首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper revisits the earth pressure coefficient at rest K 0 of granular materials, with the focus being placed on the variation of K 0 with the internal friction angle, density and compressibility of soils. Following laboratory tests that are carried out to determine K 0 of two granular materials, the experimental data are interpreted using the original hypoplasticity model for sand proposed by von Wolffersdorff [49]. K 0 is generally a function of void ratio, stress level and the critical state friction angle; it can be alternatively related to the compressibility of soil. The results show that Jáky’s equation may still be considered as a reasonable representation of K 0 for granular soils statistically, even though it may not be able to reproduce the experimental data of a specific soil.  相似文献   

2.
The compressibility at room temperature and the thermal expansion at room pressure of two disordered crystals (space group C2/c) obtained by annealing a natural omphacite sample (space group P2/n) of composition close to Jd56Di44 and Jd55Di45, respectively, have been studied by single-crystal X-ray diffraction. Using a Birch–Murnaghan equation of state truncated at the third order [BM3-EoS], we have obtained the following coefficients: V 0 = 421.04(7) Å3, K T0 = 119(2) GPa, K′ = 5.7(6). A parameterized form of the BM3 EoS was used to determine the axial moduli of a, b and c. The anisotropy scheme is β c  ≤ β a  ≤ β b , with an anisotropy ratio 1.05:1.00:1.07. A fitting of the lattice variation as a function of temperature, allowing for linear dependency of the thermal expansion coefficient on the temperature, yielded αV(1bar,303K) = 2.64(2) × 10−5 K−1 and an axial thermal expansion anisotropy of α b  ≫ α a  > α c . Comparison of our results with available data on compressibility and thermal expansion shows that while a reasonable ideal behaviour can be proposed for the compressibility of clinopyroxenes in the jadeite–diopside binary join [K T0 as a function of Jd molar %: K T0 = 106(1) GPa + 0.28(2) × Jd(mol%)], the available data have not sufficient quality to extract the behaviour of thermal expansion for the same binary join in terms of composition.  相似文献   

3.
Stability and phase relations of coexisting enstatite and H2 fluid were investigated in the pressure and temperature regions of 3.1–13.9 GPa and 1500–2000 K using laser-heated diamond-anvil cells. XRD measurements showed decomposition of enstatite upon heating to form forsterite, periclase, and coesite/stishovite. In the recovered samples, SiO2 grains were found at the margin of the heating hot spot, suggesting that the SiO2 component dissolved in the H2 fluid during heating, then precipitated when its solubility decreased with decreasing temperature. Raman and infrared spectra of the coexisting fluid phase revealed that SiH4 and H2O molecules formed through the reaction between dissolved SiO2 and H2. In contrast, forsterite and periclase crystals were found within the hot spot, which were assumed to have replaced the initial orthoenstatite crystals without dissolution. Preferential dissolution of SiO2 components of enstatite in H2 fluid, as well as that observed in the forsterite H2 system and the quartz H2 system, implies that H2-rich fluid enhances Mg/Si fractionation between the fluid and solid phases of mantle minerals.  相似文献   

4.
Vibrational density of states of the NaAlSi2O6 jadeite and NaAlSiO4 calcium ferrite (CF)-type, and SiO2 stishovite is calculated as a function of pressure up to 50 GPa using density functional perturbation theory. The calculated frequencies are used to determine the thermal contribution to the Helmholtz free energy within the quasi-harmonic approximation and to derive the equation of state and several thermodynamic properties of interest. A dissociation of jadeite into a mixture of a CF-type phase and stishovite is predicted to occur at 23.4 GPa and 1,800 K with a positive Clapeyron slope of 2.8 MPa/K. Elastic anisotropy for jadeite, the CF-type phase, and stishovite also computed clearly shows that stishovite and the CF-type phase are the most anisotropic and isotropic in these three phases, respectively.  相似文献   

5.
This paper presents evaluation of cation distributions from diffraction data collected at high T, P, and is an extension of the spinel structure modelling procedure by Lavina et al. (2002). Optimised cation-to-oxygen distances are modified for thermal expansion and compressibility at T and P of interest following Hazen and Prewitt (1977) and Hazen and Yang (1999). The procedure is applied to literature data concerning hercynite, spinel s.s., Zn aluminate, Zn ferrite, magnetite and the (Fe3O4)1– x (MgAl2O4) x join. Calculated cation distribution is strongly affected by standard deviations in cell parameters and oxygen coordinates. The underestimated values often reported in the literature for powder profile refinements may strongly affect the cation distribution; however, if standard deviations are increased to physically realistic values, consistent results are obtained. For P up to 10 GPa, reasonable evaluations of cation distribution are obtained for spinel s.s., Zn aluminate and magnetite, whereas for Zn ferrite they are limited to 1.8 GPa. For P beyond 10 GPa, compressibility cannot be assumed to be linear; the relationship between cell parameter and pressure is well-defined, but the inaccuracy of oxygen coordinate prevents simple modelling of bond distances with pressure.  相似文献   

6.
This study presents a new experimental approach for determining H2O solubility in basaltic melt at upper mantle conditions. Traditional solubility experiments are limited to pressures of ~600 MPa or less because it is difficult to reliably quench silicate melts containing greater than ~10 wt% dissolved H2O. To overcome this limitation, our approach relies on the use of secondary ion mass spectrometry to measure the concentration of H dissolved in olivine and on using the measured H in olivine as a proxy for the concentration of H2O in the co-existing basaltic melt. The solubility of H2O in the melt is determined by performing a series of experiments at a single pressure and temperature with increasing amounts of liquid H2O added to each charge. The point at which the concentration of H in the olivine first becomes independent of the amount of initial H2O content of the charge (added + adsorbed H2O) indicates its solubility in the melt. Experiments were conducted by packing basalt powder into a capsule fabricated from San Carlos olivine, which was then pressure-sealed inside a Ni outer capsule. Our experimental results indicate that at 1000 MPa and 1200 °C, the solubility of H2O in basaltic melt is 20.6 ± 0.9 wt% (2 × standard deviation). This concentration is considerably higher than predicted by most solubility models but defines a linear relationship between H2O fugacity and the square of molar H2O solubility when combined with solubility data from lower pressure experiments. Further, our solubility determination agrees with melting point depression determined experimentally by Grove et al. (2006) for the H2O-saturated peridotite solidus at 1000 MPa. Melting point depression calculations were used to estimate H2O solubility in basalt along the experimentally determined H2O-saturated peridotite solidus. The results suggest that a linear relationship between H2O fugacity and the square of molar solubility exists up to ~1300 MPa, where there is an inflection point and solubility begins to increase less strongly with increasing H2O fugacity.  相似文献   

7.
Summary The complexation of aluminium(III) and silicon(IV) was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25 °C. The measurements were performed as potentiometric titrations using a hydrogen electrode with OH ions being generated coulometrically. The total concentrations of Si(IV) and Al(III) respectively [Si tot ] and [Al t ot], and −log[H +] were varied within the limits 0.3 < [Si tot ] < 2.5 mM, 0.5 < [Al tot ] < 2.6 mM, and 2 ≤ -log[H +] ≤ 4.2. Within these ranges of concentration, evidence is given for the formation of an AlSiO(OH) 3 2+ complex with a formation constant log β1,1-1 = −2.75 ± 0.1 defined by the reaction Al 3++Si (OH)4AlOSi(OH) 3 2+ +H + An extrapolation of this value to I=0 gives log β1,1-1 = −2.30. The calculated value of logK (Al 3++SiO(OH) 3 AlOSi(OH) 3 2+ ) = 6.72 (I=0.6 M) can be compared with corresponding constants for the formation of AlF 2+ and AlOH 2+ , which are equal to 6.16 and 8.20. Obviously, the stability of these Al(III) complexes decreases within the series OH >SiO(OH) 3  > F   相似文献   

8.
In the present paper, the parameters affecting the uncertainties on the estimation of M max have been investigated by exploring different methodologies being used in the analysis of seismicity catalogue and estimation of seismicity parameters. A critical issue to be addressed before any scientific analysis is to assess the quality, consistency, and homogeneity of the data. The empirical relationships between different magnitude scales have been used for conversions for homogenization of seismicity catalogues to be used for further seismic hazard assessment studies. An endeavour has been made to quantify the uncertainties due to magnitude conversions and the seismic hazard parameters are then estimated using different methods to consider the epistemic uncertainty in the process. The study area chosen is around Delhi. The b value and the magnitude of completeness for the four seismogenic sources considered around Delhi varied more than 40% using the three catalogues compiled based on different magnitude conversion relationships. The effect of the uncertainties has been then shown on the estimation of M max and the probabilities of occurrence of different magnitudes. It has been emphasized to consider the uncertainties and their quantification to carry out seismic hazard assessment and in turn the seismic microzonation.  相似文献   

9.
O K- and Ti L23-core-loss spectra of fresnoite Ba2TiSi2O8 (BTS) and Sr2TiSi2O8 (STS), which is isotypic to BTS, have been measured by electron energy-loss spectroscopy (EELS). The energy-loss near-edge structures (ELNES) of the O K edge have been identified on the basis of theoretical simulations and interpretations of the X-ray absorption near-edge structures (XANES), which have been modelled in the framework of self-consistent full multiple-scattering (FMS) theory using FEFF8. Herewith, the K-absorption spectra of oxygen (E) and the local partial electron density of states (DOS) of all atoms have been calculated. For BTS, the observed spectral features in the O K-edge spectra are interpreted in terms of mixing between the central O p and neighbouring Ba 5d and 4f, Si 3p and 3d, and Ti 3d orbitals. The observed differences in the O K-edge spectra for STS and BTS can mainly be attributed to three properties: (1) The lack of high local partial Sr unoccupied DOS with 4f symmetry near the Fermi level compared to the high Ba 4f unoccupied DOS results in differences of overlapping O 2p – cation orbitals. (2) The differences in the ionic radii of Sr and Ba result in a larger unit cell for BTS and, thus, in larger oxygen-cation bonding distances. (3) In comparison to STS, the strength of the incommensurate 2-D structural modulation is significantly weaker in BTS, i.e. distortions of coordination polyhedra occur to a much lesser extent. All these effects alter the oxygen-cation hybridization and, hence, result in a variation of the O 1s p transition and consequently of the O K-edge spectral shape. The observed peak broadening in Ti L23 ELNES of STS compared to BTS is correlated with strong displacive modulations hosted in STS.  相似文献   

10.
Axenic culture of microalgae Chlorella vulgaris ATCC® 13482 and Scenedesmus obliquus FACHB 417 was used for phycoremediation of primary municipal wastewater. The main aim of this study was to measure the effects of normal air and CO2-augmented air on the removal efficacy of nutrients (ammonia N and phosphate P) from municipal wastewater by the two microalgae. Batch experiments were carried out in cylindrical glass bottles of 1 L working volume at 25 °C and cool fluorescent light of 6500 lux maintaining 14/10 h of light/dark cycle with normal air supplied at 0.2 L min?1 per liter of the liquid for both algal strains for the experimental period. In the next set of experiments, the treatment process was enhanced by using 1, 2 and 5% CO2/air (vol./vol.) supply into microalgal cultures. The enrichment of inlet air with CO2 was found to be beneficial. The maximum removal of 76.3 and 76% COD, 94.2 and 92.6% ammonia, and 94.8 and 93.1% phosphate after a period of 10 days was reported for C. vulgaris and S. obliquus, respectively, with 5% CO2/air supply. Comparing the two microalgae, maximum removal rates of ammonia and phosphate by C. vulgaris were 4.12 and 1.75 mg L?1 day?1, respectively, at 5% CO2/air supply. From kinetic study data, it was found that the specific rates of phosphate utilization (q phsophate) by C. vulgaris and S. obliquus at 5% CO2/air supply were 1.98 and 2.11 day?1, respectively. Scale-up estimation of a reactor removing phosphate (the criteria pollutant) from 50 MLD wastewater influent was also done.  相似文献   

11.
Biosorption is an effective method to remove heavy metals from wastewater. In this work, the biosorption of Cd(II) onto Hydrilla verticillata was examined in aqueous solution with parameters of initial pH, adsorbent dosage, contact time, initial Cd(II) concentration, temperature, and co-existing ion. Linear Langmuir and Freundlich models were applied to describe the equilibrium isotherms, and both of the two models were fitted well. The monolayer adsorption capacity of Cd(II) was found to be 50 mg/g at pH 6 and 20°C. Dubinin–Radushkevich isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (11.18 kJ/mol) indicated that the adsorption of Cd(II) onto H. verticillata might be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, including free energy (∆G 0), enthalpy (∆H 0), and entropy (∆S 0) of adsorption, were also calculated. These results showed that the biosorption of Cd(II) onto H. verticillata was a feasible, spontaneous, and exothermic process in nature. Desorption experiments indicated that 0.01 mol/L EDTA and HNO3 were efficient desorbents for the recovery of Cd(II) from biomass. IR spectrum analysis suggested that amido, hydroxyl, C=O and C–O could combine strongly with Cd(II). EDX spectrum analysis suggested that an ion exchange mechanism might be involved.  相似文献   

12.
We have obtained 26 372 CCD frames in the B, V, and I c filters for 81 RR Lyrae stars in 2008–2010, using the 76-cm telescope of the South African Astronomical Observatory and the 40-cm telescope of the Cerro Armazones Observatory, North Catholic University (Chile) using an SBIG ST-10XME CCD camera. For 12 of these RR Lyrae stars, we also obtained 337 brightness measurements in the B and V bands in 2000–2001 using the 60-cm telescope of the High Altitude Mt. Maidanak Observatory (Republic of Uzbekistan). We present tables of observations, light curves, and improved light-curve elements for all these RR Lyrae stars. The Blazhko effect was detected for SU Hor.  相似文献   

13.
Fluid inclusions, mineral thermometry and stable isotope data from two types of mineralogically and texturally contrasting pegmatites, barren ones and lithium ones, from the Moldanubian Zone of the Bohemian Massif were studied in order to constrain PT conditions of their emplacement, subsolidus hydrothermal evolution and to estimate composition of the early exsolved fluid and that of the parental melt. Despite the fact that the lithium pegmatites are abundant throughout the crystalline units of the Bohemian Massif, data similar to this paper have not been published yet. The studied pegmatites are hosted by iron-rich calcic skarn bodies. This specific setting allowed scavenging of calcium, fluorine and some other elements from the host rocks into the pegmatitic melts and post-magmatic fluids. Such contamination process was important namely in the case of barren pegmatites, as can be deduced from the variation in anorthite contents in plagioclase and from the presence of fluorite, hornblende (with F content) or garnet in the contact zones of pegmatite dykes. Fluid inclusions were studied mostly in quartz, but also in fluorite, titanite and apatite. Early aqueous–carbonic and late aqueous fluids were identified in both pegmatite types. The PT conditions of crystallization as well as the detailed composition of exsolved magmatic fluid, however, particularly differ. The magmatic fluids associated with barren pegmatites correspond to H2O–CO2 low salinity fluids, composition of which evolved from 20 to 23 to <5 mol% CO2, and from 2 to 4–6 mol% NaCl eq. Sudden decrease in the CO2 content of the post-magmatic fluids (<5 mol% CO2) seems to coincide with the enrichment of the fluid in calcium (from the contamination process) and resulted in precipitation of calcites (frequently found as trapped solid phases in fluid inclusions). The fluids associated with lithium pegmatites are more complex (H2O–CO2/N2–H3BO3–NaCl). The CO2 content of early exsolved fluid is 26–20 mol% CO2 and remains the same in the next fluid generation. The main difference between the magmatic and the first post-magmatic fluids is the presence of 7–9 wt% of H3BO3 (identified as daughter mineral sassolite) in the former. The second post-magmatic fluids are again CO2-poor (∼4 mol%) and more saline (∼4 mol% NaCl eq.). The composition of exsolved fluid was further used to constrain volatile composition and content of the parental melts. Finally, PT conditions of pegmatite crystallization are constrained: 600–640°C and 420–580 MPa for the barren pegmatites and 500–570°C and 310–430 MPa for the lithium pegmatite. While the emplacement of the former occurred in thermal equilibrium with the Moldanubian host rock environment, the emplacement of the later suggests substantial thermal disequilibrium.  相似文献   

14.
While multiple species of macroalgae and seagrass can benefit from elevated CO2 concentrations, competition between such organisms may influence their ultimate responses. This study reports on experiments performed with a Northwest Atlantic species of the macroalgae, Ulva, and the seagrass, Zostera marina, grown under ambient and elevated levels of pCO2, and subjected to competition with each other. When grown individually, elevated pCO2 significantly increased growth rates and productivity of Ulva and Zostera, respectively, beyond control treatments (by threefold and 27%, respectively). For both primary producers, significant declines in tissue δ13C signatures suggested that increased growth and productivity were associated with a shift from use of HCO3? toward CO2 use. When grown under higher pCO2, Zostera experienced significant increases in leaf and rhizome carbon content as well as significant increases in leaf carbon-to-nitrogen ratios, while sediments within which high CO2 Zostera were grown had a significantly higher organic carbon content. When grown in the presence of Ulva; however, above- and below-ground productivity and tissue nitrogen content of Zostera were significantly lower, revealing an antagonistic interaction between elevated CO2 and the presence of Ulva. The presence of Zostera had no significant effect on the growth of Ulva. Collectively, this study demonstrates that while Ulva and Zostera can each individually benefit from elevated pCO2 levels, the ability of Ulva to grow more rapidly and inhibit seagrass productivity under elevated pCO2, coupled with accumulation of organic C in sediments, may offset the potential benefits for Zostera within high CO2 environments.  相似文献   

15.
To offer an insight into the toxicity of nanomaterials (NM) on the growth of bacteria, Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Agrobacterium tumefaciens (A. tumefaciens) were exposed to nano-Au, nano-Ag, nano-Fe and fullerene (C60) in this study. As an effective bactericide, nano-Ag induced high toxicity on these three bacteria; C60 could inhibit their growth; however, B. subtilis and E. coli could recover as exposure time extended. Nano-Au and nano-Fe had hardly any effect on three bacteria. A. tumefaciens showed the lowest resistance and slowest growth rate during exposure. Images obtained by scanning electron microscope (SEM) revealed that nano-Ag could cause damage to the cell structure of three bacteria at 1 μg/mL. Slight damage on E. coli was found when exposed to C60, whereas no obvious physical damage was found after exposure to nano-Au or nano-Fe. It is assumed that surface activities of NM might be responsible for the different toxic effects on these bacteria.  相似文献   

16.
The effect of alkalis on the solubility of H2O and CO2 in alkali-rich silicate melts was investigated at 500 MPa and 1,250 °C in the systems with H2O/(H2O + CO2) ratio varying from 0 to 1. Using a synthetic analog of phonotephritic magma from Alban Hills (AH1) as a base composition, the Na/(Na + K) ratio was varied from 0.28 (AH1) to 0.60 (AH2) and 0.85 (AH3) at roughly constant total alkali content. The obtained results were compared with the data for shoshonitic and latitic melts having similar total alkali content but different structural characteristics, e.g., NBO/T parameter (the ratio of non-bridging oxygens over tetrahedrally coordinated cations), as those of the AH compositions. Little variation was observed in H2O solubility (melt equilibrated with pure H2O fluid) for the whole compositional range in this study with values ranging between 9.7 and 10.2 wt. As previously shown, the maximum CO2 content in melts equilibrated with CO2-rich fluids increases strongly with the NBO/T from 0.29 wt % for latite (NBO/T = 0.17) to 0.45 wt % for shoshonite (NBO/T = 0.38) to 0.90 wt % for AH2 (NBO/T = 0.55). The highest CO2 contents determined for AH3 and AH1 are 1.18 ± 0.05 wt % and 0.86 ± 0.12 wt %, respectively, indicating that Na is promoting carbonate incorporation stronger than potassium. At near constant NBO/T, CO2 solubility increases from 0.86 ± 0.12 wt % in AH1 [Na/(Na + K)] = 0.28, to 1.18 ± 0.05 wt % in AH3 [Na/(Na + K)] = 0.85, suggesting that Na favors CO2 solubility on an equimolar basis. An empirical equation is proposed to predict the maximum CO2 solubility at 500 MPa and 1,100–1,300 °C in various silicate melts as a function of the NBO/T, (Na + K)/∑cations and Na/(Na + K) parameters: \({\text{wt}}\% \;{\text{CO}}_{2} = - 0.246 + 0.014\exp \left( {6.995 \cdot \frac{\text{NBO}}{T}} \right) + 3.150 \cdot \frac{{{\text{Na}} + {\text{K}}}}{{\varSigma {\text{cations}}}} + 0.222 \cdot \frac{\text{Na}}{{{\text{Na}} + {\text{K}}}}.\) This model is valid for melt compositions with NBO/T between 0.0 and 0.6, (Na + K)/∑cation between 0.08 and 0.36 and Na/(Na + K) ratio from 0.25 to 0.95 at oxygen fugacities around the quartz–fayalite–magnetite buffer and above.  相似文献   

17.
This study assesses the ability of two low-cost adsorbents made from waste of Rapanea ferruginea treated with ethanol (WRf) and its H2SO4-treated analog (WRf/H2SO4) for the removal of two cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. The adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, point of zero charge (pHpzc), specific surface, and functional groups. The adsorption of dye onto the adsorbents was studied as a function of pH solution (2–12), contact time (up to 120 min) and initial concentration (20–120 mg/L), and temperature (25, 35, and 55 °C). The influence of these parameters on adsorption capacity was studied using the batch process. The response surface methodology (RSM) was used in the experimental design, modeling of the process, and optimizing of the variables and was optimized by the response involving Box–Behnken factorial design (15 runs). The results show that the data correlated well with the Sips isotherm. The maximum adsorption capacities of MB and CV onto WRf were found to be 69 and 106 mg/g, and onto WRf/H2SO4, the adsorption capacities were 33 and 125 mg/g, respectively. The kinetic data revealed that adsorption of cationic dyes onto the adsorbents closely follows the pseudo-second-order kinetic model. Regression analysis showed good fit of the experimental data to the second-order polynomial model, with coefficient of determination (R2) values for MB (R2?=?0.9685) and MB (R2?=?0.9832) for WRf and CV (R2?=?0.9685) and CV (R2?=?0.9832) for WRf/H2SO4 indicated that regression analysis is able to give a good prediction of response for the adsorption process in the range studied. The results revealed that waste from R. ferruginea is potentially an efficient and low-cost adsorbent for adsorption of MB and CV.  相似文献   

18.
Simulation of carbon dioxide (CO2) at hourly/weekly intervals and fine vertical resolution at the continental or coastal sites is challenging because of coarse horizontal resolution of global transport models. Here the regional Weather Research and Forecasting (WRF) model coupled with atmospheric chemistry is adopted for simulating atmospheric CO2 (hereinafter WRF-CO2) in nonreactive chemical tracer mode. Model results at horizontal resolution of 27 × 27 km and 31 vertical levels are compared with hourly CO2 measurements from Tsukuba, Japan (36.05°N, 140.13 oE) at tower heights of 25 and 200 m for the entire year 2002. Using the wind rose analysis, we find that the fossil fuel emission signal from the megacity Tokyo dominates the diurnal, synoptic and seasonal variations observed at Tsukuba. Contribution of terrestrial biosphere fluxes is of secondary importance for CO2 concentration variability. The phase of synoptic scale variability in CO2 at both heights are remarkably well simulated the observed data (correlation coefficient >0.70) for the entire year. The simulations of monthly mean diurnal cycles are in better agreement with the measurements at lower height compared to that at the upper height. The modelled vertical CO2 gradients are generally greater than the observed vertical gradient. Sensitivity studies show that the simulation of observed vertical gradient can be improved by increasing the number of vertical levels from 31 in the model WRF to 37 (4 below 200 m) and using the Mellor–Yamada–Janjic planetary boundary scheme. These results have large implications for improving transport model simulation of CO2 over the continental sites.  相似文献   

19.
In order to model the processes of formation of the highly alkaline (potassic) melts during the partial melting of the eclogite nodules in kimberlites, experiments on the melting of the model and natural eclogites in presence of the H2O-CO2 and H2O-CO2-KCl fluids at 5 GPa and 1200 and 1300°C are performed. A comparative analysis of the phase relations in the systems with H2O-CO2 and H2O-CO2-KCl demonstrate that KCl in the fluid equilibrated with eclogites intensifies their melting. It is related to both high Cl concentration in the forming silicate melt (2.0–5.5 wt %) and its enrichment in K2O owing to the K-Na exchange reactions with the immiscible chloride melt. Because of these reactions, the K2O/Cl ratio in the melts increases with the KCl content in the system and reaches 2.5–3.5 in the silicate melts coexisting with the immiscible chloride liquid. However, the ratio KCl/(H2O + CO2 + KCl) in the fluid does not influence on the ratio K2O/Cl in the melts. Thus, the solubility KCl in the melts, apparently, does not depend on presence of the H2O-CO2 fluid, at least, within the concentration range used in the experiments (up to 20 wt %). The experiments show that the deliberated chloride liquid is necessary to form the potassium-rich chlorine-bearing silicate melts during the eclogite melting. It corresponds to the KCl content in the system above 5 wt %.  相似文献   

20.
A new version of the STRUCTON (2009) computer model is proposed for the simulation of the molecular mass distributions (MMD) characterizing the diversity of anions in silicate melts depending on their polymerization and temperature. In contrast to earlier versions, the new version of the model accounts for disproportionation reactions of Q n species and makes use of their proportions in the statistical simulations of the origin of real Si-O complexes. The new potentialities of the STRUCTON program package are illustrated by its application to studying the structural-chemical characteristics of melts in the Na2O-SiO2 system along its liquidus line, including the points of eutectics and phase transitions at 0.333 ≤ $ N_{SiO_2 } $ N_{SiO_2 } < 0.500. This problem is solved with the use of a temperature-composition dependence of polymerization constants K p Na in the Toop-Samis approximation. The variations in K p Na were proved to be as large as three orders of magnitude due to both the temperature effect at a constant composition and the composition effect at a constant temperature. The results of the MMD simulations on the liquidus show that the concentration of the SiO44− ion strongly decreases, and the proportion of chain species increases compared to those at a stochastic distribution. The concentration of the Si2O76− anion reaches its maximum (∼42%) at 40 mol % in the liquid, i.e., the composition of Na6Si2O7. At $ N_{SiO_2 } $ N_{SiO_2 } > 0.40, this ion dominates over the SiO44− monomer. More silicic melts with $ N_{SiO_2 } $ N_{SiO_2 } ≥ 0.45, are dominated by (Si n O3n )3n ring species, and the concentrations of these species are related as (Si3O9)6− > (Si4O12)8− > (Si5O15)10−. The maximum concentration of these flat rings also occurs near the composition of stoichiometric metasilicate with Si/O = 0.333. The comparison of the dependence of the average size of anions i av and the average number of their species on depolymerization indicates that a change in the proportion of Q n species in melt at decreasing temperature results in structural restyling and an increase in the average size of Si-O complexes. The average number of anion species thereby decreases compared to that in a stochastic MMD. The results presented in this publication direct the progress in the thermodynamic theory of silicate melts to a new avenue that makes use of the capabilities and advantages of the ion-polymer model, the theory of associated solutions, spectroscopic data, and the experimental study of variations in oxide activities depending on composition and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号