首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear theory for the generation of the Ulleung Warm Eddy (UWE) is proposed. Using the nonlinear reduced gravity (shallow water) equations, it is shown analytically that the eddy is established in order to balance the northward momentum flux (i.e., the flow force) exerted by the separating western boundary current (WBC). In this scenario, the presence of β produces a southward (eddy) force balancing the northward momentum flux imparted by the separating East Korean Warm Current (EKWC).It is found that, for a high Rossby number EKWC (i.e., highly nonlinear current), the eddy radius is roughly 2Rd/ε1/6 (here εβRd/f0, where Rd is the Rossby radius), implying that the UWE has a scale larger than that of most eddies (Rd). This solution suggests that, in contrast to the familiar idea attributing the formation of eddies to instabilities (i.e., the breakdown of a known steady solution), the UWE is an integral part of the steady stable solution. The solution also suggests that a weak WBC does not produce an eddy (due to the absence of nonlinearity).A reduced gravity numerical model is used to further analyze the relationship between β, nonlinearity and the eddy formation. First, we show that a high Rossby number WBC which is forced to separate from the wall on an f plane does not produce an eddy near the separation. To balance the northward momentum force imparted by the nonlinear boundary current, the f plane system moves constantly offshore, producing a southward Coriolis force. We then show that, as β is introduced to the problem, an anticyclonic eddy is formed. The numerical balance of forces shows that, as suggested by the analytical reasoning, the southward force produced by the eddy balances the northward flow force imparted by the boundary current. We also found that the observed eddy scale in the Japan/East Sea agrees with the analytical estimate for a nonlinear current.  相似文献   

2.
Western boundary currents flow poleward from low latitudes until they ultimately separate from the coast and turn eastward into the ocean interior. The separation is mainly due to either: (i) the variation of the Coriolis parameter with latitude (β) which causes vanishing of the near-wall depth; (ii) vanishing wind stress curl over the ocean interior which forces zero meridional transport; or (iii) opposing currents that flow toward the equator and force the northward flowing currents to turn offshore (Agra and Nof, Deep Sea Research I, 40, 2259–2282). Here, we focus on the third kind of separated currents and show that, due to β, such separated currents migrate along the wall. A nonlinear “reduced gravity” one-and-a-half layer model is used to compute the desired migration speed. Solutions of the primitive equations are constructed analytically assuming that the translation rate is steady. It is found that the migration rate along the wall is given by βRd2 cosα/2 sinγ, where Rd is the Rossby radius, α an angle that measures the inclination of the joint offshore currents relative to the north, and γ is the angle between the axis of the joint offshore currents and the wall. The migration meridional component can be either northward or southward (depending on the inclination of the wall) but the zonal component is always westward. When the separated joint offshore flow is in the east-west direction (i.e. α = π/2 or 3π/2 so that the separated flow is zonal) no migration is taking place. It turns out that the above migration formula is so robust that it is also describes the migration rate in a two-and-a-half layer model where one current is allowed to, at least partially, dive under the other. For most separated currents the computed migration rate is a few centimeters per second.Possible application of this theory to the Confluence zone in the South Atlantic (where significant seasonal movement of the separation latitude has been observed) is discussed.  相似文献   

3.
Resuspension, transport, and deposition of sediments over the continental shelf and slope are complex processes and there is still a need to understand the underlying spatial and temporal dynamical scales. As a step towards this goal, a two-dimensional slice model (zero gradients in the alongshore direction) based on the primitive flow equations and a range of sediment classes has been developed. The circulation is forced from rest by upwelling or downwelling winds, which are spatially uniform. Results are presented for a range of wind speeds and sediment settling speeds. Upwelling flows carry fine sediments (low settling speeds) far offshore within the surface Ekman layer, and significant deposition eventually occurs beyond the shelf break. However, coarser sediments quickly settle out of the deeper onshore component of the circulation, which can lead to accumulation of bottom sediments within the coastal zone. Downwelling flows are more effective at transporting coarse sediments off the shelf. However, strong vertical mixing at the shelf break ensures that some material is also carried into the surface Ekman layer and returned onshore. The concentrations and settling fluxes of coarse sediments decrease offshore and increase with depth under both upwelling and downwelling conditions, consistent with trends observed in sediment trap data. However, finer sediments decrease with depth (upwelling) or reach a maximum around the depth of the shelf break (downwelling). It is shown that under uniform wind conditions, suspended sediment concentrations and settling fluxes decay offshore over a length scale of order τs/ρf|ws|, where τs is the wind stress, ρ the water density, f the Coriolis parameter, and ws is the sediment settling velocity. This scaling applies to both upwelling and downwelling conditions, provided offshore transport is dominated by wind-driven advection, rather than horizontal diffusion.  相似文献   

4.
The Richardson number dependence of vertical eddy diffusion coefficients in the western Equatorial Pacific Ocean was examined on the basis of a Microstructure Profiler (MSP) observations during the cruise of Natsushima (JAPACS-89). The Richardson numberR i was estimated by using the mean shear of velocity profile measured by an Acoustic Doppler Current Profiler (ADCP) with the vertical interval of 15 meters within one or two hours of the each MSP cast. The raw data plot of the vertical eddy diffusion coefficientK p shows a large scatter with increasing tendency belowR i =0.5. The relation between the mean vertical eddy diffusion coefficientK p and the Richardson numberR i , averaged over every 0.025 in theR i , supports the model of Pacanowski and Philander (1981) in the range ofR i >0.5, but coincides with the result of Peterset al. (1988) in the range ofR i <0.5.  相似文献   

5.
A numerical study of the decay of an alongshore baroclinic jet (ABJ) formed by transient wind stress favorable for upwelling and downwelling is carried out. The study is based on the Princeton Ocean Model (POM) applied to a circular stratified basin with a constant depth. In the case of a fully developed upwelling (downwelling), the alongshore jet is subjected to baroclinic instability, and its decay is predominantly accompanied by selective formation of cyclonic (anticyclonic) mesoscale eddies. If the upwelling or downwelling is not fully developed, the necessary condition for the baroclinic instability of the ABJ in a basin with a constant depth is the presence of the β-effect. The β-effect causes separation of the ABJ from the shoreline in the eastern part of the basin and thereby stimulates baroclinic instability. As a result, mesoscale meanders and eddies can be generated in the eastern part of the basin only if the diameter of the basin D is large enough to satisfy the inequality D > $\sqrt {{{R_I f} \mathord{\left/ {\vphantom {{R_I f} \beta }} \right. \kern-0em} \beta }} $ , where R I is the baroclinic Rossby radius, f is the Coriolis parameter, and β = df/dy.  相似文献   

6.
Time-longitude diagrams of monthly anomalies of TOPEX/Poseidon sea surface height (SSH), Levitus steric height, COADS wind stress curl, as well as meridional surface wind averaged over the northern South China Sea (SCS) from 18° to 22°N, exhibit a coherent westward phase propagation, with a westward propagation speed of about 5 cm s−1. The consistency between oceanic and atmospheric variables indicates that there is a forced Rossby wave in the northern SCS. The horizontal patterns of monthly SSH anomalies from observations and model sensitivity experiments show that the forced Rossby wave, originating to the northwest off Luzon Island, actually propagates west-northwestward towards the Guangdong coast because of zonal migration of the meridional surface wind. The winter Luzon Cold Eddy (LCE), which has been found from field observations, can be identified as a forced Rossby wave with a negative SSH anomaly in winter. It corresponds to strong upwelling and a negative temperature anomaly. Sensitivity experiments show that the wind forcing controls the generation of the LCE, while the Kuroshio is of minor importance.  相似文献   

7.
The barotropic instability of a boundary jet on a beta plane is considered with emphasis on the effect of internal viscosity. An eigenvalue problem for the disturbance equations and its inviscid version are solved by the aid of numerical methods, and instability characteristics are determined as functions of the Reynolds numberR for various values of the beta-parameter. Typical disturbance structures (eigenfunctions) are also computed. Numerical examples show that the minimum critical Reynolds numberR cr for instability is smaller than 100. At a Reynolds number of the order of hundreds, there appears a second mode of instability in addition to the first unstable mode originating atR cr ; a kind of ‘resonance’ between the first and second eigenvalues occurs at the particular value ofR. The neutral stability curves are accordingly multi-looped. Although each of the two unstable modes asymptotically approaches its inviscid counterpart asR→∞, the asymptotic approach to the inviscid limit is rather slow and the effect of varyingR is conspicuous even atR∼O (104). It is thus demonstrated that the Reynolds number is an essential stability parameter for real boundary jets. The main part of the material contained in this paper was presented at 1981-Autumn Assembly of the Oceanographical Society of Japan.  相似文献   

8.
利用正压涡度方程,研究了缓变风场驱动下水平尺度1000km平底方形海盆中海洋环流的响应。结果表明,缓变风场驱动下海洋环流的响应是多涡型的,线性情形下多涡结构表现为共振受迫Rossby波;非线性情形下受迫Rossby波被扭曲,多涡结构是由受迫Rossby波和次海盆尺度的惯性再循环共同构成。无论是稳定风场还是缓变风场,非线性作用越强,环流越趋于不稳定;非线性作用强且水平耗散作用弱时,非线性不稳定过程可能完全掩盖了变化的风旋度向海盆涡度输人的影响,此时风的变化对环流型式不再重要。  相似文献   

9.
The South China Sea (SCS) is a narrow semi-enclosed basin, ranging from 4°–6°N to 21°–22°N meridionally. It is forced by a strong annual cycle of monsoon-related wind stress. The Coriolis parameter f increases at least three times from the southern basin to the northern basin. As a result, the basin-cross time for the first baroclinic Rossby wave in the southern part of the basin is about 10-times faster than that in the northern part, which plays the most vitally important role in setting the circulation. At the northernmost edge of SCS, the first baroclinic Rossby wave takes slightly less than 1 year to move across the basin, however, it takes only 1–2 months in the southernmost part. Therefore, circulation properties for a station in the model ocean are not solely determined by the forcing at that time instance only; instead, they depend on the information over the past months. The combination of a strong annual cycle of wind forcing and large difference of basin-cross time for the first baroclinic Rossby wave leads to a strong seasonal cycle of the circulation in the SCS, hence, the circulation is dominated by the forced oscillations, rather than the quasi-steady state discussed in many textbooks.The circulation in the SCS is explored in detail by using a simple reduced gravity model forced by seasonally varying zonal wind stress. In particular, for a given time snap the western boundary current in the SCS cannot play the role of balancing mass transport across each latitude nor balancing mechanical energy and vorticity in the whole basin. In a departure from the steady wind-driven circulation discussed in many existing textbooks, the circulation in the SCS is characterized by the imbalance of mechanical energy and vorticity for the whole basin at any part of the seasonal cycle. In particular, the western boundary current in the SCS cannot balance the mass, mechanical energy, and vorticity in the seasonal cycle of the basin. Consequently, the circulation near the western boundary cannot be interpreted in terms of the wind stress and thermohaline forcing at the same time. Instead, circulation properties near the western boundary should be interpreted in terms of the contributions due to the delayed wind stress and the eastern boundary layer thickness. In fact, there is a clear annual cycle of net imbalance of mechanical energy and vorticity source/sink. Results from such a simple model may have important implications for our understanding of the complicated phenomena in the SCS, either from in-situ observations or numerical simulations.  相似文献   

10.
11.
The Coriolis effect on frontogenesis in the transitional region between the inner bay and the outer ocean is studied by running several three-dimensional numerical experiments. The aim is to clarify what external parameters, including the transverse scale of the basin, control the phenomena. The characteristics of the front in each case are described by defining three diagnostic quantities, namely, the sharpness of the front, the intrusion of the front, and the buoyancy difference between the minimum buoyancy region and the surrounding part, as the existence of the minimum buoyancy region is closely related to frontogenesis. The three quantities are shown to depend on two nondimensional numbers,R of (=f −1 L −2/3 F b 1/3 : defined as flux Rossby number) andR ef (=ν v −1 L −2/3 F b 1-3 H 2: defined as flux Reynolds number).  相似文献   

12.
A stability of planetary waves on an infinite beta-plane is investigated in an idealized two-layer fluid system for the large local Rossby numberM. When a primary wave is barotropic, two kinds of barotropic instability modes are found. One of them was previously discussed byGill (1974). When a primary wave is baroclinic, two different kinds of modes that enable barotropic and baroclinic energy transfers are found. The one that has the larger growth rate gains its energy mainly from the mean shear of the primary wave when the internal rotational Froude numberF is smaller than 1/2. WhenF is larger than 1/2, however, the available energy conversion of the primary wave is dominant. This mode has a fairly large part of its energy in the barotropic motion although the primary wave is purely baroclinic.The effect ofO(M –2) corrections is found to have a stabilizing influence on all symmetrical modes. The geophysical applications of the present analysis are suggested in the context.  相似文献   

13.
通过网格定点法对我国东南沿海区域性台风危险性进行了分析。利用对各网格点有影响的历史台风数据,建立了各网格点的台风关键参数的最优概率模型。利用Monte-Carlo方法产生每个网格点1000年间的虚拟台风事件。采用YanMeng(YM)风场模型模拟了100个历史台风的最大风速,通过使这些最大风速与观测的最大风速误差和最小,建立了一组新的计算最大风半径Rmax和Holland气压参数B的公式,结果表明新的台风参数计算方案效果良好。利用新的参数计算方案、YM风场模型、特定地点的台风衰减模型以及合适的极值分布模型,预测了各个网格点不同重现期的极值风速,进而绘制了台风多发区域的设计风速图。最后研究了不同B模型、Rmax模型和极值分布模型对预测的极值风速的影响。可以为结构抗风设计和台风防灾减灾提供新的参考。  相似文献   

14.
基于IPCC预测结果的北太平洋海表面温度变化分析   总被引:1,自引:1,他引:0  
刘娜  王辉  张蕴斐 《海洋学报》2014,36(7):9-16
利用IPCC-AR4气候模式诊断与比较计划(PCMDI)20C3M试验和A1B情景试验模拟数据,研究了在温室气体排放情景下,北太平洋海表面温度的变化及其对太平洋风应力旋度变化的响应。结果表明,温室气体中等排放A1B情景与20C3M情景相比,北太平洋年平均海表面温度表现为一致增温的趋势,且最大的增温中心位于黑潮及其延伸体区。与20C3M试验相比,CO2增加情景下北太平洋中部东风加强,增加向北的Ekman输送,使得北太平洋内区增温。风应力旋度零线也向北略有移动,导致黑潮延伸体向北移动并得到加强,从而引起延伸体区较强增温。风应力旋度零线的纬度附近产生的Rossby波,向西传播到黑潮延伸体区,进一步加强黑潮延伸体区的温度异常。海洋对北太平洋风应力场变化的局地响应及延迟响应,使黑潮延伸体海域海表面增温远大于周围海区。  相似文献   

15.
A salient feature of sea level records from the Adriatic Sea is the frequent occurrence of energetic seiches of period about 21 h. Once excited by a sudden wind event, such seiches often persist for days. They lose energy either to friction within the Adriatic, or by radiation through Otranto Strait into the Mediterranean.The free decay time of the dominant (lowest mode) seiche was determined from envelopes of handpassed sea level residuals from three locations (Bakar, Split and Dubrovnik) along the Croatian coast during twelve seiche episodes between 1963 and 1986 by taking into consideration only time intervals when the envelopes decreased exponentially in time, when the modelled effects of along-basin winds were smaller than the error of estimation of decay time from the envelopes and when across-basin winds were small. The free decay time thus obtained was 3.2±0.5 d. This value is consonant with the observed width of the spectral peak.The decay caused by both bottom friction and radiation was included in a one dimensional variable cross section shallow water model of the Adriatic. Bottom friction is parameterized by the coefficient k appearing in the linearized bottom stress term ρ0u (where u is the along-basin velocity and ρ0 the fluid density). The coefficient k is constrained by values obtained from linearization of the quadratic bottom stress law using estimates of near bottom currents associated with the seiche, with wind driven currents, with tides and with wind waves. Radiation is parameterized by the coefficient f appearing in the open strait boundary condition ζ =auh/c (where ζ is sea level, h is depth and c is phase speed). This parameterization of radiation provides results comparable to allowing the Adriatic to radiate into an unbounded half plane ocean. Repeated runs of the model delineate the dependence of model free seiche decay time on k and a, and these plus the estimates of k allow estimation of a.The principle conclusions of this work are as follows.
1. (1) Exponential decay of seiche amplitude with time does not necessarily guarantee that the observed decay is free of wind influence.
2. (2) Winds blowing across the Adriatic may be of comparable importance to winds blowing along the Adriatic in influencing apparent decay of seiches; across-basin winds are probably coupled to the longitudinal seiche on account of the strong along-basin variability of across-basin winds forced by Croatian coastal orography.
3. (3) The free decay time of the 21.2 h Adriatic seiche is 3.2±0.5 d.
4. (4) A one dimensional shallow water model of the seiche damped by bottom stress represented by Godin's (1988) approximation to the quadratic bottom friction law ρ0CDu|u| using the commonly accepted drag coefficient CD = 0.0015 and quantitative estimates of bottom currents associated with wind driven currents, tides and wind waves, as well as with the seiche itself with no radiation gives a damping time of 9.46 d; radiation sufficient to give the observed damping time must then account for 66% of the energy loss per period. But independent estimates of bottom friction for Adriatic wind driven currents and inertial oscillations, as well as comparisons between quadratic law bottom stress and directly measured bottom stress, all suggest that the quadratic law with CD=0.0015 substantially underestimates the bottom stress. Based on these studies, a more appropriate value of the drag coefficient is at least CD=0. In this case, bottom friction with no radiation leads to a damping time of 4.73 d, radiation sufficient to give the observed damping time then accounts for 32% of the energy loss per period.
  相似文献   

16.
Local balance in the air-sea boundary processes   总被引:1,自引:0,他引:1  
In the course of the new treatment of the growth process of wind waves presented in part I of the present series of the articles, there was a point where the wave energy and wave momentum were not related correctly. This point has been revised with critical argument, and at the same time, the form of the ratior, between the wind stress that directly enter the wind waves and the total wind stress, has been derived analytically. The growth equation, under the condition that the wind stress is constant, is still the same with that derived in part I, with the exception that the ratior is given analytically.A comparison between the ratior obtained analytically and that estimated empirically in part I, raises a problem to be studied about the wave current of the actual wind waves.  相似文献   

17.
The minimum value of wind stress under which the flow velocity in short wind waves exceeds the phase speed is estimated by calculating the laminar boundary layer flow induced by the surface tangential stress with a dominant peak at the wave crest as observed in previous experiments. The minimum value of the wind stress is found to depend strongly on, the ratio of the flow velocity just below the boundary layer and the phase speed, but weakly onL, the wavelength. For wind waves previously studied (=0.5,L=10 cm), the excess flow appears when the air friction velocityu * is larger than about 30 cm sec–1. The present results confirm that the excess flow found in my previous experiments is associated with the local growth of a laminar boundary layer flow near the wave crest.  相似文献   

18.
The dynamical structure of a two-dimensional (depth and axial directions) estuary is studied analytically. A set of governing equations describing the time-averaged velocity and salinity in the estuary is used, where all of the external parameters (depth, width, freshwater discharge and horizontal and vertical coefficients of eddy viscosity and eddy diffusivity) are assumed to be constant along the estuary.Two dynamical relations are taken into consideration in the theory. One of them is the dependence of the longitudinal scaleL d on the balance of longitudinal salt transport, and the other is the relation between the vertical stratification of salinity and the the Prandtl numberP r=Av/Kv, whereA v andK v denote the coeffcients of the vertical eddy viscosity and diffusivity, respectively. The two relations result in an extension of the parameter range in which the linear balance of momentum holds.A linear state of motion (LM-state) is defined as the state where the momentum balance is linear. The LM-state comprises the so-called vertically homogeneous and the so-called partially mixed state. Perturbation analysis is introduced and dynamical theory is developed in the LM-state. Since the LM-state covers a fairly wide regime with respect to the balance of salt transport, the state is subdivided into three stages: the diffusive, intermediate and advective stages. In the diffusive stage the upstream salt transport is mainly attributed to the horizontal diffusion, whereas in the advective stage it is attributed to advection caused by gravitational circulation. The salinity balance is also linear in the diffusive and intermediate stages, whereas the balance is nonlinear in the advective stage. The advective stage of the LM-state is regarded as a stage bordering the salt wedge state.The longitudinal distribution of depth-mean salinity is found to take an exponential form in the diffusive stage, a nearly linear form in the advective stage and an intermediate form between them in the intermediate stage.  相似文献   

19.
Since 1985, a number of measurements have been made in deep water to determine the water-following characteristics of mixed layer drifters with both holey-sock and TRISTAR drogues at 15 m depth. The measurements were done by attaching two neutrally buoyant vector measuring current meters (VMCMs) to the top and the bottom of the drogues and deploying the drifters in different wind and upper ocean shear conditions for periods of 2–4 h. The average velocity of the VMCM records was taken to be a quantitative measure of the slip of the drogue through the water, observed to be 0.5-3.5 cm s−1. The most important hydrodynamic design parameter which influenced the slip of the drogue was the ratio of the drag area of the drogue to the sum of the drag areas of the tether and surface floats: the drag area ratio R. The most important environmental parameters which affected the slip were the wind and the measured velocity difference across the vertical extent of the drogue. A model of the vector slip as a function of R, vector wind and velocity difference across the drogue was developed and a least squares fit accounts for 85% of the variance of the slip measurements. These measurements indicated that to reduce the wind produced slip below 1 cm s−1 in 10 m s−1 wind speed, R > 40. Conversely, if the daily average wind is known to 5 m s−1 accuracy, the displacement of the R = 40 drifter can be corrected to an accuracy of 0.5 km day−1.  相似文献   

20.
Effects of the Ekman friction on the prograde (eastward) flows past a cylinder on a-plane are investigated when (=R 2/U, whereR is the cylinder radius andU the freestream speed)O(1) and(=2E k 1/2/R 0·O(1) where is the non-dimensional beta parameter and the ratio of the square root of the Ekman numberE k multiplied by 2 to the Rossby numberRo multiplied by the aspect ratio(=H/R, whereH is the fluid depth). Previous studies without the Ekman friction have shown that the-effect inhibits flow separation for pragrade flows through the asymptotic boundary condition by shifting the region of the adverse pressure gradient toward the rear stagnation point. It is found that the Ekman friction alleviates this-effect on the exterior flow. In the Ek 1/4-boundary layer, on the other hand, Ekman friction suppresses the vorticity advection along the wall, which tends to make the boundary layer thickness thin and delay the flow separation. The Ekman friction thus affects flow separation in a complicated manner. Details of the boundary layer structures and the separation angles are described for 0.3< <4.0 and 0.1<<1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号