首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Studies on the deep-seated xenoliths from global volcanoes reveal that the present petrological crust-mantle boundary between the lower crust and the upper mantle actually is a transitional layer from mainly mafic granulites to ultramafic spinel lher-zolites[1,2], i.e. a transitional zone distinctive from the seismological Moho[3]. Oceanic lithosphere crust- mantle transitional zone can be established from the study on the exposed ophiolites. However, as for the continental lithosphere, since …  相似文献   

2.
The Oligocene alkaline basalts of Toveireh area (southwest of Jandaq, Central Iran) exhibit northwest–southeast to west–east exposure in northwest of the central‐east Iranian microcontinent (CEIM). These basalts are composed of olivine (Fo70–90), clinopyroxene (diopside, augite), plagioclase (labradorite), spinel, and titanomagnetite as primary minerals and serpentine and zeolite as secondary ones. They are enriched in alkalis, TiO2 and light rare earth elements (La/Yb = 9.64–12.68) and are characterized by enrichment in large ion lithophile elements (Cs, Rb, Ba) and high field strength elements (Nb, Ta). The geochemical features of the rocks suggest that the Toveireh alkaline basalts are derived from a moderate degree partial melting (10–20%) of a previously enriched garnet lherzolite of asthenospheric mantle. Subduction of the CEIM confining oceanic crust from the Triassic to Eocene is the reason of mantle enrichment. The studied basalts contain mafic‐ultramafic and aluminous granulitic xenoliths. The rock‐forming minerals of the mafic‐ultramafic xenoliths are Cr‐free/poor spinel, olivine, Al‐rich pyroxene, and feldspar. The aluminous granulitic xenoliths consist of an assemblage of hercynitic spinel + plagioclase (andesine–labradorite) ± corundum ± sillimanite. They show interstitial texture, which is consistent with granulite facies. They are enriched in high field strength elements (Ti, Nb and Ta), light rare earth elements (La/Yb = 37–193) and exhibit a positive Eu anomaly. These granulitic xenoliths may be Al‐saturated but Si‐undersaturated feldspar bearing restitic materials of the lower crust. The Oligocene Toveireh basaltic magma passed and entrained these xenoliths from the lower crust to the surface.  相似文献   

3.
Abstract   Spinel lherzolite is a minor component of the deep-seated xenolith suite in the Oki-Dogo alkaline basalts, whereas other types of ultramafic (e.g. pyroxenite and dunite) and mafic (e.g. granulite and gabbro) xenoliths are abundant. All spinel lherzolite xenoliths have spinel with a low Cr number (Cr#; < 0.26). They are anhydrous and are free of modal metasomatism. Their mineral assemblages and microtextures, combined with the high NiO content in olivine, suggest that they are of residual origin. But the Mg numbers of silicate minerals are lower (e.g. down to Fo86) in some spinel lherzolites than in typical upper mantle residual peridotites. The clinopyroxene in the spinel lherzolite shows U-shaped chondrite-normalized rare-earth element (REE) patterns. The abundance of Fe-rich ultramafic and mafic cumulate xenoliths in Oki-Dogo alkali basalts suggests that the later formation of those Fe-rich cumulates from alkaline magma was the cause of Fe- and light REE (LREE)-enrichment in residual peridotite. The similar REE patterns are observed in spinel peridotite xenoliths from Kurose and also in those from the South-west Japan arc, which are non-metasomatized in terms of major-element chemistry (e.g. Fo > 89), and are rarely associated with Fe-rich cumulus mafic and ultramafic xenoliths. This indicates that the LREE-enrichment in mantle rocks has been more prominent and prevalent than Fe and other major-element enrichment during the metasomatism.  相似文献   

4.
A petrological model for the uppermost upper mantle and crust under the Koolau shield to a depth of about 60 km has been derived on the basis of petrology of the upper mantle and crustal xenoliths in nephelinites of the Honolulu Volcanic Series. Three main xenolith suites exist in the Koolau shield: dunites, spinel lherzolites, and garnet-bearing pyroxenites. On the basis of mineralogy, it is inferred that the dunites represent cumulates in shallow crustal tholeiitic magma chambers, the spinel lherzolites form a thick (~ 40 km) layer in the upper mantle, and the garnet pyroxenite suite occurs as veins and stringers in the spinel lherzolites at about 60 km depth.The eruption sequence in a Hawaiian volcano, i.e., tholeiite → transitional basalt → alkali basalt, is generated by partial melting of a volatile-bearing garnet-lherzolite part of a lithospheric plate as it rides over a hot spot. If the tholeiite, transitional, and alkali basalts of Hawaiian volcanoes are generated at the same depth, then the observed sequence of lavas requires replenishment of the source area with volatiles and gradual decrease of the degree of partial melting with time. Post-erosional olivine nephelinites are produced from isotopically distinct, deeper source area, which may be the asthenosphere.  相似文献   

5.
In the Late Cenozoic West Carpatian alkali olivine basalts spinel peridotite xenoliths have been found. Their mineral composition corresponds to those found in this type of xenoliths in alkali basalts throughout the world (Mg-rich olivine, Cr-diopside, clinopyroxene, spinel). For the studied West Carpathian alkali olivine basalts kaersutite amphibole and clinopyroxene magacrysts are characteristic. The presence of the xenoliths under consideration in the boundary zone between Tatra and Pannonian blocks is the consequence of tectonic conditions (thickness of the Crust) in the area mentioned as distinct from the other West Carpathian areas of alkali olivine basalt occurrences.  相似文献   

6.
Mafic granulite xenoliths have been discovered in many volcanoes (especially alkali basalt and kimberlite) all over the world. They formed generally in lower crust, and recorded lots of in- formation on the lithosphere formation and crust-mantle interacti…  相似文献   

7.
Gabbroic and hornblendite xenoliths from La Palma, Tenerife and Lanzarote fall into three main groups based on petrography and chemistry. One group (comprising all xenoliths from Lanzarote and some from La Palma) consists of highly deformed orthopyroxene-bearing gabbroic rocks that show a strong affinity to N-MORB and oceanic gabbro cumulates in terms of mineral chemistry and REE relations. However, they show mild enrichment in the most incompatible elements (particularly Rb+Ba±K) relative to intermediate and heavy REE, and their Sr–Nd isotope ratios fall within or close to the N-MORB field. The second group (60% of the xenoliths from La Palma) are gabbroic cumulates with zoned clinopyroxenes (Ti–Al-poor cores, Ti–Al-rich rims) and reaction rims of hornblende, biotite and clinopyroxene on other phases. Their trace-element and Sr–Nd isotope relations are in general transitional between N-MORB cumulates and Canary Islands alkali basalts, but they show strong enrichment in Rb, Ba and K relative to other strongly incompatible elements. The third group (comprising some xenoliths from La Palma and all those from Tenerife) are undeformed gabbroic and hornblendite rocks in which hornblende and biotite appear to belong to the primary assemblage. These rocks show strong affinities to Canary Islands alkali basaltic magmas with respect to mineral, trace-element, and Sr–Nd isotope chemistry. The first two groups are interpreted as fragments of old oceanic crust which have been mildly to strongly metasomatized through reactions with Canary Islands alkaline magmas. The reaction process is a combination of enrichment in elements compatible with biotite (and hornblende), and simple mixing between N-MORB cumulates and trapped alkaline magmas. The third group represents intrusions/cumulates formed from mafic alkaline Canary Islands magmas. Modeling indicates that locally up to 50% new material has been added to the old oceanic crust through reactions with ocean island basalts. Reactions and formation of cumulates do not represent simple underplating at the mantle/crust boundary, but have taken place within the pre-existing oceanic crust, and are likely to have significantly thickened the old oceanic crust.  相似文献   

8.
The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian–Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1–14.2 wt.% MgO, 459–657 ppm Cr, and 455–564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene, and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins/sills which probably represent magmas crystallized near the crust–mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, and Fe–Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by “normal” (crystal and xenoliths poor) alkaline basalts.  相似文献   

9.
Young-Woo  Kil 《Island Arc》2006,15(2):269-282
Abstract   Geochemical data on Baegryeong Island spinel peridotites found in Miocene alkali basalt provide the information for lithosphere composition, chemical processes, equilibrium pressure and temperature conditions. Spinel peridotite xenoliths, showing transitional textures between protogranular and porpyroclastic textures, were accidentally trapped by the ascending alkali basalt magma. The xenoliths originate at depths from 50 to 70 km with a temperature range from 800 to 1100°C. The variations of modal and mineral compositions of the spinel peridotite xenoliths indicate that the xenoliths have undergone 1–10% fractional melting. The spinel peridotites from Baegryeong Island have undergone cryptic mantle metasomatism subsequent to melt extraction. Metasomatic agent of enriched spinel peridotite xenoliths was carbonatite melt.  相似文献   

10.
中国东部橄榄岩和榴辉岩深源包体的地理分布构成了全球环太平洋深源包体分布带的重要组成部分。深源包体的产出与地球内部构造密切相关。尖晶石橄榄岩和镁铝榴石橄榄岩两种包体与上地幔的构造分带相一致,榴辉岩包体代表上地幔中局部的分凝体。碱性玄武岩浆的活动和深源岩石带的形成应为板块构造运动的结果。  相似文献   

11.
This paper deals with the mineralogical, textural and chemical features of the dunite, peridotite, pyroxenite and gabbroic inclusions present in the Quaternary basalts of the Canary Islands. The mineralogical composition, structure and texture of the inclusions show that most of them have been formed as crystal cumulates from a nonalkaline basaltic magma in the earlier stages of its fractional crystallization. There are no co-genetic relationships between the inclusions and the host basalts, since the latter have a very strong alkaline-olivine character, although there are also some types with tholciitic aflinities. The study of the data leads to the conclusion that these inclusions can be considered as xenoliths from the basic and ultrabasic complexes that form the substratum and which outcrop in some of the Canary Islands. Attention is called to the fact that in many other volcanic zones of the world there has been a previous emplacement of basic and ultramafic layered complexes and is the question opened whether the association between stratiform-complexes and active basaltic volcanism is more frequent than has been assumed up to now.  相似文献   

12.
The Pb isotopic compositions and U and Pb concentrations of the lava series (alkali basalt to comendite) and of their plutonic xenoliths (gabbro to alkaline granite) of Ascension Island are reported. The data are used to evaluate the source of the xenoliths which formed two differentiation suites: the acidic and intermediate xenoliths together with most of the lavas on the one hand, and the gabbroic xenoliths and a basaltic tuff on the other hand. The Pb isotopic compositions imply a mantle origin for the source magmas of the xenoliths and confirm the possibility of generating granitic rocks in an oceanic environment by fractional crystallization of a mantle-derived magma whose geochemical and isotopic characteristics are comparable to the source magmas of oceanic island basalts.  相似文献   

13.
Experiments of the melt-peridotite reaction at pressures of 1 and 2 GPa and temperatures of 1250–1400°C have been carried out to understand the nature of the peridotite xenoliths in the Mesozoic high-Mg diorites and basalts of the North China Craton,and further to elucidate the processes in which the Mesozoic lithospheric mantle in this region was transformed.We used Fuxin alkali basalt,Feixian alkali basalt,and Xu-Huai hornblende-garnet pyroxenite as starting materials for the reacting melts,and lherzolite xenoliths and synthesized harzburgite as starting materials for the lithospheric mantle.The experimental results indicate that:(1)the reactions between basaltic melts and lherzolite and harzburgite at 1–2 GPa and 1300–1400°C tended to dissolve pyroxene and precipitate low-Mg#olivine(Mg#=83.6–89.3),forming sequences of dunite-lherzolite(D-L)and duniteharzburgite(D-H),respectively;(2)reactions between hornblende-garnet pyroxenite and lherzolite at 1 GPa and 1250°C formed a D-H sequence,whereas reactions at 2 GPa and 1350°C formed orthopyroxenite layers and lherzolite;and(3)the reaction between a partial melt of hornblende-garnet pyroxenite and harzburgite resulted in a layer of orthopyroxenite at the boundary of the pyroxenite and harzburgite.The reacted melts have higher MgO abundances than the starting melts,demonstrating that the melt-peridotite reactions are responsible for the high-Mg#signatures of andesites or adakitic rocks.Our experimental results support the proposition that the abundant peridotite and pyroxenite xenoliths in western Shandong and the southern Taihang Mountains might have experienced multiple modifications in reaction to a variety of melts.We suggest that melt-peridotite reactions played important roles in transforming the nature of the Mesozoic lithospheric mantle in the region of the North China Craton.  相似文献   

14.
Late Cenozoic alkali basalts in the Ganseong area of South Korea contain abundant ultramafic xenoliths and clinopyroxene megacrysts. Anhydrous clinopyroxene‐rich wehrlite–clinopyroxenites make up the majority of the xenolith population and range from wehrlite through olivine clinopyroxenite to clinopyroxenite. This study investigates the petrogenesis of wehrlite–clinopyroxenite xenoliths and clinopyroxene megacrysts on the basis of petrography and mineral and whole‐rock chemistry. Observations such as an absence of carbonate or apatite, high Ti/Eu ratio, and clinopyroxene‐dominated mineralogy lead us to rule out peridotite–melt reactions as the origin of the Ganseong wehrlites– olivine clinopyroxenites. The whole‐rock compositions (e.g. high abundance of CaO at a given MgO content and low abundance of incompatible elements, such as U, K, P, and Ti compared with mafic melts) indicate that the pyroxenites do not represent crystallized magma itself, but are rather cumulates with a small amount of residual liquid. Anhydrous and orthopyroxene‐free mineral assemblages, crystallization sequence of olivine→clinopyroxene→plagioclase, and mineral chemistries (e.g. low Cr# and high TiO2 abundances in spinels and high TiO2 and Na2O abundances in clinopyroxenes at a given Mg#) suggest that relatively anhydrous intraplate alkaline basalt is the most likely candidate for the parent magma. Texture and compositions of the clinopyroxene megacrysts preclude a cognate origin via high‐pressure crystallization of the host magma. The clinopyroxene megacrysts occupy the Fe‐rich end of the compositional trends defined by wehrlite–pyroxenite clinopyroxenes. Progressive decreases in Mg# and an absence of significant compositional gaps between pyroxenite xenoliths and clinopyroxene megacrysts indicate fractionation and differentiation of a similar parental magma. We suggest that the clinopyroxene megacrysts represent fragments of pegmatitic clinopyroxenites crystallized from more advanced fractionation stages of the evolution of a series of magmatic liquids formed Ganseong wehrlite–clinopyroxenites.  相似文献   

15.
Some recent calc-alkaline andesites and dacites from southern and central Martinique contain basic xenoliths belonging to two main petrographic types:
  • The most frequent one has a hyalodoleritic texture (« H type ») with hornblende + plagioclase + Fe-Ti oxides, set in an abundant glassy and vacuolar groundmass.
  • The other one exhibits a typical porphyritic basaltic texture (« B type ») and mineralogy (olivine + plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides and scarce, or absent hornblende).
  • Gradual textural and mineralogical transitions occur between these two types (« I type ») with the progressive development of hornblende at the expense of olivine and pyroxenes. Mineralogical and chemical studies show no primary compositional correlations between the basaltic xenoliths and their host lavas, thus demonstrating that the former are not cognate inclusions; they are remnants of basaltic liquids intruded into andesitic to dacitic magma chambers. This interpretation is strengthened by the typical calc-alkaline basaltic composition of the xenoliths, whatever their petrographic type (« H », « I » or « B »). The intrusion of partly liquid, hot basaltic magma into colder water-saturated andesitic to dacitic bodies leads to drastic changes in physical conditions. The two components; the basaltic xenoliths are quenched and homogeneized with their host lavas with respect to To;fO2 andpH2O conditions. « H type » xenoliths represent original mostly liquid basalts in which such physical changes lead to the formation of hornblende and the development of a vacuolar and hyalodoleritic texture. The temperature increase of the acid magma depends on the amount of the intruding basalt and on the thermal contrast between the two components. The textural diversity which characterizes the xenoliths reflects the cooling rate of the basaltic fragments and/or their position relative to the basaltic bodies (chilled margins or inner, more crystallized, portions). In addition to physical equilibration (T, fO2) between the magmas, mixing involves:
  • mechanical transfer of phenocrysts from one component to another, in both directions;
  • volatile transfer to the basaltic xenoliths, with chemical exchanges.
  • It is here demonstrated that a short period of time (some ten hours to a few days) separates the mixing event from the eruption, outlining the importance of magma mixing in the triggering of eruption. The common occurrence of basaltic xenoliths (generally of « H » type) in calc-alkaline lavas is emphasized, showing that this mechanism is of first importance in calc-alkaline magma petrogenesis.  相似文献   

    16.
    Mafic and ultramafic xenoliths are well represented within a large basaltic lava field of Stromboli. These basalts, known as San Bartolo lavas, show a high-K calc-alkaline (HKCA) affinity and were erupted <5 ka BP. Xenoliths consist of olivin-gabbro, gabbronorite, anorthosite, dunite, wehrlite and clinopyroxenite. Thermobarometric estimates for the crystallization of gabbroic materials show minima equilibration pressures of 0.17–0.24 GPa, at temperatures ranging from 940 to 1,030°C. These materials interacted with hydrous ascending HKCA basaltic magmas (with temperatures of 1,050–1,100°C) at pressures of about 0.2–0.4 GPa. These pressure regimes are nearly identical to those found for the crystallization of phenocrystic phases within HKCA basaltic lavas. Gabbroic inclusions are regarded as cumulates and represent crystallized portions of earlier HKCA Strombolian basalts.Dunite and wehrlite show porphyroclastic-heterogranular textures, whereas the clinopyroxenite exhibit a mosaic-equigranular texture typical of mantle peridotites. These ultramafic materials are in equilibrium with more primitive basaltic magmas (under moderately hydrous and anhydrous conditions) at pressures of 0.8–1.2 GPa, which is below the crust-mantle transition, located at about 20 km depth under Stromboli.Major and trace element distributions indicate comagmatism between the host basaltic lava and the mafic and ultramafic inclusions. REE patterns for mafic nodules are relatively regular and overlap the field of basaltic lavas (HKCA). They show moderate to high LREE enrichments and moderate enrichments in HREE relative to chonrites. Spider diagrams also show significant similarities between the lavas and the mafic-ultramafic xenoliths as well.During their ascent, primitive Strombolian magmas may be stored in upper-mantle regions where they interact with peridotitic materials and partly differentiate (to give dunite and wehrlite) before migrating to upper crustal levels. In this region, hydrous basaltic magmas (with estimated water contents of 2–3.5 wt%) are stored in the subvolcanic environment, and are allowed to crystallize the gabbroic materials before reaching the surface under nearly anhydrous conditions.An erratum to this article can be found at  相似文献   

    17.
    A single garnet clinopyroxenite xenolith found at the Dish Hill basanite cone near Ludlow, California, has well developed unmixing and reaction textures like those found in garnet pyroxenite inclusions in Hawaiian, African and Australian basalts and like those of pyroxenites in some European alpine peridotites. Reconstructed pyroxene compositions suggest that before unmixing the rock consisted of clinopyroxene and about 10% garnet plus spinel, but all of the garnet may have been dissolved in clinopyroxene. Most or all of the garnet formed by exsolution from clinopyroxene and by reaction between clinopyroxene and spinel in an open system. Following exsolution, the rock was deformed and partly recrystallized in the solid state. Similarity of compositions of exsolved and recrystallized minerals suggests recrystallization at P-T conditions similar to those of exsolution.The rock is not the chemical equivalent of the host basanite and cannot represent magma of basanitic composition crystallized in the mantle. Its history of deformation and recrystallization, like that of accompanying spinel lherzolite inclusions, supports the idea that the garnet clinopyroxenite is an accidental inclusion derived from the upper mantle.  相似文献   

    18.
    INTRODUCTIONThe mafic-ultramafic complexesinthe Hongqilingarea were emplacedintothe metamorphic rocksof the Hulan Group. Age determination of the intrusion and metamorphism of the Hulan Groupmetamorphic rocks is crucial for the study of petrogenesis and evolution, orogenesis and itsdevelopment of the region. However ,so far it has been difficult to determine the geochronology ofmafic-ultramafic rocks inthe area ,thusthe age obtainedfromprevious data hadto be used.Inrecentyears ,withthe …  相似文献   

    19.
    Possible sub-arc origin of podiform chromitites   总被引:6,自引:1,他引:6  
    Abstract The sub-arc mantle condition possibly favors the formation of podiform chromitites. The Cr/(Cr + Al) atomic ratio (= Cr#) of their chromian spinel frequently is higher than 0.7, which is comparable with the range for arc-related primitive magmas. This almost excludes the possibility of their sub-oceanic origin, because both oceanic peridotites and MORB have chromian spinel with the Cr# < 0.6. Precipitation of chromitite and associated dunite enhances a relative depletion of high-field strength elements (HFSE) to large-ion lithophile elements (LILE), one of chemical characteristics of arc magmas, for the involved magma. This cannot alter completely, however, the MORB to the arc-type magma, especially for Ti and Zr. The presence of chromitite xenoliths, similar both in texture and in chemistry to podiform chromitites of some ophiolitic complexes, in some Cenozoic alkali basalts from the southwest Japan arc indicates directly that the upper mantle beneath the Japan arcs has chromitites.  相似文献   

    20.
    A suite of ultramafic xenoliths 2–10 cm in size occurs in basanite near Papeete, Tahiti, and consists of spinel lherzolites with minor dunites and wehrlites. Petrographic examination of xenoliths reveals that they are typically coarse grained with well-developed annealed textures. Microprobe analyses of constituent minerals in 11 xenoliths indicate that bulk compositions of xenoliths are magnesian but with significant variability from xenolith to xenolith especially in Fe/Mg and Cr/Al ratios and in absolute amounts of Al2O3 and Cr2O3. Within any single xenolith, however, coexisting minerals are homogeneous and appear to be compositionally equilibrated. Geothermometry of coexisting orthopyroxene and augite indicates temperatures of equilibration of about 1100°C but there is considerable uncertainty in this estimate due to significant non-quadrilateral pyroxene substitutions. There is no accurate way to determine pressures, but the ubiquity of Cr-poor spinel and absence of garnet imply pressures less than about 15–20 kbar.The margins of most xenoliths show significant alteration through reaction with enclosing alkaline magma. Principal reaction features include zoning of spinels and olivines toward compositions in equilibrium with the magma, and reaction-melting of orthopyroxene to a symplectite of olivine plus silica-rich glass. Glass composition profiles across the symplectites indicate that alkalis, titanium and aluminum diffused into the symplectite from the magma and that silica diffused into the magma. All glass analyses show very low iron, magnesium and calcium.Xenolith mineral assemblages and chemistry indicate their origin in the upper mantle at relatively shallow depths. They are therefore not related genetically to the enclosing basanite magma which came from deeper in the mantle, but rather are accidental fragments of country rock picked up by magma on its way to the surface. The details of the reaction features strongly imply that the magma had partially crystallized by the time it reacted with xenoliths, possibly while still in the mantle.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号