the boundary layer thickness occupies the whole water depth, and hence tidal turbulence produced at the sea bed keeps the region well mixed. In the Clyde Sea, the boundary layer thickness is a small fraction of the depth, and hence the region stratifies.Responsible Editor: Phil Dyke  相似文献   

15.
The tides and tidal energetics in the Indonesian seas are simulated using a three-dimensional finite volume coastal ocean model. The high-resolution coastline-fitted model is configured to better resolve the hydrodynamic processes around the numerous barrier islands. A large model domain is adopted to minimize the uncertainty adjacent to open boundaries. The model results with elevation assimilation based on a simple nudge scheme faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root-mean-square errors between the observed and simulated tidal constants are 2.3, 1.1, 2.4, and 1.5 cm for M2, S2, K1, and O1, respectively. Analysis of the model solutions indicates that the semidiurnal tides in the Indonesian Seas are primarily dominated by the Indian Ocean, whereas the diurnal tides in this region are mainly influenced by the Pacific Ocean, which is consistent with previous studies. Examinations of tidal energy transport reveal that the tidal energy for both of the simulated tidal constituents are transported from the Indian Ocean into the IS mainly through the Lombok Strait and the Timor Sea, whereas only M2 energy enters the Banda Sea and continues northward. The tidal energy dissipates the most in the passages on both sides of Timor Island, with the maximum M2 and K1 tidal energy transport reaching about 750 and 650 kW m–1, respectively. The total energy losses of the four dominant constituents in the IS are nearly 338 GW, with the M2 constituent dissipating 240.8 GW. It is also shown that the bottom dissipation rate for the M2 tide is about 1–2 order of magnitudes larger than that of the other three tidal components in the Indonesian seas.  相似文献   

16.
Significant anomalies were observed at the geomagnetic stations in the southwest region of China before the Yingjiang MS6.1 earthquake and the Ludian MS6.5 earthquake in 2014. We processed the geomagnetic vertical component diurnal variation data by the spatial correlation method. The results show that during the period from April 1 to May 20, 2014,there existed quasi-synchronous decrease changes in the coefficient curves between the five geomagnetic stations of Guiyang,Hechi,Nanshan,Muli,Yongning and Xinyi and Hongshan stations.Furthermore,there was a high gradient zone in the normalized correlation coefficient contour map with background values removed. The epicenters of the Yingjiang MS6.1 earthquake and the Ludian MS6.5 earthquake are located in the gradient zone or near the gradient zone.  相似文献   

17.
The effect of horizontal grid resolution on the horizontal relative dispersion of particle pairs has been investigated on a short time scale, i.e. one tidal M 2 cycle. Of particular interest is the tidal effect on dispersion and transports in coastal waters where small-scale flow features are important. A three-dimensional ocean model has been applied to simulate the tidal flow through the Moskstraumen Maelstrom outside Lofoten in northern Norway, well known for its strong current and whirlpools (Gjevik et al., Nature 388(6645):837–838, 1997; Moe et al., Cont Shelf Res 22(3):485–504, 2002). Simulations with spatial resolution down to 50 m have been carried out. Lagrangian tracers were passively advected with the flow, and Lyapunov exponents and power law exponents have been calculated to analyse the separation statistics. It is found that the relative dispersion of particles on a short time scale (12–24 h) is very sensitive to the grid size and that the spatial variability is also very large, ranging from 0 to 100 km2 over a distance of 100 m. This means that models for prediction of transport and dispersion of oil spills, fish eggs, sea lice etc. using a single diffusion coefficient will be of limited value, unless the models actually resolves the small-scale eddies of the tidal current.  相似文献   

18.
A fine grid tidal modeling experiment is carried out in order to investigate the tidal regimes for major five tidal constituents, the nonlinear tidal phenomena in terms of M4 and MS4 generation, and the independent tide by the tide generating force in the Yellow and East China Seas (YECS). In this study a two-dimensional numerical model based upon a subgrid-scale (SGS) stress modeling technique is used with the tide generating force included. The model was validated with recently observed tide and current data. The calculated tidal charts for tidal elevation show a generally good agreement with existing ones, with more accurate feature of the M2 cotidal chart in comparison with both the observed data and the existing tidal charts. A careful comparison of the computed diurnal amplitude with observations suggests that the diurnal constituents seem to be overdamped especially in the Kyunggi Bay region, for the case when quadratic bottom friction law is used.Propagation features of the M4(MS4) tides are discussed in the YECS, based upon the analyses of the observed and calculated results. The amphidromic system of the M4 is quite complicated and one noticeable characteristic is that the propagation direction of the M4 tidal wave along the west coast of Korean peninsula is opposite to that of the M2 tidal wave. This result coincides with observations. The propagation feature of the MS4 is almost similar to that of the M4, but with lesser amplitude. The responses of the M4 tidal features to momentum diffusion term and depth-dependent form of the friction coefficient are also discussed.It is also shown that when the independent tide (Defant, 1960) arising from tide generating force (TGF) coexists with tidal waves (co-oscillating tide) arising from external boundary forcing, the TGF tidal waves are dissipated and their amphidromes tend to move westward. This may be interpreted as a process whereby the incident and reflected TGF tidal waves are damped by co-oscillating tide arising from external force at open boundaries. The TGF amplitude is found to be up to 10 cm and 4 cm in the Kyunggi Bay for the M2 and S2 constituents while those for all diurnal constituents are less than 1 cm over the entire model domain.  相似文献   

19.
2017年精河MS6.6地震前地磁异常特征分析   总被引:1,自引:0,他引:1  
2017年8月9精河发生MS6.6地震,距震中300km范围内的温泉台、克拉玛依台、乌鲁木齐台捕捉到此次地震前的地磁异常信息,本文对此进行了分析和总结,结论如下:①地磁谐波振幅比反应了观测点深部电阻率变化,2016年呼图壁MS6.2、此次精河MS6.6地震均发生在克拉玛依台地磁谐波振幅比异常下降之后的转折和恢复阶段;②震前83天、21天沿北天山断裂带分布的地磁台站逐日比和加卸载响应比均成组出现超限的高值,且异常高值的空间分布与震中位置有一定关联;③全国大陆地磁台站震前34天出现低点位移突变分界线,且异常集中于震中附近。  相似文献   

20.
Summary The lunar daily (L) and lunar monthly (M) variations in horizontal magnetic field (H), maximum electron density (N max ), height of peak ionisation (h max ), semi-thickness (y m ) of theF 2 layer and total electron content (N t ) at Huancayo for the period January 1960 to December 1961 are described. The lunar tidal variations inh max follow sympathetically the variations inH such that an increase of magnetic field causes the raising of height of peak ionisation. Lunar tides inN max are opposite in phase to that ofh max with a delay of about 1–2 hours, suggesting that an increase of height causes a decrease in maximum electron density. The lunar tides in semi-thickness are very similar in phase to that inh max . The lunar tidal effects in any of the parameters are largest inD-months and least inJ-months. The amplitude of lunar tides in maximum electron density seems to increase with increasing height whereas the phase seems to be constant with height. It is concluded that lunar tides in the ionospheric parameters at magnetic equator are greatly controlled by the corresponding geomagnetic variations.Presented at the Third International Symposium on Equatorial Aeronomy, Ahmedabad, 3–10 February 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号