首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987112000618   总被引:1,自引:0,他引:1  
The Moyar Shear Zone(MSZ) of the South Indian granulite terrain hosts a prominent syenite pluton (~560 Ma) and associated NW-SE to NE-SW trending mafic dyke swarm(~65 Ma and 95 Ma). Preliminary magnetic fabric studies in the mafic dykes,using Anisotropy of Magnetic Susceptibly(AMS) studies at low-field,indicate successive emplacement and variable magma flow direction.Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites,indicating shear zone guided emplacement.Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated.The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear.Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.  相似文献   

2.
Flow mapping and physical volcanology of 15 basaltic lavas exposed in three critical road pass sections (ghats) in the Koyna-Warna region of the western Deccan Traps is presented in this paper. Transitional lavas like rubbly pahoehoe are most common morpho-type exposed in these ghat sections. Sinking of rubbly breccia into flow interiors and formation of breccia-cored rosette are common in some lava flows. Few rubbly lavas exhibit slabby tendencies. The amount and nature of the associated rubble is variable and result from the mechanical fracturing and auto-brecciation of the upper vesicular crust in response to distinctive stages in the cooling, crystallization and emplacement history of individual lava flows. Occurrence of aa and pahoehoe morpho-types in the lava flow sequence is subordinate. Three prominent pahoehoe flows separated by red bole horizons are seen in the upper parts of the Kumbharli ghat. These are thick, P-type sheet pahoehoe. The pahoehoe lavas represent compound flow fields that grew by budding, endogenous lava transfer and inflation. Presence of pahoehoe lavas in the Koyna-Warna region hints at possible hitherto unrecorded southern extension of Bushe-like flow fields. This study reconfirms the existence of pahoehoe-slabby-rubbly-aa flow fields and transitions even in the upper echelons of the Deccan Trap stratigraphy. The study of morphology and internal structure of lava flows exposed at the ghat sections in the Koyna-Warna region could guide subsurface core-logging that is critical in deciphering the physical volcanology and emplacement dynamics of basaltic lava flows penetrated by drill holes sunk under the scientific deep drilling programme.  相似文献   

3.
Rubbly pahoehoe lava flows are abundant in many continental flood basalts including the Deccan Traps. However, structures with radial joint columns surrounding cores of flow-top breccia (FTB), reported from some Deccan rubbly pahoehoe flows, are yet unknown from other basaltic provinces. A previous study of these Deccan “breccia-cored columnar rosettes” ruled out explanations such as volcanic vents and lava tubes, and showed that the radial joint columns had grown outwards from cold FTB inclusions incorporated into the hot molten interiors. How the highly vesicular (thus low-density) FTB blocks might have sunk into the flow interiors has remained a puzzle. Here we describe a new example of a Deccan rubbly pahoehoe flow with FTB-cored rosettes, from Elephanta Island in the Mumbai harbor. Noting that (1) thick rubbly pahoehoe flows probably form by rapid inflation (involving many lava injections into a largely molten advancing flow), and (2) such flows are transitional to ‘a’ā flows (which continuously shed their top clinker in front of them as they advance), we propose a model for the FTB-cored rosettes. We suggest that the Deccan flows under study were shedding some of their FTB in front of them as they advanced and, with high-eruption rate lava injection and inflation, frontal breakouts would incorporate this FTB rubble, with thickening of the flow carrying the rubble into the flow interior. This implies that, far from sinking into the molten interior, the FTB blocks may have been rising, until lava supply and inflation stopped, the flow began solidifying, and joint columns developed outward from each cold FTB inclusion as already inferred, forming the FTB-cored rosettes. Those rubbly pahoehoe flows which began recycling most of their FTB became the ‘a’ā flows of the Deccan.  相似文献   

4.
The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces, with compound flows at the base and simple flows in the upper portions. The detailed field work allied with petrography and geochemical data are extremely important to identify heterogeneities inside the volcanic pile and allows the construction of a detailed lithostratigraphical framework.  相似文献   

5.
Anisotropy of magnetic susceptibility(AMS)studies were carried out on a precisely dated(2216.0±0.9 Ma),450 km long N-S striking dyke in the Dharwar Craton,to determine the magma flow direction along the dyke length.In order to use the imbrication of the magnetic foliation,forty eight samples were collected from 13 locations along the length of the dyke.Magnetogranulometry studies show that AMS fabric is dominated by medium grained interstitial Ti-poor multidomain magnetite.The corrected anisotropy degree(P_j)of the samples was found to be low to moderate,between 1.007 and 1.072,which indicates primary magnetic fabric.The magnetic ellipsoid is either triaxial,prolate or oblate and clearly defines normal,intermediate and inverse magnetic fabrics related to magma flow during the dyke emplacement.The maximum susceptibility axes(K_(max))of the AMS tensor of the dyke is predominantly inclined at low angles(30°),with no systematic variation in depth along the N-S profile,indicating sub-horizontal flow even at mid crustal levels which could probably be governed by location of the focal region of the magma source(mantle plume?),flow dynamics together with the compressive stresses exerted by the overlying crust.  相似文献   

6.
J. P. Callot  X. Guichet   《Tectonophysics》2003,366(3-4):207-222
We develop two simple models for simulating the combination of magnetic sub-fabrics related to magma flow in dykes. The basic assumptions are (i) the petrofabric is representative of the flow fabric, and (ii) the petrofabric is composed of S/C-type structures related to flow. The first model consists of summing the magnetic tensors of two identical sub-fabrics, differing solely by their relative rotation. This model accounts for the possible change of the macroscopic magnetic lineation from a flow-related fabric to a lineation situated at the geometric intersection between the two sub-fabrics. Such a result is obtained in the case of oblate to highly oblate sub-fabric ellipsoids. The second model integrates the effect of very oblate grains of variable orientations into calculating the shape controlled magnetic tensor of each sub-fabric, and emphasizes the possible under-estimation of fabric superposition due to microscopic disordering. The magma fluxes along the East Greenland volcanic margin are illustrated by the flow pattern within the major dyke swarm. The magmatic flow vectors inferred from the imbrication of magnetic foliation at the dyke margins are primarily horizontal. The classic use of magnetic lineation can lead to contradictory results, giving flow vectors perpendicular to the flow directions. The magnetic lineation is situated close to the zone axis of magnetic foliation planes over a wide range of scales throughout the dyke swarm, suggesting that the contradiction may arise from the association of several textural domains at the sample scale. Forward modelling of macroscopic magnetic fabrics using the first model yields good agreement with the measured magnetic fabric of the East Greenland dykes. Our results, which are applicable to strained sedimentary rocks, highlight the possible misuse of the magnetic lineation due to combination of magnetic textures. The exchange between a microscopic lineation, i.e. mineralogical lineation, and a macroscopic lineation, i.e. intersection lineation, is particularly expected for dykes that generally bear oblate magnetic textures.  相似文献   

7.
Development of magnetic fabric within a diapirically ascending columnar body was investigated using non-scaled analogue model made of plaster of Paris containing small amount of fine-grained homogeneously mixed magnetite. The apparatus for the modelling consists of a manual squeezer with calibrated spring and a Perspex container. Set of weak coloured layers at the bottom of the container was forced to intrude overlying fine-grained sand through a hole in a board attached to the squeezer. The development of AMS fabric is correlated with complex flow pattern indicated by coloured and originally horizontal plaster layers. Strongly constrictional and vertical fabric in the base and in the lower domain of the diapir resulting from convergent and upwards flows is overprinted by subhorizontal oblate fabrics due to vertical flattening and initial divergent flow in the apical parts. The measured AMS fabrics are compared with natural examples of magmatic stocks and dykes.  相似文献   

8.
A dyke swarm approximately 12 m.y. old and comprising 103 basaltic dykes was sampled during a palaeomagnetic investigation of the Reydarfjördur area, eastern Iceland. Of 100 dykes yielding statistically significant palaeomagnetic directions 36 are normal, 43 reversed and 21 are intermediate; 5% of the dykes are olivine-phyric. The magnetic stratigraphy of the lava pile in this area is partially known from earlier palaeomagnetic studies, and six additional sections measured by field magnetometer and a palaeomagnetic section of 40 flows (20 reversed, 16 normal, and 4 intermediate) are reported here. These sections can be correlated by means of petrologic horizons (silicic tuffs, olivine basalts and porphyritic units) and exhibit stratigraphic thickening towards the centre of the Reydarfjördur dyke swarm. The portion of the basalt pile cut by the dyke swarm can be related both petrologically and palaeomagnetically to the dykes, and the number of exposed dykes is found to be of the same order, but smaller than, the number of lava flows in that comparable portion of the lava pile. This implies that in general the exposed dyke swarm is related to the exposed lava pile which is unlikely to extend much further downdip than the known extension updip. The lava pile in Iceland evolves as large lenticular units formed at eruptive axes, and distributed en échelon along the length of the axial zone with spacings comparable to the thickness of the lithosphere.  相似文献   

9.
华北晚前寒武纪镁铁质岩墙群的流动构造及侵位机制   总被引:21,自引:1,他引:21       下载免费PDF全文
华北克拉通中部广泛发育晚前寒武纪镁铁质岩墙群。这些岩墙群未变形和未变质,保存了清晰完好的流动构造,完整地反映了前寒武纪岩浆活动的特征和流动构造,这在世界上是罕见的。通过对晚前寒武纪镁铁质岩墙群的形态和流动构造研究,如:流动线理、矿物组构和磁组构等,提出岩墙群的侵位方向和侵位方式。结合本区岩墙群与燕辽—中条拗拉槽系的关系以及岩墙群的力学性质,探讨本区岩墙群的侵位机制。  相似文献   

10.
The anisotropy of magnetic susceptibility (AMS) has been studied in a 120 km long, Early Cretaceous tholeiitic dyke swarm emplaced during the early stages of rifting and opening of the equatorial Atlantic Ocean. The vertical dykes filled a set of E-trending fractures that cut the structural grain of the Precambrian basement of northeastern Brazil at a high angle. These strongly magnetic rocks contain pseudo-single domain, Ti-poor magnetite and secondary maghemite as revealed by thermomagnetic and hysteresis data. The contribution of the paramagnetic and the high coercivity antiferromagnetic fractions to the bulk susceptibility is less than 1.2%. The dykes generally show well-clustered AMS principal directions. The plunge of the magnetic lineation varies from nearly subvertical in the center of the swarm to horizontal in the west. The strike of the magnetic foliation is generally oblique to the dyke wall and exhibits a curved trend at the regional scale. This fabric pattern suggests that the magma source that fed the dykes was situated in the center of the swarm, which is presently below Tertiary sandstones.  相似文献   

11.
The Late Panafrican evolution of the Hoggar shield is characterized by emplacement of magmatic intrusions and by occurrence of major shear zones separating different terranes. In Telloukh granite is close to the In Guezzam faults (western border of the Tin Serririne basin). Analysis of its visible and magnetic fabrics suggests an emplacement mode and deformation that are not related to the In Guezzam faults, but most likely to a N–S compression, an event not yet identified. Dioritic dykes crosscutting the granite have a very different magnetic fabric, which is related on the contrary to dextral strike-slip movements along the In Guezzam faults. In both cases, no visible fabric can be correlated with the magnetic fabric, which has been likely acquired during late magmatic stages. This magnetic fabric was not significantly affected by the tectonic events that took place after entire crystallization of the magma. The In Guezzam faults and the major 7°30 and 4°50 shear zones are close to intrusions such as In Telloukh dykes and the Alous En Tides and Tesnou plutons where quite similar magnetic fabrics are observed, all related with dextral strike-slip movements along these structures.  相似文献   

12.
Unlike pahoehoe, documentation of true a′a lavas from a modern volcanological perspective is a relatively recent phenomenon in the Deccan Trap (e.g. Brown et al., 2011, Bull. Volcanol. 73(6): 737–752) as most lava flows previously considered to be a′a (e.g. GSI, 1998) have been shown to be transitional (e.g. Rajarao et al., 1978, Geol. Soc. India Mem. 43: 401–414; Duraiswami et al., 2008 J. Volcanol. Geothermal. Res. 177: 822–836). In this paper we demonstrate the co-existence of autobrecciation products such as slabby pahoehoe, rubbly pahoehoe and a′a in scattered outcrops within the dominantly pahoehoe flow fields. Although volumetrically low in number, the pattern of occurrence of the brecciating lobes alongside intact ones suggests that these might have formed in individual lobes along marginal branches and terminal parts of compound flow fields. Complete transitions from typical pahoehoe to ‘a′a lava flow morphologies are seen on length scales of 100–1000 m within road and sea-cliff sections near Uruli and Rajpuri. We consider the complex interplay between local increase in the lava supply rates due to storage or temporary stoppage, local increase in paleo-slope, rapid cooling and localized increase in the strain rates especially in the middle and terminal parts of the compound flow field responsible for the transitional morphologies. Such transitions are seen in the Thakurwadi-, Bushe- and Poladpur Formation in the western Deccan Traps. These are similar to pahoehoe–a′a transitions seen in Cenozoic long lava flows (Undara ∼160 km, Toomba ∼120 km, Kinrara ∼55 km) from north Queensland, Australia and Recent (1859) eruption of Mauna Loa, Hawaii (a′a lava flow ∼51 km) suggesting that flow fields with transitional tendencies cannot travel great lengths despite strong channelisation. If these observations are true, then it arguably limits long distance flow of Deccan Traps lavas to Rajahmundry suggesting polycentric eruptions at ∼65 Ma in Peninsular India.  相似文献   

13.
This study focuses on the compound pahoehoe lava flow fields of the 2000 eruption on Mount Cameroon volcano, West Africa and it comprehensively documents their morphology. The 2000 eruption of Mount Cameroon took place at three different sites (sites 1, 2 and 3), on the southwest flank and near the summit that built three different lava flow fields. These lava flow fields were formed during a long‐duration (28th May–mid September) summit and flank eruption involving predominantly pahoehoe flows (sites 2 and 3) and aa flows (site 1). Field observations of flows from a total of four cross‐sections made at the proximal end, midway and at the flow front, have been supplemented with data from satellite imagery (SRTM DEM, Landsat TM and ETM+) and are used to offer some clues into their emplacement. Detailed mapping of these lava flows revealed that site 1 flows were typically channel‐fed simple aa flows that evolved as a single flow unit, while sites 2 and 3 lava flow fields were fed by master tubes within fissures producing principally tube‐fed compound pahoehoe flows. Sites 2 and 3 flows issued from ∼ 33 ephemeral vents along four NE–SW‐trending faults/fissures. Pahoehoe morphologies at sites 2 and 3 include smooth, folded and channelled lobes emplaced via a continuum of different mechanisms with the principal mechanism being inflation. The dominant structural features observed on these flow fields included: fissures/faults, vents, levees, channels, tubes and pressure ridges. Other structural features present were pahoehoe toes/lobes, breakouts and squeeze‐ups. Slabby pahoehoe resulting from slab‐crusted lava was the transitionary lava type from pahoehoe to aa observed at all the sites. Transition zones correspond to slopes of > 10°. Variations in flow morphology and textures across profiles and downstream were repetitive, suggesting a cyclical nature for the responsible processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The Late Panafrican evolution of the Hoggar shield is characterized by emplacement of magmatic intrusions and by occurrence of major shear zones separating different terranes. In Telloukh granite is close to the In Guezzam faults (western border of the Tin Serririne basin). Analysis of its visible and magnetic fabrics suggests an emplacement mode and deformation that are not related to the In Guezzam faults, but most likely to a N–S compression, an event not yet identified. Dioritic dykes crosscutting the granite have a very different magnetic fabric, which is related on the contrary to dextral strike-slip movements along the In Guezzam faults. In both cases, no visible fabric can be correlated with the magnetic fabric, which has been likely acquired during late magmatic stages. This magnetic fabric was not significantly affected by the tectonic events that took place after entire crystallization of the magma. The In Guezzam faults and the major 7°30 and 4°50 shear zones are close to intrusions such as In Telloukh dykes and the Alous En Tides and Tesnou plutons where quite similar magnetic fabrics are observed, all related with dextral strike-slip movements along these structures.  相似文献   

15.
龙门山飞仙关断层传播褶皱磁组构特征及构造意义   总被引:3,自引:0,他引:3  
沿龙门山南段冲断前锋带飞仙关断层传播褶铍剖面钻取了270个磁组构定向岩芯样品,对其进行了磁性矿物与磁组构分析。通过等温剩磁和三轴热退磁实验确定了样品中的主要载磁矿物为赤铁矿。磁组构测试结果显示27个采样点的磁组构为中间组构与构造组构两种类型。通过对各点磁组构特征及各项磁组构参数进行详细分析,再结合断层传播褶皱运动学模型,得出断层传播褶皱形成过程中岩石应变及磁组构演化:断层扩展前的平行层缩短作用把原始的沉积组构改造成为中问组构;在断层扩展过程中,两翼地层的旋转抬升产生的简单剪切作用对地层磁化率各向异性产生影响,使得校正的磁化率各向异性度Pj值局部升高,以及在剪切变形强烈的区域形成构造磁组构。  相似文献   

16.
张臣  侯贵廷 《地质论评》1994,40(3):245-251
华北克拉通区内的吕梁-晋北地区广泛发育晚前寒武纪镁铁质岩墙群。该地区近EW向和NW-NNW向岩墙的磁组构测量结果表明,岩墙群磁各向异性与岩墙侵位的关系密切,磁化率的长轴能指示其岩浆侵位的流向。该区的岩墙群的岩浆源位于东侧的燕辽拗拉槽处,岩浆沿岩墙走向以一定仰角由ESE(或E)朝NW-NNW(或W)向流动,具板内裂谷模式。  相似文献   

17.
There is a growing interest in deciphering the emplacement and environmental impact of flood basalt provinces such as the Deccan, India. Observations of active volcanism lead to meaningful interpretations of now-extinct volcanic systems. Here, I illustrate and discuss the morphology and emplacement of the modern and active lava flows of Kilauea volcano in Hawaii, and based on them, interpret the compound pahoehoe lavas of the Deccan Traps. The latter are vastly larger (areally extensive and voluminous) than Kilauea flows, and yet, their internal architecture is the same as that of Kilauea flows, and even the sizes of individual flow units often identical. Many or most compound flows of the Deccan Traps were emplaced in a gentle, effusive, Kilauea-like fashion. Bulk eruption rates for the Deccan province are unknown, and were probably high, but the local eruption rates of the compound flows were no larger than Kilauea’s. Large (≥ 1000 km3) individual compound pahoehoe flows in the Deccan could have been emplaced at Kilauea-like local eruption rates (1 m3/sec per metre length of fissure) in a decade or less, given fissures of sufficient length (tens of kilometres), now exposed as dyke swarms in the province.  相似文献   

18.
Magnetic fabric and rock magnetism studies were performed on 32 mafic dikes of a Proterozoic dike swarm from the southern São Francisco Craton (SFC; Minas Gerais State, SE Brazil). Magnetic anisotropies were determined by applying anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of remanent magnetization (ARM). The latter was performed imposing both anhysteretic (total (AAR) and partial pAAR)) and isothermal remanence magnetizations (AIRM). Partial anhysteretic remanence anisotropy was performed based on remanent coercivity spectra from a pilot specimen of each site. In most sites, AMS is dominantly carried by ferromagnetic minerals, however, in some sites, the paramagnetic contribution exceeds 70% of bulk susceptibility. Rock magnetism and thin section analysis allow classifying the dikes as non-hydrothermalized and hydrothermalized. Magnetic measurement shows that the mean magnetic susceptibility is usually lower than 5×10−3 (SI). Ti-poor titanomagnetites up to pure magnetite pseudo-single-domain (PSD) grain sizes carry the majority of magnetic fabrics for non-hydrothermalized dikes whereas coarse to fine grained Ti-poor titanomagnetites carry the majority of magnetic fabrics for hydrothermalized dikes.Three primary AMS fabrics are recognized which are coaxial with ARM fabric, except for two dikes, from both non-hydrothermalized and hydrothermalized dikes. Normal AMS fabric surprisingly is not dominant (31%). The parallelism between AMS, pAAR0–30, pAAR30–60 and pAAR60–90 fabrics in the hydrothermalized dikes indicates that magnetic grains formed due to late-stage crystallization or to remobilization of iron oxides due to hydrothermal alteration after dike emplacement have acquired a mimetic fabric coaxial with the primary fabric given by coarse-grained early crystallized Ti-poor titanomagnetites. This fabric is interpreted as magma flow in which the analysis of Kmax inclination permitted the inference that the dikes were fed by horizontal or subhorizontal fluxes (Kmax<30°). Intermediate AMS fabric is the most important (41%) in the investigated swarm. It is interpreted as due to vertical compaction of a static magma column with the minimum stress along the dike strike. ARM determinations for these sites also remained intermediate except for two dikes. In one of them, AIRM fabric resulted in normal AMS fabric while for the other AAR fabric resulted in inverse AMS fabric. A combination of AMS and ARM fabrics suggest that magmatic fabric for both dikes were overprinted by some late local event, probably related to Brasiliano orogenic processes after dike emplacement. InverseInverse AMS fabric is a minority (four dikes). ARM determinations also remained inverse suggesting a primary origin for inverse AMS fabric.  相似文献   

19.
Magnetic fabric and rock magnetism studies were performed on three mafic dike swarms (total of 38 dikes) from the southernmost part of the São Francisco Craton (SFC) (Minas Gerais State, SE Brazil). They cut Archaean granite–gneiss–migmatite and paleoprototerozoic terranes. These swarms are classified as basic–noritic (Sm–Nd age  2.65 Ga), basic (Rb–Sr age  1.87 Ga) and metamorphic (Rb–Sr age  1.87 Ga) suites, in which the second is the most important. Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). In most sites magnetic susceptibility is dominantly carried by ferromagnetic minerals, however, in some sites the paramagnetic contribution exceeds 70% of bulk susceptibility. Mainly coarse to fine-grained Ti-poor titanomagnetite up to pure magnetite carry the magnetic fabrics.Three primary AMS fabrics are recognized which are all coaxial with the AARM fabric. Normal AMS fabric is dominant in the basic suite (16 of 20 analyzed dikes) and occurs in 4 and 3 dikes from the basic–noritic and metamorphic suites, respectively. This fabric is interpreted as a result of magma flow in which the analysis of Kmax inclination permitted to infer that the majority of dikes were fed by inclined flows (30° < Kmax < 60°), although 44% of dikes from the basic suite were fed by horizontal or sub-horizontal flows (Kmax < 30°). Intermediate AMS fabric was found in 50% of dikes from the basic–noritic and metamorphic suites, but in only 2 dikes from the basic suite. It is interpreted as due to vertical compaction of a static magma column with the minimum stress along the dike strike. Inverse AMS fabric is a minority (2 dikes from each suite). The parallelism between AMS and AARM tensors for dikes with abnormal fabrics suggests a primary origin for them. Gyroremanent magnetization (GRM) effect was negligible for the majority of dikes, but it was found in two dikes from the basic suite with normal AMS fabric.Magnetic fabrics recognized for the three studied swarms do not depend on magnetic mineralogy, geochemical composition, dike strikes, nor the age of the swarms since the same magnetic minerals and magnetic fabric types are found in dikes from all suites. Inclined and horizontal flows allow us to infer the relative position of at least three magma sources (or magma chambers) from which the dikes were fed.  相似文献   

20.
The Espinho Branco anatexite, located within a transcurrent, high-temperature shear zone in NE Brazil, was the subject of a comprehensive petrostructural study (Anisotropy of Magnetic Susceptibility – AMS, Anisotropy of Anhysteretic Remanence – AAR, Electron Backscatter Diffraction – EBSD) to evaluate the compatibility of different fabrics with the kinematics of melt deformation. Magnetite dominates susceptibilities larger than 1 mSI and biotite displays [001] lattice directions consistent with AMS k3 axes. In contrast, migmatites with a susceptibility lower than 0.5 mSI and no visible mesoscopic foliation provide crystallographic fabrics distinct from AMS and AAR. However, AAR remains consistent with the regional strain field. These results suggest that the correlation of field, AMS and crystallographic fabrics is not always straightforward despite the relatively simple organisation of the magnetic fabric in the anatexite. We conclude that AMS recorded the final stages of the strain field in the migmatite irrespective of its complex mesoscale structures and contrasting crystallographic fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号