首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract– We investigate the hypothesis that many chondrules are frozen droplets of spray from impact plumes launched when thin‐shelled, largely molten planetesimals collided at low speed during accretion. This scenario, here dubbed “splashing,” stems from evidence that such planetesimals, intensely heated by 26Al, were abundant in the protoplanetary disk when chondrules were being formed approximately 2 Myr after calcium‐aluminum‐rich inclusions (CAIs), and that chondrites, far from sampling the earliest planetesimals, are made from material that accreted later, when 26Al could no longer induce melting. We show how “splashing” is reconcilable with many features of chondrules, including their ages, chemistry, peak temperatures, abundances, sizes, cooling rates, indented shapes, “relict” grains, igneous rims, and metal blebs, and is also reconcilable with features that challenge the conventional view that chondrules are flash‐melted dust‐clumps, particularly the high concentrations of Na and FeO in chondrules, but also including chondrule diversity, large phenocrysts, macrochondrules, scarcity of dust‐clumps, and heating. We speculate that type I (FeO‐poor) chondrules come from planetesimals that accreted early in the reduced, partially condensed, hot inner nebula, and that type II (FeO‐rich) chondrules come from planetesimals that accreted in a later, or more distal, cool nebular setting where incorporation of water‐ice with high Δ17O aided oxidation during heating. We propose that multiple collisions and repeated re‐accretion of chondrules and other debris within restricted annular zones gave each chondrite group its distinctive properties, and led to so‐called “complementarity” and metal depletion in chondrites. We suggest that differentiated meteorites are numerically rare compared with chondrites because their initially plentiful molten parent bodies were mostly destroyed during chondrule formation.  相似文献   

2.
Abstract— A compilation of over 1500 Mg-isotopic analyses of Al-rich material from primitive solar system matter (meteorites) shows clearly that 26Al existed live in the early Solar System. Excesses of 26Mg observed in refractory inclusions are not the result of mixing of “fossil” interstellar 26Mg with normal solar system Mg. Some material was present that contained little or no 26Al, but it was a minor component of solar system matter in the region where CV3 and CO3 carbonaceous chondrites accreted and probably was a minor component in the accretion regions of CM chondrites as well. Data for other chondrite groups are too scanty to make similar statements. The implied long individual nebular histories of CAIs and the apparent gap of one or more million years between the start of CAI formation and the start of chondrule formation require the action of some nebular mechanism that prevented the CAIs from drifting into the Sun. Deciding whether 26Al was or was not the agent of heating that caused melting in the achondrite parent bodies hinges less on its widespread abundance in the nebula than it does on the timing of planetesimal accretion relative to the formation of the CAIs.  相似文献   

3.
Abstract— The 26Al/27Al ratio in a large number of calcium-aluminum inclusions (CAIs) is a rather uniform 5 × 10?5, whereas in chondrules the ratio is either undetectable or has a much lower value; the simplest interpretation of this is that there was an interval of a few million years between the times that these two meteoritic constituents formed stable solids. The present investigation was undertaken as an exploration of the physics of the processes in the solar nebula during and after the accumulation of the Sun. Understanding the time scales of events in this nebular model, to see if this would cast light on this apparent CAI to chondrule time interval, was the major motivation for the exploration. There were four stages in the history of the solar nebula; in stage 1, a fragment of an interstellar molecular cloud collapsed to form the Sun and solar nebula; in stage 2, the nebula was in approximate steady state balance between infall from the cloud and accretion onto the Sun and was in its FU Orionis accumulation stage; in stage 3, the Sun had been mainly accumulated and there was a slow residual mass flow into the Sun while it was in its classical T Tauri stage; and in stage 4, the nebula had finished accreting material onto the Sun (now a weak-lined T Tauri star) and was in a static condition with no significant dissipation or motions, other than removal at the inner edge due to the T Tauri solar wind and photoevaporation beyond 9 astronomical units (AU). It is found that the energy source keeping the nebula warm during stages 3 and 4 is recombination of ionized H in the ionized bipolar jets and the T Tauri coronal expansion solar wind. The parameters of the heating model were adjusted to locate the ice sublimation line at 5.2 AU. In this work, a nebular model is used with a surface density of 4.25 × 103 gm/cm2 at 1 AU and a variation with radial distance as the inverse first power. Under normal conditions in the nebula, there is a negative pressure gradient that provides partial radial support for the gas, which thus circles the Sun more slowly than large solid objects do. Large objects undergo a slow inward spiral due to the gas drag; very small objects move essentially with the gas but have a slow inward drift; and intermediate objects (e.g., 1 m) have a fairly large inward drift velocity that traverses the full radial extent of the nebula in considerably less than the CAI to chondrule time interval. Such objects are thus lost unless they can grow rapidly to larger sizes. Near the inner edge (bow) of the nebula during stage 4, the pressure gradient becomes positive, creating a narrow zone of zero gas drag toward which solids drift from both directions, facilitating planetesimal formation in the inner solar nebula. Recent theoretical and experimental results on sticking probabilities of solids show that icy surfaces have the best sticking properties, but icy interstellar grains can only stick together when subjected to impact velocities of less than 2000 cm/sec. However, if the solid objects are very underdense, then a collision leads to interpenetration and many points at which the small constituent grains can adhere to one another, and thus coagulation becomes possible for such underdense objects. Simulations were made of such coagulation in the outer solar nebula, and it was found that the central plane of the nebula quickly becomes filled with meter-sized and larger bodies that rapidly accumulated near the top of the nebula and rapidly descended; in a few thousand years this quickly leads to gravitational instabilities that can form planetesimals. These processes led to the rapid formation of Jupiter in the nebula (and the slightly less rapid formation of the other giant planets). The early formation of Jupiter opens an annular gap in the nebula, and thus a second region is created in the nebula with zero gas drag. It is concluded that CAIs were formed at the end of stage 2 of the nebula history and moved out into the nebula for long-term storage, and that most chondrules were formed by magnetic reconnection flares in the bow region of the nebula during stage 4, several million years later. Carbonaceous meteorites should be formed on the far side of the Jovian gap, with the chondrules being heated by flares on the early Jupiter irradiating materials in the nearby zone of zero gas drag, and they should have essentially the same 26Al ages as the CAIs (this will be very hard to confirm owing to scarcity of Al mineral phases in these chondrules).  相似文献   

4.
Abstract— The primordial asteroid belt contained at least several hundred and possibly as many as 10,000 bodies with diameters of 1000 km or larger. Following the formation of Jupiter, nebular gas drag combined with passage of such bodies through Jovian resonances produced high eccentricities (e = 0.3‐0.5), low inclinations (i < 0.5°), and, therefore, high velocities (3–10 km/s) for “resonant” bodies relative to both nebular gas and non‐resonant planetesimals. These high velocities would have produced shock waves in the nebular gas through two mechanisms. First, bow shocks would be produced by supersonic motion of resonant bodies relative to the nebula. Second, high‐velocity collisions of resonant bodies with non‐resonant bodies would have generated impact vapor plume shocks near the collision sites. Both types of shocks would be sufficient to melt chondrule precursors in the nebula, and both are consistent with isotopic evidence for a time delay of ?1‐1.5 Myr between the formation of CAIs and most chondrules. Here, initial simulations are first reported of impact shock wave generation in the nebula and of the local nebular volumes that would be processed by these shocks as a function of impactor size and relative velocity. Second, the approximate maximum chondrule mass production is estimated for both bow shocks and impact‐generated shocks assuming a simplified planetesimal population and a rate of inward migration into resonances consistent with previous simulations. Based on these initial first‐order calculations, impact‐generated shocks can explain only a small fraction of the minimum likely mass of chondrules in the primordial asteroid belt (?1024‐1025g). However, bow shocks are potentially a more efficient source of chondrule production and can explain up to 10–100 times the estimated minimum chondrule mass.  相似文献   

5.
Planetary bodies a few hundred kilometers in radii are the precursors to larger planets but it is unclear whether these bodies themselves formed very rapidly or accreted slowly over several millions of years. Ordinary H chondrite meteorites provide an opportunity to investigate the accretion time scale of a small planetary body given that variable degrees of thermal metamorphism present in H chondrites provide a proxy for their stratigraphic depth and, therefore, relative accretion times. We exploit this feature to search for nucleosynthetic isotope variability of 54Cr, which is a sensitive tracer of spatial and temporal variations in the protoplanetary disk's solids, between 17 H chondrites covering all petrologic types to obtain clues about the parent body accretionary rate. We find no systematic variability in the mass‐biased corrected abundances of 53Cr or 54Cr outside of the analytical uncertainties, suggesting very rapid accretion of the H chondrite parent body consistent with turbulent accretion. By utilizing the μ54Cr–planetary mass relationship observed between inner solar system planetary bodies, we calculate that the H chondrite accretion occurred at 1.1 ± 0.4 or 1.8 ± 0.2 Myr after the formation of calcium‐aluminum‐rich inclusions (CAIs), assuming either the initial 26Al/27Al abundance of inner solar system solids determined from angrite meteorites or CAIs from CV chondrites, respectively. Notably, these ages are in agreement with age estimates based on the parent bodies’ thermal evolution when correcting these calculations to the same initial 26Al/27Al abundance, reinforcing the idea of a secular evolution in the isotopic composition of inner disk solids.  相似文献   

6.
CM meteorites are dominant members of carbonaceous chondrites (CCs), which evidently accreted in a region separated from the terrestrial planets. These chondrites are key in determining the accretion regions of solar system materials, since in Mg and Cr isotope space, they intersect between what are identified as inner and outer solar system reservoirs. In this model, the outer reservoir is represented by metal‐rich carbonaceous chondrites (MRCCs), including CR chondrites. An important question remains whether the barrier between MRCCs and CCs was a temporal or spatial one. CM chondrites and chondrules are used here to identify the nature of the barrier as well as the timescale of chondrite parent body accretion. We find based on high precision Mg and Cr isotope data of seven CM chondrites and 12 chondrules, that accretion in the CM chondrite reservoir was continuous lasting <3 Myr and showing late accretion of MRCC‐like material reflected by the anomalous CM chondrite Bells. We further argue that although MRCCs likely accreted later than CM chondrites, CR chondrules must have initially formed from a reservoir spatially separated from CM chondrules. Finally, we hypothesize on the nature of the spatial barrier separating these reservoirs.  相似文献   

7.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   

8.
Abstract— We examine the size sorting of chondrules and metal grains within the context of the jet flow model for chondrule/CAI formation. In this model, chondrules, CAIs, AOAs, metal grains, and related components of meteorites are assumed to have formed in the outflow region of the innermost regions of the solar nebula and then were ejected, via the agency of a bipolar jet flow, to outer regions of the nebula. We wish to see if size sorting of chondrules and metal grains is a natural consequence of this model. To assist in this task, we used a multiprocessor system to undertake Monte Carlo simulations of the early solar nebula. The paths of a statistically significant number of chondrules and metal grains were analyzed as they were ejected from the outflow and travelled over or into the solar nebula. For statistical reasons, only distances ≤3 AU from the Sun were examined. Our results suggest that size sorting can occur provided that the solar nebula jet flow had a relatively constant flow rate as function of time. A constant flow rate outflow produces size sorting, but it also produces a sharp size distribution of particles across the nebula and a metal‐rich Fe/Si ratio. When the other extreme of a fully random flow rate was examined, it was found that size sorting was removed, and the initial material injected into the flow was simply spread over most of the the solar nebula. These results indicate that the outflow can act as a size and density classifier. By simply varying the flow rate, the outflow can produce different types of proto‐meteorites from the same chondrule and metal grain feed stock. As a consequence of these investigations, we observed that the number of particles that impact into the nebula drops off moderately rapidly as a function of distance r from the Sun. We also derive a corrected form of the Epstein stopping time.  相似文献   

9.
Abstract— In this paper, we review the mineralogy and chemistry of calcium‐aluminum‐rich inclusions (CAIs), chondrules, FeNi‐metal, and fine‐grained materials of the CR chondrite clan, including CR, CH, and the metal‐rich CB chondrites Queen Alexandra Range 94411, Hammadah al Hamra 237, Bencubbin, Gujba, and Weatherford. The members of the CR chondrite clan are among the most pristine early solar system materials, which largely escaped thermal processing in an asteroidal setting (Bencubbin, Weatherford, and Gujba may be exceptions) and provide important constraints on the solar nebula models. These constraints include (1) multiplicity of CAI formation; (2) formation of CAIs and chondrules in spatially separated nebular regions; (3) formation of CAIs in gaseous reservoir(s) having 16O‐rich isotopic compositions; chondrules appear to have formed in the presence of 16O‐poor nebular gas; (4) isolation of CAIs and chondrules from nebular gas at various ambient temperatures; (5) heterogeneous distribution of 26Al in the solar nebula; and (6) absence of matrix material in the regions of CAI and chondrule formation.  相似文献   

10.
The final stage in the formation of terrestrial planets consists of the accumulation of ∼1000-km “planetary embryos” and a swarm of billions of 1-10 km “planetesimals.” During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1000-2000 embryos and planetesimals, roughly 5-10 times more particles than in previous simulations. Each simulation formed 2-4 terrestrial planets with masses between 0.4 and 2.6 Earth masses. The eccentricities of most planets were ∼0.05, lower than in previous simulations, but still higher than for Venus, Earth and Mars. Each planet accreted at least the Earth's current water budget. We demonstrate several new aspects of the accretion process: (1) The feeding zones of terrestrial planets change in time, widening and moving outward. Even in the presence of Jupiter, water-rich material from beyond 2.5 AU is not accreted for several millions of years. (2) Even in the absence of secular resonances, the asteroid belt is cleared of >99% of its original mass by self-scattering of bodies into resonances with Jupiter. (3) If planetary embryos form relatively slowly, then the formation of embryos in the asteroid belt may have been stunted by the presence of Jupiter. (4) Self-interacting planetesimals feel dynamical friction from other small bodies, which has important effects on the eccentricity evolution and outcome of a simulation.  相似文献   

11.
Abstract— We have studied Pb‐isotope systematics of chondrules from the oxidized CV3 carbonaceous chondrite Allende. The chondrules contain variably radiogenic Pb with a 206Pb/204Pb ratio between 19.5–268. Pb‐Pb isochron regression for eight most radiogenic analyses yielded the date of 4566.2 ± 2.5 Ma. Internal residue‐leachate isochrons for eight chondrule fractions yielded consistent dates with a weighted average of 4566.6 ± 1.0 Ma, our best estimate for an average age of Allende chondrule formation. This Pb‐Pb age is consistent with the range of model 26Al‐26Mg ages of bulk Allende chondrules reported by Bizzarro et al. (2004) and is indistinguishable from Pb‐Pb ages of Ca‐Al‐rich inclusions (CAIs) from CV chondrites (4567.2 ± 0.6 Ma) (Amelin et al. 2002) and the oldest basaltic meteorites. We infer that chondrule formation started contemporaneously with or shortly after formation of CV CAIs and overlapped in time with formation of the basaltic crust and iron cores of differentiated asteroids. The entire period of chondrule formation lasted from 4566.6 ± 1.0 Ma (Allende) to 4564.7 ± 0.6 Ma (CR chondrite Acfer 059) to 4562.7 ± 0.5 Ma (CB chondrite Gujba) and was either continuous or consisted of at least three discrete episodes. Since chondrules in CB chondrites appear to have formed from a vapor‐melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated (Krot et al. 2005), there were possibly a variety of processes in the early solar system occurring over at least 4–5 Myr that we now combine under the umbrella name of “chondrule formation.”  相似文献   

12.
Abstract– The asteroid belt is found today in a dramatically different state than that immediately following its formation. It is estimated that it has been depleted in total mass by a factor of at least 1000 since its formation, and that the asteroids’ orbits evolved from having near‐zero eccentricity and inclination to the complex distributions we find today. The asteroid belt also hosts a wide range of compositions, with the inner regions dominated by S‐type and other water‐poor asteroids and the outer regions dominated by C‐type and other primitive asteroids. We discuss a model of early inner solar system evolution whereby the gas‐driven migration of Jupiter and Saturn brings them inwards to 1.5 AU, truncating the disk of planetesimals in the terrestrial planet region, before migrating outwards toward their current locations. This model, informally titled “The Grand Tack,” examines the planetary dynamics of the solar system bodies during the final million years of the gaseous solar nebula lifetime—a few million years (Myr) after the formation of the first solids, but 20–80 Myr before the final accretion of Earth, and approximately 400–600 Myr before the Late Heavy Bombardment of the inner solar system. The Grand Tack attempts to solve some outstanding problems for terrestrial planet formation, by reproducing the size of Mars, but also has important implications for the asteroid population. The migration of Jupiter causes a very early depletion of the asteroid belt region, and this region is then repopulated from two distinct source regions, one inside the formation region of Jupiter and one between and beyond the giant planets. The scattered material reforms the asteroid belt, producing a population the appropriate mass, orbits, and with overlapping distributions of material from each parent source region.  相似文献   

13.
Isotopic and chemical compositions of meteorites, coupled with dynamical simulations, suggest that the main belt of asteroids between Mars and Jupiter contains objects formed in situ as well as a population of interlopers. These interlopers are predicted to include the building blocks of the terrestrial planets as well as objects that formed beyond Neptune ( [Bottke et al., 2006] , [Levison et al., 2009] and [Walsh et al., 2011] ). Here we report that the main belt asteroid (21) Lutetia – encountered by the Rosetta spacecraft in July 2010 – has spectral (from 0.3 to 25 μm) and physical (albedo, density) properties quantitatively similar to the class of meteorites known as enstatite chondrites. The chemical and isotopic compositions of these chondrites indicate that they were an important component of the formation of Earth and other terrestrial planets. This meteoritic association implies that Lutetia is a member of a small population of planetesimals that formed in the terrestrial planet region and that has been scattered in the main belt by emerging protoplanets (Bottke et al. 2006) and/or by the migration of Jupiter (Walsh et al. 2011) early in its history. Lutetia, along with a few other main-belt asteroids, may contains part of the long-sought precursor material (or closely related materials) from which the terrestrial planets accreted.  相似文献   

14.
Abstract— Petrographic, compositional, and isotopic characteristics were studied for three calcium‐aluminum‐rich inclusions (CAIs) and four plagioclase‐bearing chondrules (three of them Al‐rich) from the Axtell (CV3) chondrite. All seven objects have analogues in Allende (CV3) and other primitive chondrites, yet Axtell, like most other chondrites, contains a distinctive suite of CAIs and chondrules. In common with Allende CAIs, CAIs in Axtell exhibit initial 26Al/27Al ratios ((26Al/27Al)0) ranging from ~5 × 10?5 to <1.1 × 10?5, and plagioclase‐bearing chondrules have (26Al/27Al)0 ratios of ~3 × 10?6 and lower. One type‐A CAI has the characteristics of a FUN inclusion. The Al‐Mg data imply that the plagioclase‐bearing chondrules began to form >2 Ma after the first CAIs. As in other CV3 chondrites, some objects in Axtell show evidence of isotopic disturbance. Axtell has experienced only mild thermal metamorphism (<600 °C), probably not enough to disturb the Al‐Mg systematics. Its CAIs and chondrules have suffered extensive metasomatism, probably prior to final accretion. These data indicate that CAIs and chondrules in Axtell (and other meteorites) had an extended history of several million years before their incorporation into the Axtell parent body. These long time periods appear to require a mechanism in the early solar system to prevent CAIs and chondrules from falling into the Sun via gas drag for several million years before final accretion. We also examined the compositional relationships among the four plagioclase‐bearing chondrules (two with large anorthite laths and two barred‐olivine chondrules) and between the chondrules and CAIs. Three processes were examined: (1) igneous differentiation, (2) assimilation of a CAI by average nebular material, and (3) evaporation of volatile elements from average nebular material. We find no evidence that igneous differentiation played a role in producing the chondrule compositions, although the barred olivine compositions can be related by addition or subtraction of olivine. Methods (2) and (3) could have produced the composition of one chondrule, AXCH‐1471, but neither process explains the other compositions. Our study indicates that plagioclase‐bearing objects originated through a variety of processes.  相似文献   

15.
Ca-Al rich refractory mineral inclusions (CAIs) found at 1-6% mass fraction in primitive chondrites appear to be 1-3 million years older than the dominant (chondrule) components which were accreted into the same parent bodies. A prevalent concern is that it is difficult to retain CAIs for this long against gas-drag-induced radial drift into the Sun. We reassess the situation in terms of a hot inner (turbulent) nebula context for CAI formation, using analytical models of nebula evolution and particle diffusion. We show that outward radial diffusion in a weakly turbulent nebula can overcome inward drift, and prevent significant numbers of CAI-size particles from being lost into the Sun for times on the order of 106 years. CAIs can form early, when the inner nebula was hot, and persist in sufficient abundance to be incorporated into primitive planetesimals at a much later time. Small (?0.1 mm diameter) CAIs persist for longer times than large (?5 mm diameter) ones. To obtain a quantitative match to the observed volume fractions of CAIs in chondrites, another process must be allowed for: a substantial enhancement of the inner hot nebula in silicate-forming material, which we suggest was caused by rapid inward drift of meter-sized objects. This early in nebula history, the drifting rubble would have a carbon content probably an order of magnitude larger than even the most primitive (CI) carbonaceous chondrites. Abundant carbon in the evaporating material would help keep the nebula oxygen fugacity low, plausibly solar, as inferred for the formation environment of CAIs. The associated production of a larger than canonical amount of CO2 might also play a role in mass-independent fractionation of oxygen isotopes, leaving the gas rich in 16O as inferred from CAIs and other high temperature condensates.  相似文献   

16.
Abstract– One transient heating mechanism that can potentially explain the formation of most meteoritic chondrules 1–3 Myr after CAIs is shock waves produced by planetary embryos perturbed into eccentric orbits via resonances with Jupiter following its formation. The mechanism includes both bow shocks upstream of resonant bodies and impact vapor plume shocks produced by high‐velocity collisions of the embryos with small nonresonant planetesimals. Here, we investigate the efficiency of both shock processes using an improved planetesimal accretion and orbital evolution code together with previous simulations of vapor plume expansion in the nebula. Only the standard version of the model (with Jupiter assumed to have its present semimajor axis and eccentricity) is considered. After several hundred thousand years of integration time, about 4–5% of remaining embryos have eccentricities greater than about 0.33 and shock velocities at 3 AU exceeding 6 km s?1, currently considered to be a minimum for melting submillimeter‐sized silicate precursors in bow shocks. Most embryos perturbed into highly eccentric orbits are relatively large—half as large as the Moon or larger. Bodies of this size could yield chondrule‐cooling rates during bow shock passage compatible with furnace experiment results. The cumulative area of the midplane that would be traversed by highly eccentric embryos and their associated bow shocks over a period of 1–2 Myr is <1% of the total area. However, future simulations that consider a radially migrating Jupiter and alternate initial distributions of the planetesimal swarm may yield higher efficiencies.  相似文献   

17.
Abstract— We investigate the possible formation of chondrules by planetesimal bow shocks. The formation of such shocks is modeled using a piecewise parabolic method (PPM) code under a variety of conditions. The results of this modeling are used as a guide to study chondrule formation in a one‐dimensional, finite shock wave. This model considers a mixture of chondrule‐sized particles and micron‐sized dust and models the kinetic vaporization of the solids. We found that only planetesimals with a radius of ?1000 km and moving at least ?8 km/s with respect to the nebular gas can generate shocks that would allow chondrule‐sized particles to have peak temperatures and cooling rates that are generally consistent with what has been inferred for chondrules. Planetesimals with smaller radii tend to produce lower peak temperatures and cooling rates that are too high. However, the peak temperatures of chondrules are only matched for low values of chondrule wavelength‐averaged emissivity. Very slow cooling (<?100s of K/hr) can only be achieved if the nebular opacity is low, which may result after a significant amount of material has been accreted into objects that are chondrule‐sized or larger, or if chondrules formed in regions of the nebula with small dust concentrations. Large shock waves of approximately the same scale as those formed by gravitational instabilities or tidal interactions between the nebula and a young Jupiter do not require this to match the inferred thermal histories of chondrules.  相似文献   

18.
Alan E. Rubin 《Icarus》2011,213(2):547-558
Chondrite groups can be distinguished on the basis of their abundances of refractory lithophile elements (RLE). These abundances are, in part, functions of the mass fraction of Ca-Al-rich inclusions (CAIs) within the chondrites. Carbonaceous chondrites contain the most CAIs and the highest RLE abundances; they also contain modally abundant fine-grained matrix material that consists largely of modified nebular dust. The amount of dust varied throughout the solar nebula: enstatite and ordinary chondrites formed in low-dust regions in the inner part of the nebula, R chondrites formed in higher-dust zones at somewhat greater heliocentric distances, and carbonaceous chondrites formed in even dustier regions farther from the Sun. The amount of ambient dust peaked in the region where CV and CK chondrites accreted; these chondrites have abundant matrix, the highest modal abundances of CAIs, and the highest bulk RLE contents. Substantial amounts of nebular dust occurred in highly porous multi-millimeter-to-centimeter-size dustballs that were on the order of 100 times more massive than CAIs. Radial drift processes in the nebula affected these dustballs to approximately the same extent as the CAIs; both types of objects were aerodynamically concentrated in the same nebular regions. These regions maintained approximately the same relative amounts of dust through the periods of chondrule formation and chondrite accretion.  相似文献   

19.
D.W. Sears 《Icarus》1979,40(3):471-483
The major iron meteorite groups are defined essentially by their Ga, Ge, and Ni contents. It now seems clear that the differences between their abundances of Ga and Ge were produced by the process of condensation and accretion in the primordial solar nebula. The simplest interpretation of the Ni abundance, and its variations between the groups, is also that it was fixed during condensation and accretion; more particularly, it reflects the oxidation state of the nebula during condensation and accretion. The abundance patterns of 17 other trace elements have been examined and are consistent with this model. It is believed to be the simplest model published and most consistent with analogous calculations for the chondrites. If it is correct, then the iron meteorite groups formed over a very wide range of pressures, 10?4 to 10?8 atm. Such a range could only be found in a restricted region of the nebula, such as the asteroid belt, if a complex accretion sequence inside a protoplanet occurred. More likely, the iron meteorites were formed in widely dispersed regions of the nebula and only one group formed in the asteroid belt, probably group IIIAB. Groups IAB and IIAB formed nearer the Sun, and group IVA formed much further out, say, beyond the orbit of Jupiter.  相似文献   

20.
Abstract— The bulk compositions of the terrestrial planets are assessed. Venus and Earth probably have similar bulk compositions, but Mars is enriched in volatile elements. The inner planets are all depleted in volatile elements, as shown by K/U ratios, relative to most meteorites and the CI primordial values. Terrestrial upper mantle Mg/Si ratios are high compared with CI data. If they are representative of the bulk Earth, then the Earth accreted from a segregated suite of planetesimals that had non-chondritic major element abundances. The CI meteorite abundances, despite aqueous alteration, match the solar data and provide the best estimate for the composition of the solar nebula, including the iron abundance. The widespread depletion of volatile elements in the inner solar nebula is most likely caused by heating related to early violent solar activity (e.g., T Tauri and FU Orionis stages) which, for example, drove water out to a “snow line” in the vicinity of Jupiter. The variation in composition among the meteorites and the apparent lack of mixing among the groups indicates accretion from narrow feeding zones. There appears to have been little mixing between meteorite and planetary formation zones, as shown by the oxygen isotope variations, lack of mixing of meteorite groups, and differences in K/U ratios. In summary, it appears that the final accretion of planets did not result in widespread homogenization, and that mixing zones were not more than about 0.3 A.U. wide. Although the composition of the Moon is unique, and its origin due to an essentially random event, its presence reinforces the planetesimal hypothesis and the importance of stochastic processes during planetary accretion in the inner solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号