首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Clasts of deep-seated crystalline basement rocks in suevites of the Ries crater, Germany, were catalogued lithologically and classified with regard to their degree of shock metamorphism. The sample suite consisted of 806 clasts from 10 outcrops in fallout suevites and 447 clasts from drill cores encountering crater suevite in the crater interior. These clasts can be grouped into seven types of metamorphic and nine types of igneous rocks. One hundred forty-three clasts, representing these lithologies, were analyzed for major element bulk composition. The fallout suevite contains on average 4 vol% of crystalline basement clasts, 0.4 vol% of sedimentary rocks, 16 vol% of glass bodies (some of them aerodynamically shaped), and 79 vol% of groundmass. On average, 52% of all crystalline clasts are from metamorphic sources and 42% are of igneous origin. Using the shock classification of Stöffler (1974), 8% of all crystalline clasts appear unshocked (<10 Gpa), and 34, 30 and 27% of clasts are shocked to stages I (10–35 Gpa), II (35–45 GPa) and III (45–60 GPa), respectively. The bulk composition of suevite glasses is consistent with the modal proportions of crystalline rock types observed in the clast populations. This indicates that the glasses originate by shock-fusion of a similarly composed basement. The crater suevite contains the same crystalline rock types that occur in the fallout suevites. The bore hole “Nördlingen 1973” yields an average of 62 vol% metamorphic and 38 vol% igneous rocks. The crater suevite differs from fallout suevites by a higher clast/glass ratio, by preponderance (65–95%) of clasts shocked to stage I only, and by the absence of aerodynamically shaped glass bodies. The source of crystalline clasts and melt particles of suevites is a volume of rocks, located deep in the crystalline basement, to which the projectile transmittted most of its energy so that only rocks of the basement were shocked by pressures exceeding 10 GPa (deep-burst impact model). Fallout suevites were ejected, propelled by an expanding plume of vaporized rock, and withdrew preferentially from this volume melt and highly shocked clasts, leaving in the transient cavity the crater suevite with more clasts of modest shock levels and less melt.  相似文献   

2.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

3.
Abstract– Shock metamorphism can occur at transient pressures that reach tens of GPa and well over 1000 °C, altering the target material on both megascopic and microscopic scales. This study explores the effects of shock metamorphism on crystalline, quartzofeldspathic basement material from the Haughton impact structure on Devon Island, Arctic Canada. Shock levels were assigned to samples based on petrographic examination of main mineral phases. Conventional shock classification schemes proved to incompletely describe the Haughton samples so a modified shock classification system is presented. Fifty‐two crystalline bedrock samples from the clast‐rich impact melt rocks in the crater, and one reference site outside of the crater, were classified using this system. The shock levels range from 0 to 7 (according to the new shock stage classification proposed here, i.e., stages 0–IV after the Stöffler classification), indicating shock pressures ranging from 0 to approximately 80 GPa. The second aspect of this study involved measuring bulk physical characteristics of the shocked samples. The bulk density, grain density, and porosity were determined using a water displacement method, a bead displacement method, and a Hepycnometer. Results suggest a nonlinear, negative correlation between density and shock level such that densities of crystalline rocks with original densities of approximately 3 g cm?3 are reduced to <1.0 g cm?3 at high shock levels. The results also show a positive nonlinear correlation between porosity and shock level. These data illustrate the effect of shock on the bulk physical characteristics of crystalline rocks, and has implications for assessing the habitability of shocked rocks.  相似文献   

4.
5.
Abstract— Surface and subsurface structural studies undertaken under the Haughton impact structure study (HISS) project indicate that the 23 Ma-old Haughton impact structure, (Devon Island, Canadian Arctic) consists of a central basin of uplifted strata, an inner zone of uplifted megablocks at 3.5–5.5 km radius, a complex, faulted annulus of megablocks at 5.5–7.0 km radius and an outer zone of downfaulted blocks. No evidence of a previously suggested structural multi-ring form was found. The geophysical studies suggest an original diameter of 24 km, slightly larger than previous estimates and the seismic data indicate considerably more faulting in the western portion than has been mapped from surface exposures. Detailed studies of the allochthonous breccia deposits found no major radial variations in lithology and shock levels. The only anomaly is the concentration of highly shocked, cobble-sized clasts in the central area coincident with the maximum gravity and magnetic anomalies. It is suggested that this local component is related to the highly shocked rocks of the central uplift and may have been shed from the uplift during late stage adjustments. There is no visible central topographic peak of uplifted bedrock at Haughton but studies of the post-impact Haughton Formation suggest that the center of the structure subsided 300–350 m soon after formation. Breccia studies also indicate the occurrence of shock-melted sediments, including shales, but no evidence of shock melted carbonates, the most common target lithology. This may be ascribed to the ease with which carbonates are volatilized by relatively moderate shock levels. The large amount of volatiles released on impact helped disperse the highly shocked products leading to the formation of a relatively cool clastic and polymict breccia deposit in the interior, as opposed to a coherent melt sheet. In this regard, the breccia deposit is somewhat analogous to the suevite deposits within the Ries crater. Sedimentological studies indicate that the Cretaceous-age Eureka Sound Formation was present at the time of impact and that the Haughton area has undergone as much as 200 m of erosion since the time of impact.  相似文献   

6.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

7.
The high‐pressure minerals of reidite and coesite have been identified in the moderately shock‐metamorphosed gneiss (shock stage II, 35–45 GPa) and the strongly shock‐metamorphosed gneiss (shock stage III, 45–55 GPa), respectively, from the polymict breccias of the Xiuyan crater, a simple impact structure 1.8 km in diameter in China. Reidite in the shock stage II gneiss displays lamellar textures developed in parental grains of zircon. The phase transformation of zircon to reidite likely corresponds to a martensitic mechanism. No coesite is found in the reidite‐bearing gneiss. The shock stage III gneiss contains abundant coesite, but no reidite is identified in the rock. Coesite occurs as acicular, dendritic, and spherulitic crystals characteristic of crystallization from shock‐produced silica melt. Zircon in the rock is mostly recrystallized. The postshock temperature in the shock stage III gneiss is too high for the preservation of reidite, whereas reidite survives in the shock stage II gneiss because of relatively low postshock temperature. Reidite does not occur together with coesite because of difference in shock‐induced temperature between the shock stage II gneiss and the shock stage III gneiss.  相似文献   

8.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

9.
We reevaluate the systematics and geologic setting of terrestrial, lunar, Martian, and asteroidal “impactites” resulting from single or multiple impacts. For impactites derived from silicate rocks and sediments, we propose a unified and updated system of progressive shock metamorphism. “Shock-metamorphosed rocks” occur as lithic clasts or melt particles in proximal impactites at impact craters, and rarely in distal impactites. They represent a wide range of metamorphism, typically ranging from unshocked to shock melted. As the degree of shock metamorphism, at a given shock pressure, depends primarily on the mineralogical composition and the porosity of a rock or sediment sample, different shock classification systems are required for different types of planetary rocks and sediments. We define shock classification systems for eight rock and sediment classes which are assigned to three major groups of rocks and sediments (1) crystalline rocks with classes F, M, A, and U; (2) chondritic rocks (class C); and (3) sedimentary rocks and sediments with classes SR, SE, and RE. The abbreviations stand for felsic (F), mafic (M), anorthositic (A), ultramafic (U), sedimentary rocks (SR), unconsolidated sediments (SE), and regoliths (RE). In each class, the progressive stages of shock metamorphism are denominated S1 to Sx. These progressive shock stages are introduced as: S1–S7 for F , S1–S7 for M, S1–S6 for A , S1–S7 for U , S1–S7 for C , S1–S7 for SR , S1–S5 for SE , and S1–S6 for RE . S1 stands for “unshocked” and Sx (variable between S5 and S7) stands for “whole rock melting.” We propose a sequence of symbols characterizing the degree of shock metamorphism of a sample, i.e., F-S1 to F-S7 with the option to add the tabulated pressure ranges (in GPa) in parentheses.  相似文献   

10.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

11.
Abstract— The results of a new gravity survey show that the Haughton impact structure is associated with a 24 km diameter negative Bouguer gravity anomaly with a maximum amplitude of ?12 mgal. A local minimum with a half-width of 2 km and an amplitude of ?4 mgal is located at the center of the structure. A positive magnetic total field anomaly with a half-width of 0.6 km and an amplitude of 700 nT coincides with the local central gravity anomaly. The overall negative gravity anomaly is explained by lowered rock densities due to impact-related fracturing in the crater area. The central gravity and magnetic anomalies are believed to be due to highly shocked and heated sedimentary and crystalline basement rocks forming the unexposed peak of the central uplift in the Haughton impact structure.  相似文献   

12.
Abstract— t‐Impact‐generated glasses from fallout suevite deposits at the Ries impact structure have been investigated using analytical scanning electron microscopy. Approximately 320 analyses of glass clasts were obtained. Four glass types are distinguished on the basis of composition and microtextures. Type 1 glasses correspond to the aerodynamically shaped glass bombs studied previously by many workers. Major oxide concentrations indicate the involvement of granitic rocks, amphibolites, and minor Al‐rich gneisses during melting. Type 2 glasses are chemically heterogeneous, even within individual clasts, with variations of several wt% in most of the major oxides (e.g., 57–70 wt% SiO2). This suggests incomplete mixing of: 1) mineral‐derived melts or 2) whole rock melts from a wide range of lithologies. Aluminium‐rich clinopyroxene and Fe‐Mg‐rich plagioclase quench crystals are present in type 1 and 2 glasses, respectively. Type 3 glasses contain substantial amounts of H2O (?12–17 wt%), low SiO2 (50–53 wt%), high Al2O3 (17–21 wt%), and high CaO (5–7 wt%) contents. This suggests an origin due to shock melting of part of the sedimentary cover. Type 4 glasses form a ubiquitous component of the suevites. Based on their high SiO2 content (?85–100 wt%), the only possible protolith are sandstones in the lowermost part of the sedimentary succession. Calcite forms globules within type 1 glasses, with which it develops microtextures indicative of liquid immiscibility. Unequivocal evidence also exists for liquid immiscibility between what are now montmorillonite globules and type 1, 2, and 4 glasses, indicating that montmorillonite was originally an impact melt glass. Clearly, the melt zone at the Ries must have incorporated a substantial fraction of the sedimentary cover, as well as the underlying crystalline basement rocks. Impact melts were derived from different target lithologies and these separate disaggregated melts did not substantially mix in most cases (type 2, 3, and 4 glasses and carbonate melts).  相似文献   

13.
Abstract— The late Eocene Popigai impact structure of Siberia comprises an approximately 0.5–1.5 km thick, ˜100 km diameter sequence of clast-rich and clast-poor andesitic to rhyolitic impact melt rocks and impact breccias, underlain by Archean to Proterozoic crystalline basement and Proterozoic to Phanerozoic sedimentary rocks. The fine-grained to cryptocrystalline texture of the more melt-rich rocks, despite their occurrence in bodies locally in excess of 800 m thick and 28 km long, suggests that the melt crystallized in response to (1) cooling by the clast load, and/or; (2) rapid nucleation on finely brecciated clasts, which have since been assimilated and/or; (3) crystallization enhanced by the relatively low water contents of the melts. Rapid crystallisation of the melt is indicated by the lack of zoning in minerals, the presence of glass, the lack of strain recovery features in clasts and the lack of evidence for fractionation in the major and trace elements, including the rare earth elements. Optical and analytical electron microscopy reveal that the previously reported division of the melt rocks into high- and low-temperature variants based on hand sample appearance, or glass content, is not warranted. Clasts within the melt-rich rocks exhibit a wide range of shock metamorphic features, though they are not distributed in the impact melts in a systematic manner. This indicates that the melt-rich rocks were well mixed during their formation, thus juxtaposing unshocked with shocked material. Injection of mesostasis melt into partially melted checkerboard plagioclase and orthopyroxene clasts also occurred during this mixing stage.  相似文献   

14.
Abstract— The lunar meteorite Dhofar 081, found as a single fragment of 174 g in the Dhofar region of Oman, is a shocked feldspathic fragmental highland breccia dominated by anorthosite‐rich lithic and mineral clasts embedded into a fine‐grained mostly shock melted clastic matrix. Major mineral phases in the bulk rock are Ca‐rich plagioclase (An96.5–99.5), pyroxene (FS21.9–46.2Wo3.0–41.4), and olivine (Fa29.3–47.8); accessory phases include Fe‐Ni metal, ilmenite, and Ti‐Cr‐rich spinel. Dhofar 081 contains subordinate crystalline fragments of large anorthosites, intersertal impact‐melt rocks, microporphyritic impact‐melt breccias, dark fine‐grained impact‐melt breccias, large cataclastic feldspars, and irregularly shaped brown glass clasts. Mafic components are rare and no genuine regolith components were found in the sections studied. Minerals in Dhofar 081 show homogeneously distributed shock features: intergranular recrystallization, strong fracturing and mosaicism in feldspar as well as a high density of mostly irregular fractures in pyroxene and olivine. Localized impact melting caused by one or several impacts led to a strong lithification. Based on these effects an equilibration shock pressure of about 15–20 GPa is estimated for the strongest shock event in Dhofar 081. Devitrification of the “glassy” material in the rock indicates thermal annealing after shock melting suggesting that the 15–20 GPa shock event predated the ejection event. According to the concentrations of implanted solar noble gases Dhofar 081 represents a polymict clastic breccia deposit with possibly a minor regolith component. A similar noble gas record of Dhofar 081 and MacAlpine Hills 88104/05 suggests the possibility of a source crater pairing of both meteorites. As indicated by noble gas measurements pairing of Dhofar 081 with the other lunar meteorites found in Oman, Dhofar 025 and Dhofar 026, is unlikely.  相似文献   

15.
Abstract— Although mapped initially as a piercement dome, subsequent discovery of shock metamorphism in clasts of an impact breccia, shatter cones in outcrops of uplifted target rocks and morphological and geophysical characteristics consistent with a complex crater, confirmed a meteorite impact origin for the Haughton structure, Devon Island. Results of three field investigations carried out prior to 1984 defined a complex crater, 20 km in diameter, formed in a lower Paleozoic sedimentary sequence overlying gneisses of the Precambrian basement. The distribution of allochthonous breccia overlying the disturbed target rocks and of the sediments deposited in the crater-filling lake were mapped. A Miocene or possibly Holocene age for the crater was based on paleo-flora and fauna assemblages from the lake sediments. Gravity and magnetic surveys revealed anomalies coincident with the crater, but not interpretable from surface lithologies. Some of the early investigations were of a reconnaissance nature and results and interpretation can only be considered preliminary. Other studies that were carried out in some detail, petrographic investigations in particular, require complementary work for a fuller understanding of their significance. As a result, in 1984 the HISS (Haughton Impact Structure Studies) group carried out a program of detailed geological mapping and sampling, and seismic, gravity, and magnetic surveys in an attempt to improve the definition of the surface and subsurface nature of Haughton, and to formulate a more complete understanding of its formation and subsequent history. Results of these various studies are presented in the eight succeeding papers of this volume.  相似文献   

16.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

17.
The 26 km diameter Nördlinger Ries is a complex impact structure with a ring structure that resembles a peak ring. A first research drilling through this “inner crystalline ring” of the Ries was performed at the Erbisberg hill (SW Ries) to better understand the internal structure and lithology of this feature, and possibly reveal impact‐induced hydrothermal alteration. The drill core intersected the slope of a 22 m thick postimpact travertine mound, before entering 42 m of blocks and breccias of crystalline rocks excavated from the Variscan basement at >500 m depth. Weakly shocked gneiss blocks that show that shock pressure did not exceed 5 GPa occur above polymict lithic breccias of shock stage Ia (10–20 GPa), with planar fractures and planar deformation features (PDFs) in quartz. Only a narrow zone at 49.20–50.00 m core depth exhibits strong mosaicism in feldspar and {102} PDFs in quartz, which are indicative of shock stage Ib (20–35 GPa). Finally, 2 m of brecciated Keuper sediments at the base of the section point to an inverse layering of strata. While reverse grading of clast sizes in lithic breccias and gneiss blocks is consistent with lateral transport, the absence of diaplectic glass and melt products argues against dynamic overthrusting of material from a collapsing central peak, as seen in the much larger Chicxulub structure. Indeed, weakly shocked gneiss blocks are rather of local provenance (i.e., the transient crater wall), whereas moderately shocked polymict lithic breccias with geochemical composition and 87Sr/86Sr signature similar to Ries suevite were derived from a position closer to the impact center. Thus, the inner ring of the Ries is formed by moderately shocked polymict lithic breccias likely injected into the transient crater wall during the excavation stage and weakly shocked gneiss blocks of the collapsing transient crater wall that were emplaced during the modification stage. While the presence of an overturned flap is not evident from the Erbisberg drilling, a survey of all drillings at or near the inner ring point to inverted strata throughout its outer limb. Whether the central ring of the Ries represents remains of a collapsed central peak remains to be shown. Postimpact hydrothermal alteration along the Erbisberg section comprises chloritization, sulfide veinlets, and strong carbonatization. In addition, a narrow zone in the lower parts of the polymict lithic breccia sequence shows a positive Eu anomaly in its carbonate phase. The surface expression of this hydrothermal activity, i.e., the travertine mound, comprises subaerial as well as subaquatic growth phases. Intercalated lake sediments equivalent to the early parts of the evolution of the central crater basin succession confirm a persistent impact‐generated hydrothermal activity, although for less time than previously suggested.  相似文献   

18.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

19.
Abstract– Meteorite impacts, one of the most ubiquitous processes in the solar system, have the ability to destroy as well as create habitats for life. The impact process can increase the translucency and porosity of the target substrate, as well as mobilize biologically relevant elements within the substrate. For endolithic organisms, this process has important implications, especially in extreme environments where they are forced to seek refuge in the interior of rocks. Here, we show that unshocked target rocks and rocks that have experienced pressures up to about 80 GPa from the Haughton impact structure, Devon Island, Canada, possess a small, but discernible change in bulk chemistry within the major oxide analysis. However, changes in the distribution of elements did occur with increasing shock level for both the sedimentary and crystalline target. Both the crystalline and sedimentary target rocks contain significant amounts of glasses at higher shock levels (up to about 95% by volume), which would improve the availability of these elements to potential microbial endoliths as glasses are more easily dissolved by organic acids. The implication that impact events do not impoverish their capacity to serve as a “substrate” through volatilization is important with respect to analogous impact structures on Mars. After the deleterious effects of the direct meteorite impact, any microorganisms on Mars would have benefited from the input of heat, the mobilization of a possible frozen groundwater system, as well as increased translucency, porosity, and trace nutrient availability of the target substrate.  相似文献   

20.
Abstract— Field studies and a shallow drilling program carried out in 1999 provided information about the thickness and distribution of suevite to the north of the Bosumtwi crater rim. Suevite occurrence there is known from an ?1.5 km2 area; its thickness is ≤15 m. The present suevite distribution is likely the result of differential erosion and does not reflect the initial areal extent of continuous Bosumtwi ejecta deposits. Here we discuss the petrographic characteristics of drill core samples of melt‐rich suevite. Macroscopic constituents of the suevites are melt bodies and crystalline and metasedimentary rock (granite, graywacke, phyllite, shale, schist, and possibly slate) clasts up to about 40 cm in size. Shock metamorphic effects in the clasts include multiple sets of planar deformation features (PDFs), diaplectic quartz and feldspar glasses, lechatelierite, and ballen quartz, besides biotite with kink bands. Basement rock clasts in the suevite represent all stages of shock metamorphism, ranging from samples without shock effects to completely shock‐melted material that is indicative of shock pressures up to ?60 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号