首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lunar Dust: Properties and Potential Hazards   总被引:1,自引:0,他引:1  
Solar System Research - The surface of the Moon, like that of any airless body in the Solar System, constantly experiences micrometeorite bombardment as well as the influence of solar radiation,...  相似文献   

2.
It is investigated whether conditions for melting can be temporarily created in the upper sub-surface parts of snow/ice-packs on Mars at subzero surface temperatures by means of the solid-state greenhouse effect, as occurs in snow- and ice-covered regions on Earth. The conditions for this possible temporary melting are quantitatively described for bolometric albedo values A = 0.8 and A = 0.2, and with model parameters typical for the thermo-physical conditions at snow/ice sites on the surface of present Mars. It is demonstrated by numerical modelling that there are several sets of parameters which will lead to development of layers of liquid water just below the top surface of snow- and ice-packs on Mars. This at least partial liquefaction occurs repetitively (e.g. diurnally, seasonally), and can in some cases lead to liquid water persisting through the night-time in the summer season. This liquid water can form in sufficient amounts to be relevant for macroscopic physical (rheology, erosion), for chemical, and eventually also for biological processes. The creation of temporary pockets of sub-surface water by this effect requires pre-existing snow or ice cover, and thus is more likely to take place at high latitudes, since the present deposits of snow/ice can mainly be found there. Possible rheologic and related erosion consequences of the appearance of liquid sub-surface water in martian snow/ice-packs are discussed in view of current observations of recent rheologic processes.  相似文献   

3.
The spectra of water ice on the surfaces of icy satellites and Kuiper Belt Objects (KBOs) indicate that the surface ice on these bodies is in a crystalline state. This conflicts with theoretical models, which predict that radiation (galactic cosmic rays and solar ultraviolet) should damage the crystalline structure of ice on geologically short timescales. Temperatures are too low in the outer Solar System for the ice to anneal, and reflectance spectra of these bodies should match those of amorphous solid water (ASW). We assess whether the kinetic energy deposited as heat by micrometeorite impacts on outer Solar System bodies is sufficient to anneal their surface ice down to a near-infrared optical depth . We calculate the kinetic energy flux from interplanetary micrometeorite impacts, including gravitational focusing. We also calculate the thermal diffusion of impact heat in various surfaces and the rate of annealing of ice. We conclude that the rate of annealing from micrometeorite impacts is sufficient to explain the crystallinity of ice on nearly all the surfaces of the saturnian, uranian and neptunian satellites. We discuss how the model can be used in conjunction with spectra of KBOs to probe dust fluxes in the Kuiper Belt.  相似文献   

4.
Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.  相似文献   

5.
We discuss the status of ultraviolet knowledge of Solar System objects. We begin with a short historical survey, followed by a review of knowledge gathered so far and of existing observational assets. The survey indicates that UV observations, along with data collected in other spectral bands, are necessary and in some cases essential to understand the nature of our neighbors in the Solar System. By extension, similar observations are needed to explore the nature of extrasolar planets, to support or reject astro-biology arguments, and to compose and test scenarios for the formation and evolution of planetary systems.We propose a set of observations, describing first the necessary instrumental capabilitites to collect these and outlining what would be the expected scientific return. We identify two immediate programmatic requirements: the establishment of a mineralogic database in the ultraviolet for the characterization of planetary, ring, satellite, and minor planet surfaces, and the development and deployment of small orbital solar radiation monitors. The first would extend the methods of characterizing surfaces of atmosphere-less bodies by adding the UV segment. The latter are needed to establish a baseline against which contemporaneous UV observations of Solar System objects must be compared.We identify two types of UV missions, one appropriate for a two-meter-class telescope using almost off-the-shelf technology that could be launched in the next few years, and another for a much larger (5–20 meter class) instrument that would provide the logical follow-up after a decade of utilizing the smaller facility.Michel Festou, our co-author and a very important contributor to this paper, passed away while this paper was being completed. We dedicate it to his memory.Deceased 11 May 2005  相似文献   

6.
One of the principal scientific reasons for wanting to resume in situ exploration of the lunar surface is to gain access to the record it contains of early Solar System history. Part of this record will pertain to the galactic environment of the Solar System, including variations in the cosmic ray flux, energetic galactic events (e.g., supernovae and/or gamma-ray bursts), and passages of the Solar System through dense interstellar clouds. Much of this record is of astrobiological interest as these processes may have affected the evolution of life on Earth, and perhaps other Solar System bodies. We argue that this galactic record, as for that of more local Solar System processes also of astrobiological interest, will be best preserved in ancient, buried regolith (‘palaeoregolith’) deposits in the lunar near sub-surface. Locating and sampling such deposits will be an important objective of future lunar exploration activities.  相似文献   

7.
Solar wind sputtering of exposed surfaces in heliocentric orbits is considered for bodies ranging in size from planets down to micrometeoroids. Erosion rates derived from APOLLO sample lunar regolith studies are presented together with the results of computer modelling of surface topographical alteration in order to characterize the sputter erosion process on Solar System bodies bombarded by the solar wind. The consensus of recent measurements leads to a rate of between 0.025 to 0.045 Å yr?1 near the lunar equator.  相似文献   

8.
Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H+, N+, Ar++, and He+ ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.  相似文献   

9.
One of the main goals of the Phobos-Grunt project is to analyze the surface composition of Phobos. Plasma methods of the studies make it possible to complete direct surface studies with measurements of the minor components of the solar wind, which are produced when a material sputtered from the surface of Phobos is ionized. The surface of Phobos is sputtered under the action of solar wind protons, energetic ions, hard solar radiation, and meteorites. In addition to the studies of Phobos, the experiment also includes the study of the interaction between the solar wind and Mars. An energy-mass spectrometer, which makes it possible to measure instantaneously complete unobscured distribution of the flux of different ions in the hemisphere, has been designed based on the new CAMERA analyzer of charged particles proposed previously (Vaisberg et al., 2001, 2005; Vaisberg, 2003). The instrument’s electro-optics model and the results of the numerical and laboratory tests are described in this paper. Such an instrument can be used in magnetospheric studies and to study different objects of the Solar System.  相似文献   

10.
We present the primary observations of the Solar X-ray Monitor (SXM) payload onboard the ChangE-1 lunar exploration satellite, which was launched on 24 October 2007. The SXM payload uses a solid-state silicon P-I-N photo-diode (Si-PIN) whose dynamic energy ranges from 1 keV to 10 keV. The long-term integrated spectra at different solar-activity levels as observed by the SXM are presented. By fitting these spectra with an optically thin plasma model, the two-minute temperature variation of the solar coronal plasma during a solar flare is also presented.  相似文献   

11.
From the results given in a recent paper by Zaatri et al. (2006, Solar Phys. 236, 227) it is clear that foreshortening effects play a major role in estimating the magnitude and direction of meridional and other flows in the shallow solar sub-surface layers using local helioseismology. Using a different algorithm to account for these effects I arrive at a significantly different estimate for the meridional flows.  相似文献   

12.
It is shown that, at temperatures far below the triple point and under appropriate conditions, liquid water can stably or temporarily exist in upper ice-covered surfaces of planetary bodies (like Mars) in three different types:
(i)
undercooled interfacial water (due to freezing point depression by van der Waals forces and “premelting”),
(ii)
water in brines (due to freezing point depression in solutions), and
(iii)
sub-surface melt water (due to a solid-state greenhouse effect driven heating).
The physics behind and the related conditions for these liquid waters to evolve and to exist, and possibly related consequences, are discussed. These calculations are mainly made in view of the possible presence of these sub-surface liquids in the upper surface of the present Mars.  相似文献   

13.
Calculations of the daily solar radiation incident at the tops of the atmospheres of Mars and the outer planets and its variability with latitude and season are presented in a series of figures and tables similar to those for Earth in The Smithsonian Meteorological Tables. The changes in the latitudinal and seasonal distributions of daily surface insolation during the great Martian dust storm of 1971 (when Martian atmospheric optical depth increased from about τ = 0.1 to 2.0 were significant and dramatically illustrate the effect of atmospheric aerosols on surface insolation; i.e., the mean annual daily insolation at the poles decreased by more than a factor of 100 as τ increased from 0.1 to 2.0.  相似文献   

14.
Ambastha  Ashok  Basu  Sarbani  Antia  H.M. 《Solar physics》2003,218(1-2):151-172
Solar flares release large amounts of energy at different layers of the solar atmosphere, including at the photosphere in the case of exceptionally major events. Therefore, it is expected that large flares would be able to excite acoustic waves on the solar surface, thereby affecting the p-mode oscillation characteristics. We have applied the ring-diagram analysis technique to 3-D power spectra obtained for different flare regions in order to study how flares affect the amplitude, frequency and width of the acoustic modes. Data from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) has been used. We have used data obtained for several active regions of the current solar cycle that have produced flares. In most cases, during the period of high flare activity, power in p modes appears to be larger when compared to that in non-flaring regions of similar magnetic field strength.  相似文献   

15.
Solar UV radiation is a major source of energy for chemical evolution of organic materials in the Solar System. Therefore studies on the photostability of organic compounds in extraterrestrial environments are of prime importance for the understanding of the extraterrestrial origin of organic materials on Earth. A series of organic samples have been photolysed in Earth orbit during the ESA BIOPAN 6 mission (14-26/09/2007). Their photochemical lifetime has been measured and compared to results recorded in the laboratory using a lamp that simulates the solar radiation in the VUV domain. The half-lives at a distance of 1 AU from the Sun have been measured for glycine, xanthine, hypoxanthine, adenine, guanine, urea, carbon suboxide polymer ((C3O2)n) and HCN polymer. They range from a few days to a lower limit of a few tens of days for the most photoresistant (e.g. adenine, guanine, hypoxanthine). Lifetimes measured in terrestrial orbit are very different from those derived with laboratory experiments. These measurements confirm that it is difficult to simulate the solar spectrum below 200 nm in the laboratory. Results are discussed and highlight the necessity to conduct experiments in orbit, and for longer duration. It also appears that the laboratory measurements made in VUV must be extrapolated very cautiously to the different environments they are supposed to simulate.  相似文献   

16.
J. R. Bates 《Solar physics》1981,74(2):399-415
Variations in solar UV radiation can lead to changes in the mean temperature and wind distributions in the stratosphere and, through modification of the ozone photochemistry, to changes in the damping rate of temperature perturbations about the mean. Such changes can influence the stratospheric propagation characteristics of planetary waves generated in the troposphere, leading to changes in the steady state interference pattern of these waves at all levels. In particular, the poleward heat transfer by the planetary waves in the troposphere can be strongly modified, thus providing a mechanism whereby solar cycle variations in ultraviolet radiation can influence climate.The dynamics of the mechanism are presented in a simple form and the literature on the subject is reviewed.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

17.
In Simpson’s (Simpson, G.C. [1927]. Mem. R. Meteorol. Soc. II (16), 69–95) classical derivation of the temperature of the Earth in the semi-gray model, the surface temperature diverges as the fourth root of the thermal radiation’s optical depth. No resolution to this apparent paradox was yet obtained under the strict semi-gray approximation. Using this approximation and a simplified approach, we study the saturation of the runaway greenhouse effect.First we generalize the problem of the semi-gray model to cases in which a non-negligible fraction of the stellar radiation falls on the long-wavelength range, and/or that the planetary long-wavelength emission penetrates into the transparent short wavelength domain of the absorption.Second, applying the most general assumptions and independently of any particular properties of an absorber, we show that the greenhouse effect saturates and that any Earth-like planet has a maximal temperature which depends on the type of and distance to its main-sequence star, its albedo and the primary atmospheric components which determine the cutoff frequency below which the atmosphere is optically thick. For example, a hypothetical convection-less planet similar to Venus, that is optically thin in the visible, could have at most a surface temperature of 1200–1300 K irrespective of the nature of the greenhouse gas.We show that two primary mechanisms are responsible for the saturation of the runaway greenhouse effect, depending on the value of λcut, the wavelength above which the atmosphere becomes optically thick. Unless λcut is small and resides in the optical region, saturation is achieved by radiating the thermal flux of the planet through the short wavelength tail of the thermal distribution. This has an interesting observational implication, the radiation from such a planet should be skewed towards the NIR. Otherwise, saturation takes place by radiating through windows in the FIR.  相似文献   

18.
The paper considers morphology of craters, smooth surfaces, and flows as well as signatures of layering observed on nuclei of Borrelly, Wild 2, and Tempel 1. In our analysis, we emphasize the role of the so-called planation process, which involves avalanche-type flows and can be responsible for the formation of flow-like features, smooth terrains, terraces, and flat floors of some craters observed on cometary nuclei. In agreement with some other researchers (e.g., Belton, 2006), we suggest that in the thicker layers on Tempel 1 and in some features on Borrelly and Wild 2, we may see elements of the comet primordial structure. We also see more and less degraded impact craters formed early in the comet history in distant parts of the Solar System and landforms formed very recently during comet visits to the inner part of the Solar System. The recent resurfacing processes certainly changed the nucleus surface materials, possibly enhancing the sublimation of volatile species, so it should be taken into account in interpretations of the Deep Impact results and in selecting study areas when the Rosetta spacecraft will approach its target comet.  相似文献   

19.
Solar System Research - The distribution of rotation rates of small (D = 3–15 km) main-belt asteroids is analyzed in the context of the probable influence of solar radiation on the rotation...  相似文献   

20.
《Icarus》1987,72(1):84-94
We have investigated thermal models for planetary surfaces composed of particles that are bright and optically thin in the visual, and dark and opaque in the thermal infrared. The models incorporate the assumption that insolation is absorbed over a finite distance in the regolith, predicting lower daytime and higher nighttime temperatures than those predicted if the insolation were a absorbed only at the surface. The magnitude of the effect depends on the scale length for absorption of insolation relative to the diurnal skin depth for thermal diffusion, and can be significant when insolation penetrates to a depth comparable to the diurnal skin depth. In particular, for bodies like Enceladus and Europa, the maximum daytime temperature depression and nighttime temperature elevation can be 10°K or more for penetration-depth scales ∼ 1.5 cm. If insolation penetrates deeply enough into a surface, and the thermal-infrared opacity of its constituent particles is very high (e.g., in a regolith composed of particles of water ice), a solid-state greenhouse can result! This has important implications for geophysical models of high-albedo, icy bodies because actual boundary-layer temperatures may in fact be significantly higher than those assumed in previous studies, making it easier to melt the interiors of such bodies. Another important implication of the models is that where insolation- penetration is significant, thermal inertias inferred from models that do not allow for this effect will be upper limits to the real thermal inertia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号