首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Geochemical variations in stream sediments (n = 54) from the Mahaweli River of Sri Lanka have been evaluated from the viewpoints of lithological control, sorting, heavy mineral concentration, influence of climatic zonation (wet, intermediate, and dry zones), weathering, and downstream transport. Compositions of soils (n = 22) and basement rocks (n = 38) of the catchment and those of <180 μm and 180–2000 μm fractions of the stream sediments were also examined. The sediments, fractions, soils and basement rocks were analyzed by X-ray fluorescence to determine their As, Pb, Zn, Cu, Ni, Cr, V, Sr, Y, Nb, Zr, Th, Sc, Fe2O3, TiO2, MnO, CaO, P2O5 and total sulfur contents. Abundances of high field strength and ferromagnesian elements in the sediments indicate concentration of durable heavy minerals including zircon, tourmaline, rutile, monazite, garnet, pyriboles, and titanite, especially in <180 μm fractions. The sediments show strong correlation between Ti and Fe, further suggesting presence of heavy mineral phases containing both elements, such as ilmenite and magnetite. The basement rocks range from mafic through to felsic compositions, as do the soils. The river sediments lack ultrabasic components, and overall have intermediate to felsic compositions. Elemental spikes in the confluences of tributary rivers and high values in the <180 μm fractions indicate sporadic inputs of mafic detritus and/or heavy minerals to the main channel. Al2O3/(K2O + Na2O) and K2O/Na2O ratios of the sediments and LOI values of the soils correlate well with the climatic zones, suggesting intense weathering in the wet zone, lesser weathering in the intermediate zone, and least weathering in the dry zone. Low Sr and CaO contents and Cr/V ratios in stream sediments in the wet zone also suggest climatic influence. Fe-normalized enrichment factors (EFs) for As, Pb, Zn, Cu, Ni and Cr in stream sediments in the main channel are nearly all <1.5, indicating there is no significant environmental contamination. The chemistry of the sediments, rocks and the soils in the Mahaweli River are thus mainly controlled by source lithotype, weathering, sorting, and heavy mineral accumulation.  相似文献   

2.
The influence of hydrodynamics on the chemical composition of sediments is based on the uneven distribution of element abundances in different size fractions. In this study, 72 size‐fractional sediments from the Huanghe (Yellow River) and Changjiang (Yangtze River) riverbeds were measured with XRD, SEM, ICP‐AES and ICP‐MS. The analysis results show that the mineral and chemical characteristics change with grain size in the Huanghe and Changjiang sediments. According to the principal components analysis, three independent geochemical factors were found. The first factor elements, Zr, Hf, Th, U, Y, La and TiO2 are influenced by the existence of heavy minerals. The second factor elements, Al2O3, alkalis, alkaline earth (excluding Ca and Sr) and most of the transitional metals are dominated by clay minerals. The third factor group includes Ca and Sr, which were controlled by calcium‐bearing mineral contents and chemical weathering intensities. The various grain size distributions greatly affect the mineralogical and chemical compositions of bulk sediments. Compared to other size fractions, the 5–6PHI size fractions of the Huanghe and Changjiang sediments have special mineralogical and chemical compositions, and intermediate volume percentages. Weight or volume percentage of each size fraction may be more suitable than mean grain‐size of the bulk sediment to elucidate the grain size effects. Chemical Index of Alteration (CIA) values increase steeply with decreasing grain size, while Weathering Index of Parker (WIP) values are relatively stable. Because of the big influence of the abundance of clay minerals on CIA values, it is questionable to use CIA as a proxy of weathering intensity. Considering the clay mineral effects, stability in values and heterogeneous material properties, WIP has the potential to indicate the chemical weathering intensity of sediments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
We investigated the geochemical characteristics of major, trace and rare earth elements and Sr–Nd isotope patterns of bed sediments from the headwaters and upper reaches of the six large rivers draining the Tibetan Plateau (the Jinsha River—Yangtze, Lancang River—Mekong, Nujiang River—Salween, Huang He—Yellow, Indus, and Yarlung Tsangpo—Brahmaputra). By using Ca/Al versus Mg/Al, La/Sc versus Co/Th, and 87Sr/86Sr versus εNd (0) binary differentiation diagrams of provenance, some typical contributors to the different catchment sediments can be identified. In the Three-River (the Jinsha, Lancang, and Nujiang Rivers) tectonomagmatic belt, acidic–intermediate-acidic volcanic rocks are very important provenance of sediments. Carbonate rocks and Permian Emeishan basalts are dominant in the Jinsha River. The Yellow River sediments have similar geochemical characteristics with loess in catchments. The Indus and Yarlung Tsangpo Rivers sediments are mainly from ultra-K volcanic rocks and Cenozoic granitoids widely distributed in the Indus–Yarlung suture. The intensity of chemical weathering in these river catchments is evaluated by calculating the chemical indices of alteration (CIA) of sediments and comparing them with bedrocks. The CIA values of the six river sediments are from 46.5 to 69.6, closing to those of bedrocks in the corresponding catchment, which indicates relatively weak chemical weathering intensity. Lithology, climate, and topography affect the chemical weathering intensity in these river catchments.  相似文献   

4.
This present study describes the elemental geochemistry of fluvial sediments in the Kurigram (upstream) to Sirajganj–Tangail (downstream) section of the Brahmaputra–Jamuna River, Bangladesh, with the aim of evaluating their provenance, weathering and tectonic setting. Petrographically, the sediments are rich in quartz (68%), followed by feldspars (8.5%) and lithic grains (7%). The bulk sediment chemistry is influenced by grain size. Concentrations of TiO2, Fe2O3, MgO, K2O, P2O5, Rb, Nb, Cr, V, Y, and, Ce, Th and Ga slightly decrease with increasing SiO2/Al2O3 and grain size, suggesting clay matrix control. In contrast, concentrations of CaO, Na2O, Sr and Pb increase with increasing SiO2/Al2O3 and grain size, suggesting residence of these substances in feldspar. Decrease in Zr as grain size increases is likely controlled both by clay matrix and heavy minerals. In addition, heavy minerals' sorting also influences Ce, Th, Y and Cr abundances in some samples. The sediments are predominantly quartzose in composition with abundant low-grade metamorphic and sedimentary lithics, low feldspars and trace volcanic detritus, indicating a quartzose recycled orogen province as a source of the sediments. Discriminant diagrams together with immobile element ratio plots show that, the Brahmaputra–Jamuna River sediments are mostly derived from rocks formed in an active continental margin. Moreover, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate derivation of the sediments of Brahmaputra–Jamuna River from felsic rock sources of upper continental crust (UCC). The chemical indices of alteration suggest that Brahmaputra–Jamuna River sediments are chemically immature and experienced low chemical weathering effects. In the A–CN–K ternary diagram, most of the samples close to the plagioclase–K-feldspar join line and to the UCC plot, and in the field of various lithologies of Higher Himalayan Crystalline Series, suggesting that rocks in these series are likely source rocks. Therefore, the elemental geochemistry of the Brahmaputra–Jamuna River sediments is controlled mostly by mechanical breakdown of lithic fragments and subsequent preferential attrition of muscovite > albite > quartz.  相似文献   

5.
Pramod Singh 《Chemical Geology》2010,269(3-4):220-236
Major, trace and REE compositions of sediments from the upper Ganga River and its tributaries in the Himalaya have been examined to study the weathering in the Himalayan catchment region and to determine the dominant source rocks to the sediments in the Plains. The Ganga River rises in the Higher Himalaya from the Higher Himalayan Crystalline Series (HHCS) bedrocks and traverses over the Lesser Himalayan Series (LHS) and the Himalayan foreland basin (Siwaliks) rocks before entering into the Gangetic Plains. The major element compositions of sediments, reflected in their low CIA values (45.0–54.7), indicate that silicate weathering has not been an important process in the Himalayan catchment region of the Ganga River. Along the entire traverse, from the HHCS through LHS and the Siwaliks, the sediments from the tributaries and the mainstream Ganga River show higher Na2O, K2O, CaO and silica. This, and the higher ratios of La/Sc, Th/Sc and lower ratios of Co/Th, suggest that the source rocks are felsic. The fractionated REE patterns and the significant negative Eu anomalies (Eu/Eu? = 0.27–0.53) indicate highly differentiated source. Moreover, the comparison of the sediments with different source rock lithologies from the HHCS and the LHS for their major elements clearly suggests that the HHCS rocks were the dominant source. Further, comparison of their UCC (upper continental crust) normalized REE patterns suggests that, among the various HHCS rocks, the metasediments (para-gneiss and schist) and Cambro-Ordovician granites have formed the major source rocks. The Bhagirathi and Alaknanda River sediments are dominantly derived from metasediments and those in the Mandakini River from Cambro-Ordovician granites. The resulting composition of the sediments of the Ganga River is due to the mixing of sediments supplied by these tributaries after their confluence at Devprayag. No further change in major, trace and rare earth element compositions of the sediments of the Ganga River after Devprayag up to its exit point to the Plains at Haridwar, suggests little contribution of the Lesser Himalayan and Siwalik rocks to the Ganga River sediments.  相似文献   

6.
The playas (saline lakes) situated in the Thar Desert, north-west India, provide prominent examples of alkaline brine and varying assemblages of detrital and evaporite mineralogy. The eastern margin of the desert is relatively semi-arid, whereas the central to western region is arid to hyper-arid in nature. Rare earth elements (REEs) systematics in the sediments of nine different playas of the Thar Desert were studied to understand the provenance of the sediments and the intensity of chemical weathering in the region. Based on the REE patterns, fractionation of light REE (LREE) (La/Sm)N and heavy REE (HREE) (Gd/Yb)N, and Eu anomaly (Eu/Eu*), the upper continental crust normalised playa sediments are divided into two different groups. The eastern margin playa sediments show homogeneous REE contents, relatively positive Eu anomaly and depleted HREE values, whereas the western arid core playa sediments have highly variable REE contents, relatively negative Eu anomaly and similarly fractioned LREE and HREE patterns. The dissimilarity in the degree of HREE fractionations both in the eastern and western playa sediments is attributed to the differential distribution of minerals, depending upon their resistance to chemical weathering. It is believed that the relatively higher abundance of REE bearing heavy minerals and the presence of higher amounts of evaporites influence the large variation of REE distribution and enriched HREE in the western playa sediments. Apart from the relatively higher abundance of heavy minerals, the presence of rock fragments of variable petrographic character and roundness mirror the lower rock–water interaction in the arid western region. The presence of well-rounded metamorphic rock fragments and minerals, sourced from the eastern margin Aravalli mountains, indicates that the playas of the entire desert get the detrital and dissolved material mainly from the Aravalli mountains. Additionally, the western playas receive sediments from their surrounding Proterozoic and Mesozoic formations. This interpretation is supported by the presence of angular rock fragments of basalt, rhyolite and limestone in the western playas.  相似文献   

7.
Water and sediment samples were collected from the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang (upstream of the Yangtze River which flows on the eastern Qinghai-Tibet Plateau). A detailed geochemical study of the river system was carried out to determine: (i) temporal and spatial variations of the major ions and their implications; (ii) contribution of carbonate, silicate and evaporite to the river dissolved load and (iii) CO2 consumption via silicate weathering. Results show that cations derived from evaporite dissolution account for 44.7–82.8% of the total cations in the headwaters of the Yangtze River and increasing from SE to NW of the drainage basin. The contribution from silicate weathering gradually increases from the headwaters due to exposure of intrusive rocks and volcanic rocks in the Jinsha Jiang suture belt. Proportion of cations derived from silicate weathering to the total cations in river waters reaches a maximum at Panzhihua City, which is consistent with the abundant exposure of Cenozoic granitoids and Precambrian high-grade metamorphic rocks around Panzhihua. The Jinsha Jiang basin has higher silicate weathering rates but lower carbonate weathering rates than the middle and lower reaches of the Yangtze River. The calculated enrichment factors of potentially harmful metals in the river sediments are within the range of 0.33–2.59, indicative of level 1 or 2 contamination. The highest enrichment factor for Co, Cr and V is found in Panzhihua City, indicating that it has been influenced by anthropogenic sources.  相似文献   

8.
REE geochemical studies of surficial sediment samples from the Yellow Sea of China have shown:(1)The average content of RE2O3 in the Yellow Sea sediments is 175 ppm,close to that in the East China Sea sediments.The REE distribution patterns in the Yellow Sea sediments are also similar to anomalies.These REE characteristics are typical of the continental crust.(2)The contents of REE are controlled mainly by the sediment grain size,i.e.,REE contents increase gradually with decreasing sediment grain size.REE are present mainly in clay minerals.In addition,REE contents are controlled obviously by heavy minerals.REE abundances in heavy minerals are much greater than those in light minerals.(3)Correlation analysis shows that REE have a close relationship with siderophile elements,especially Ti,which has the largest correlation coefficient relative to REE.Terrigenous clastic materials subjected to weathering and transport are suggested to be the main source of REE in the Yellow Sea sediments.  相似文献   

9.
Pramod Singh   《Chemical Geology》2009,266(3-4):251-264
The sediments of the Ganga River from different depositional regimes in the Plain region such as the river channel, active flood-plain and the older flood-plain sediments from the inter-fluve region were analysed for major, trace and the rare earth elements (REEs). These are compared with catchment zone sediments of the river and probable source rocks in the Himalaya. The lower CIA values between 48 and 54.7 for the catchment sediments indicates that the sediments supplied to the Ganga Plain are chemically immature and subjected mostly to physical weathering due to higher erosion rates in the Himalaya. The CIA values ranging between 55 and 74, with average value of 59, 61.4 and 67 for sediments from the Plain's bed-load, active flood-plain and older flood-plain from the inter-fluve region indicates that silicate weathering of Ganga River sediments has occurred only after entering into the plains. This is likely because of higher residence time and change in the climate from cold-frigid in the Himalaya to tropical sub-humid in the plains. Therefore, the use of geochemical data on ancient system to infer climate in their source region may not always be true. Although the CIA values indicate a moderate chemical weathering in the plains, it is far from impressive. Dominance of physical weathering in the catchment region and lower degree of chemical weathering in the Plains indicate that weathering of sediments supplied by Himalayan Rivers, particularly the Ganga River may not have affected the atmospheric CO2 to a significant level as is generally believed. Thus the net effect of the Himalaya on the CO2 sequestration and consequent global cooling needs a re-evaluation.The plots of sediments in ternary diagram among La, Th, Sc and ratios involving Co/Th, La/Sc and Sc/Th indicate granitic to granodioritic source rocks to the sediments. The ratio plots involving relatively immobile Al2O3, TiO2 and FeO along with REE plots suggest that out of the major Himalayan lithologies, gneisses and Cambro-Ordovician granites of HHCS have acted as the dominant source to the sediments.The plots of LogNa2O/K2O vs. LogSiO2/Al2O3 and FeO/SiO2 vs. Al2O3/SiO2 diagrams show that the combination of processes including erosion, weathering, sorting and aeolian activity has together played a major role in progressively changing the chemistry from source rock to catchments bed-load to Plains bed-load, active flood-plains and the older inter-fluve sediments in the Ganga River system. The above plots demonstrate that as a result of above processes the ratios between the elements generally thought to be immobile and used in provenance studies does not always remain invariant and the linear trend line in the scatter gram between the two immobile elements show rotation around the fine grained end member.  相似文献   

10.
《Applied Geochemistry》2001,16(9-10):1251-1259
Sediment samples were taken along the West, North, and East rivers of the Pearl River system at 28 locations in 1998, and a total of 49 elements were determined by ICP–AES, ICP–MS and INAA. The probability features of the datasets were studied, and the average concentrations of these elements in sediments of the three rivers were calculated. Significant differences in element concentrations among the three rivers were observed and the results were confirmed by statistical tests including analysis of variance (ANOVA), Kruskal–Wallis test, and t-test. Spatial distribution maps of element concentrations were produced using a geographical information system (GIS). The immobile trace elements (such as Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are enriched in the West River where limestone dominates the rock types in the watershed. Because of the strong weathering, immobile trace elements are enriched and reside in secondary minerals of the weathering products. All three rivers have high concentrations of rare earth elements (REEs) because of strong weathering, but relatively higher concentrations of REEs are observed in sediments of the East River where granite dominates the rock type. Granite contains high concentrations of REEs and the sediments have inherited this feature from their bedrock. Alkaline element (Li, Na, K, Rb, and Cs) concentrations are elevated in sediments of the East River, these may reside in granitic primary minerals. Relatively high concentrations of alkaline earth elements (Mg, Ca, Sr, and Ba) are observed in the West River, inherited from the limestone bedrock. High Pb and Bi concentrations are found in the North River and are caused by Pb mineralization and the discharge of a smelter in the upper reaches of the river. However, statistical tests did not indicate a significant difference between Pb concentrations in the North River and the other two rivers, which suggests that statistical results should be carefully used and explained.  相似文献   

11.
Subaerial weathering level, source area and tectonic environments were interpreted by using petrographic and geochemical characteristics of Eocene age sandstones found in the eastern Pontides. The thickness of Eocene age clastic rocks in the eastern Pontides ranges from 195 to 400 m. Mineralogical components of sandstones were mainly quartz, feldspar, rock fragments, and opaque and accessory minerals. Depending on their matrix and mineralogical content, Eocene age sandstones are identified as arkosic arenite-lithic arenite and feldspathic wacke-lithic wacke. CIA (Chemical Index of Alteration) values observed in the Eocene age sandstones (43–55) suggest that the source terrain of the sandstones was not affected by intense chemical weathering. Low CIW/CIA (Chemical Index of Weathering/Chemical Index of Alteration) values of the sandstones studied here suggest only slightly decomposed material and having undergone little transport until final deposition. Zr/Hf, Th/Sc, La/Sc and CIA ratios are low and demonstrate a mafic source; on the other hand, high LREE/HREE ratios and a slightly negative Eu anomaly indicate a subordinate fclsic source. Modal mineralogical and SiO2/Al2O3 and K2O/Na2O and Th, Zr, Co, Sc of Eocene age sandstone contents indicate that they are probably magmatic arc originated and deposited in the back arc basin.  相似文献   

12.
Bauxite deposits are widespread in NW Sardinia. They formed during the middle Cretaceous, in consequence of a period of emergence of the Mesozoic carbonate shelf. In the Nurra area the geometries derived by the Middle Cretaceous tectonic phases controlled the ore typologies. Two bauxite profiles, laying on different bedrocks, were sampled. The bauxitization proceeded from the surface downward, with the accumulation of Al2O3 and residual ‘immobile’ elements (Al, Ti, HFSE), and corresponding mobility and loss of SiO2 and Fe2O3. Epigenetic kaolinite formed close to faults and joints, probably as a result of silicification, introduced by low temperature hydrothermal solutions. Rare earth elements, especially LREE, are concentrated in Fe-rich bauxite horizons, probably due to scavenging by goethite. REE-enrichment is not observed in the boehmite-rich horizons. Very high REE contents are observed in a Fe-depleted horizon due to the occurrence of REE accessory minerals, probably of the bastnäsite group. Conservative indices, including TiO2/Al2O3 and Ti/Cr ratios, and Eu anomalies (Eu/Eu*), suggest that the deposits formed by weathering of sediments derived from mafic rocks of the Hercynian basement. This, in turn, implies that the basement was exposed during middle Cretaceous.  相似文献   

13.
Coastal margins, especially the river-influenced coastal areas, are considered as active interfaces between the continental and oceanic environments, which have huge dispersal of detrital materials and heavy metal input. It is well determined that the fine-grained sediments are important reservoir for the accumulation of heavy metals. In this study, we analyzed the radiocarbon age, texture, organic matter, carbonate content, and geochemical compositions of two sediment cores (GM42 and GM44) retrieved in front of the Coatzacoalcos River mouth basin, southwestern Gulf of Mexico (~864 and 845 m water depth, respectively). Our objective was to infer the sedimentation rate, intensity of weathering, provenance, and influence of anthropogenic activities on heavy metal contamination in sediments. The radiocarbon-age measurements of mixed planktonic foraminifera for core GM44 reveals an age of 21,289 ± 136 cal. years B.P., which fall within the Late Glacial Maximum (LGM; 21000 ± 2000 years B.P). The calculated sedimentation rate for core GM42 (~0.013 cm/year) is lower than in core GM44 (0.022 cm/year), which is probably due to the variations in detrital sediment input and/or seafloor topography. The weathering indices such as chemical index of alteration (CIA), chemical index of weathering (CIW), and plagioclase index of alteration (PIA) suggested that the source area experienced low to moderate intensity of chemical weathering under warm to humid climatic conditions. The SiO2/Al2O3, Al2O3/Na2O, and K2O/Al2O3 ratio values indicated moderate to high compositional maturity. The major and trace element concentrations suggested that the sediments were likely derived from intermediate source rocks. The heavy metal contents indicated that the sediments were not contaminated by the industrial waste disposals supplied by the Coatzacoalcos River. The redox proxy sensitive elements such as V, Cr, Cu, and Zn indicated an oxic depositional environment for the deep-sea sediment cores. The application of discrimination diagrams for the geochemistry data revealed a passive margin setting for the sediment cores. The compositional variations observed at the upper sections (<30 cm) between the two sediment cores revealed that the type of detrital sediments supplied by the Coatzacoalcos River to the deep sea area is not uniform, which is also revealed by the variation in sedimentation rate.  相似文献   

14.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO2 (≥70.0 wt%), intermediate contents of Al2O3 (11.6–28.4 wt%), Fe2O3 (0.00–20.5 wt%) and TiO2 (0.04–4.08 wt%), while K2O (≤0.18 wt%), Na2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al2O3 and Ga in kaolinite; the strong correlation between Fe2O3 and V in hematite and goethite; the affinity of TiO2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks.  相似文献   

15.
The sediment geochemistry, including REE, of surface and core samples from Mansar Lake, along with mineralogical investigations, have been carried out in order to understand the provenance, source area weathering, hydrolic sorting and tectonic setting of the basin. The geochemical signatures preserved in these sediments have been exploited as proxies in order to delineate these different parameters.The major element log values (Fe2O3/K2O) vs (SiO2/Al2O3) and (Na2O/K2O) vs (SiO2/Al2O3) demarcate a lithology remarkably similar to that exposed in the catchment area. The chondrite normalized REE patterns of lake samples are similar to Post Archaean Australian Shale (PAAS) with LREE enrichment, a negative Eu anomaly and almost flat HREE pattern similar to a felsic and/or cratonic sedimentary source. However, the La–Th–Sc plot of samples fall in a mixed sedimentary domain, close to Upper Continental Crust (UCC) and PAAS, suggesting sedimentary source rocks for the Mansar detritus. It also indicates that these elements remained immobile during weathering and transportation. The mineralogical characteristic, REEs, and high field strength elements (HFSE), together with the high percentage of metamorphic rock fragments in the Siwalik sandstone, support a metamorphic source for lower Siwalik sediments. A very weak positive correlation between Zr and SiO2, poor negative correlation with Al2O3, negative correlation of (La/Yb)N and (Gd/Yb)N ratios with SiO2 and positive correlation with Al2O3, suggest that Zr does not dominantly control the REE distribution in Mansar sediments. The petrographic character and textural immaturity indicate a short distance transport for the detritus. The distribution of elements in core samples reflect fractionation. The higher Zr/Th and Zr/Yb ratios in coarse sediments and PAAS compared to finer grained detritus indicate sedimentary sorting. Plots of the geochemical data on tectonic discrimination diagrams suggest that the sediments derived from the lower Siwalik were originated within a cratonic interior and later deposited along a passive margin basinal setting. It therefore reveals lower Siwalik depositional history.  相似文献   

16.
扬子地台内晚奥陶世末—早志留世初五峰—龙马溪组内沉积了多层钾质斑脱岩,但对于该时期扬子地台西缘钾质斑脱岩的研究报道相对较少。本文旨在通过对云南大关地区新地2井五峰—龙马溪组内沉积的钾质斑脱岩进行矿物学及地球化学分析,进一步确定扬子西缘该时期钾质斑脱岩原始岩浆类型及其所产生的构造环境。矿物学特征表明,钾质斑脱岩主要由黏土矿物和非黏土矿物组成,其中黏土矿物由伊利石和伊蒙混层组成,非黏土矿物以石英、长石、方解石、白云石和黄铁矿等为主。钾质斑脱岩主量元素以高K_2O,低TiO_2为特征,微量元素特征表现为富集Rb、Ba、Th、U等元素,Ti、P元素相对亏损,Ti/Th值指示了酸性火山灰的性质;ΣREE在(49.86~209.43)×10~(-6);与球粒陨石相比,轻稀土轻微富集、具Eu负异常,无Ce异常;在Nb/Y-Zr/TiO_2图解中,数据点主要落在安山岩和粗面英安岩之间,表明钾质斑脱岩源岩浆性质为中酸性岩浆;依据微量元素特征和构造环境判别结果,初步认为原始岩浆可能形成于岛弧环境,其火山灰来源可能与扬子北缘早古生代秦岭洋闭合过程中的板块碰撞有关。  相似文献   

17.
Environmental geochemistry of Damodar River basin, east coast of India   总被引:1,自引:0,他引:1  
 Water and bed sediment samples collected from the Damodar River and its tributaries were analysed to study elemental chemistry and suspended load characteristics of the river basin. Na and Ca are the dominant cations and HCO3 is the dominant anion. The water chemistry of the Damodar River basin strongly reflects the dominance of continental weathering aided by atmospheric and anthropogenic activities in the catchment area. High concentrations of SO4 and PO4 at some sites indicate the mining and anthropogenic impact on water quality. The high concentration of dissolved silica, relatively high (Na+K)/TZ+ ratio (0.2–0.4) and low equivalent ratio of (Ca+Mg)/(Na+K) indicate that dissolved ions contribute significantly to the weathering of aluminosilicate minerals of crystalline rocks. The seasonal data show a minimum ionic concentration in the monsoon season, reflecting the influence of atmospheric precipitation on total dissolved solids contents. The suspended sediments show a positive correlation with discharge and both discharge and suspended load reach their maximum value during the monsoon season. Kaolinite is the mineral that is possibly in equilibrium with the water. This implies that the chemistry of the Damodar River water favours kaolinite formation. The concentration of heavy metals in the finer size fraction (<37 μ m) is significantly higher than the bulk composition. The geoaccumulation index values calculated for Fe, Mn, Zn, Ni and Cr are well below zero, suggesting that there is no pollution from these metals in Damodar River sediments. Received: 21 January 1998 · Accepted: 4 May 1998  相似文献   

18.
The major, trace and rare earth elements geochemistry and clay mineral compositions in the river bed sediments from lower reaches of Godavari river suggest that they are derived from weathering of felsic rocks. Trace and rare earth elemental compositions indicate evidence of sedimentary sorting during transportation and deposition. Lower concentrations of transition elements, such as V, Ni and Cr imply enrichment of felsic minerals in these bed sediments. The REE pattern in lower Godavari sediments is influenced by the degree of source rock weathering. The light rare earth elements (LREE) content are indicating greater fractionation compared to the heavy rare earth elements (HREE). A striking relationship is observed between TiO2 and gZREE content suggesting a strong control by LREE-enriched titaniferous minerals on REE chemistry. Shale-normalized REE pattern demonstrate a positive Eu anomaly, suggesting weathering of feldspar and their secondary products, which are enriched in Eu. Chondrite-normalised REE pattern is characteristic of felsic volcanic, granites and gnessic source rocks. Trace elemental compositions in sediments located near urban areas suggest influence of anthropogenic activity. Chemical Index of Alteration (CIA) is high (avg. 65.76), suggesting a moderate chemical weathering environment. X-ray diffraction analysis of clay fraction shows predominance of clay minerals that are formed because of the chemical weathering of felsic rocks.  相似文献   

19.
Dongping Lake area, located in the lower reaches of Yellow River, is an ideal place to study the changes of modern river and lake sedimentary environment. The sediment samples of Dawen River, Yellow River, and Dongping Lake were collected, and the major elements, trace elements and organic matter geochemical composition of the samples were analyzed. Cluster analysis, characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication. The results show that the contents of SiO_2, Na_2O, TiO_2 and Zr in sediments of Dawen River and Yellow River are relatively high, and the contents of iron and manganese oxides, organic matter, CaO, P_2O_5 and Sr in lake sediments are relatively high. That reveals the differences of sedimentary environments between the rivers and the lake. The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season; the δCe,ΣREE and REE's ratios in the sediments of the Yellow River reflect the influence of the Loess source; and the distribution of elements changes along the flow direction during the flood season. The characteristics of p H, element composition and LREE HREE fractionation of the lake sediments indicate that the sediment source is complex, and the lake environment is affected by the flood season. The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment, material composition and characteristics of flood season of rivers and the lake in the study area.  相似文献   

20.
Significant differences are noticed in major and trace element compositions between the Yangtze River and the Yellow River surface sediments.The former sediments are rich in some major elements such as K,Fe,Mg,Al,and most of the trace elements which show wide variations in element concentrations,whereas the Yellow River sediments only have higher Ca,Na,Sr,Ba,Th,Ga,Zr,Hf contents and show slight variations in element contents.In the Yangtze River Basin are widely distributed intermediate-acid igneous rocks and complicated source rocks together with strong chemical weathering which determine the elemental compositions of the Yangtze River sediments,while the elemental compositions of the Yellow River sediments are decided by the chemical composition of loess from the Loess Plateau and intense physical weatering.Cu,Zn,Sc,Ti,Fe,V,Ni,Cr,Co,Li and Be can be used to distinguish the Yangtze River sediments from te Yellow River sediments and be treated as tracers for both the sediments to study the processes of their mixing and diffusion in the coastal zones of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号