首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the fold-and-thrust belt of the northern Argentine Precordillera, Early Paleozoic basin and slope sediments are affected by a folding event which was combined with a slight greenschist facies metamorphism. The structural geometries are influenced by the former normal faulted boundary towards the eastern carbonate platform. To the east of the slope, Early Paleozoic marine deposits record a ˜ W-vergent folding without a clear metamorphic overprint. This deformation probably took place in the Devonian to pre-Upper Carboniferous interval while in the west an onset during the Late Silurian is reasonable. During Andean (Late Tertiary) compression, the escarpment was again reactivated as an important, east-directed thrust fault, and the folded strata to the east were juxtaposed along distinct, east-directed high-angle reverse faults with some ˜ N-S fold structures interfering with pre-Tertiary folds. Hence, the present architecture of this part of the orogen was largely influenced by different Early Paleozoic depositional realms and structures of one pre-Tertiary compressional event. The latter can be linked with the collision of the Sierras Pampeanas basement complex at the eastern margin of the Precordillera and be related to the collision with the Chilenia Terrane in the west.  相似文献   

2.
运用斜长石-角闪石温压计对华北地块北缘内蒙古隆起及燕山褶断带内不同时期花岗质侵入岩的结晶压力及侵位深度进行了估算。结果表明,晚古生代—早中生代期间,在内蒙古隆起及燕山褶断带之间,存在有强烈的差异性隆升及剥露过程,但这种差异性隆升及剥露在早侏罗世以来的表现则不明显。晚古生代—早中生代差异性隆升及剥露可能是导致内蒙古隆起上大量基底岩石出露、中—新元古代及古生代沉积盖层缺失及燕山褶断带中—新元古代及古生代沉积盖层大量保留的主要原因。内蒙古隆起强烈的隆升及剥露过程发生在晚石炭世—早侏罗世期间,其东部的剥露幅度比中东部明显偏小。晚古生代-早中生代期间内蒙古隆起的强烈剥露及其与燕山褶断带之间的差异性隆升可能与古亚洲洋板块向华北地块的俯冲、消减、碰撞及华北北缘区域性断裂(如平泉-古北口-赤城-尚义断裂、赤峰-围场-多伦断裂)的活动有关。燕山褶断带的强烈隆升与剥露发生则在晚侏罗世—早白垩世之后。晚体罗世—早白垩世以来,华北地块北缘南北两侧均有一次明显的剥露过程,这一剥露可能与本区及中国东部地壳强烈伸展有关。  相似文献   

3.
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation.

The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement.

In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism.

In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south.

The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region.

Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking.

Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined.

The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m.

Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system.

The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north.

Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries.  相似文献   

4.
Jurassic Tectonics of North China: A Synthetic View   总被引:21,自引:1,他引:20  
This paper gives a synthetic view on the Jurassic tectonics of North China, with an attempt to propose a framework for the stepwise tectonic evolution history. Jurassic sedimentation, deformation and magmatism in North China have been divided into three stages. The earliest Jurassic is marked by a period of magmatism quiescence (in 205-190 Ma) and regional uplift, which are considered to be the continuation of the “Indosinian movement” characterized by continent-continent collision between the North and South China blocks. The Early to Middle Jurassic (in 190-170 Ma) was predominated by weak lithospheric extension expressed by mantle-derived plutonism and volcanism along the Yanshan belt and alongside the Tan-Lu fault zone, normal faulting and graben formation along the Yinshan- Yanshan tectonic belt, depression and resuming of coal-bearing sedimentation in vast regions of the North China block (NCB). The Middle to Late Jurassic stage started at 165y.5 Ma and ended up before 136 Ma; it was dominated by intensive intraplate deformation resulting from multi-directional compressions. Two major deformation events have been identified. One is marked by stratigraphic unconformity beneath the thick Upper Jurassic molasic series in the foreland zones of the western Ordos thrust-fold belt and along the Yinshan-Yanshan belt; it was predated 160 Ma. The other one is indicated by stratigraphic unconformity at the base of the Lower Cretaceous and predated 135 Ma. During this last stage, two latitudinal tectonic belts, the Yinshan-Yanshan belt in the north and the Qinling-Dabie belt in the south, and the western margin of the Ordos basin were all activated by thrusting; the NCB itself was deformed by the NE to NNE-trending structural system involving thrusting, associated folding and sinistral strike-slip faulting, which were spatially partitioned. Foliated S-type granitic plutons aged 160-150 Ma were massively emplaced in the Jiao-Liao massif east of the Tan-Lu fault zone and indicate important crustal thicken  相似文献   

5.
燕山构造带北缘喀喇沁地区发育了晚古生代一中生代多期岩浆活动,记录了多期构造变形事件,是认识该构造带大地构造演化的理想地区。本文通过对该地区岩浆岩的系统定年及各期构造变形事件的研究,结合区域地质资料,综合分析了晚古生代一中生代的大地构造演化历史。分析结果表明,燕山构造带在早石炭世晚期一早二叠世处于古亚洲洋俯冲背景下的活动陆缘环境,出现了弧岩浆活动。中二叠世古亚洲洋沿索伦克缝合线关闭,使得燕山构造带成为周缘前陆挤压变形带,并对应着岩浆活动的平静期。之后燕山构造带分别出现了晚二叠世一三叠纪、中侏罗世、晚侏罗世与早白垩世4期伸展背景下的岩浆活动。在这些岩浆活动之间的平静期,先后发生了早侏罗世、晚侏罗世初、早白垩世初3期挤压事件。这些现象还表明,岩浆活动与构造演化具有明显的耦合关系,板内环境下岩浆活动发生在伸展背景中,而岩浆活动平静期多对应区域挤压活动。  相似文献   

6.
龙门山断裂带印支期左旋走滑运动及其大地构造成因   总被引:60,自引:6,他引:60  
位于青藏高原东缘的龙门山构造呈北东—南西向将松潘—甘孜褶皱带和华南地块分割开。前者主要是由一套巨厚的三叠纪复理石沉积组成 ,分布在古特提斯海的东缘。后者由前寒武纪基底和上覆的古生代和中生代沉积盖层组成。位于汶川—茂汶断裂以东的前龙门山存在一系列倾向北西的逆掩断层 ,它们将许多由元古宙和古生代岩层组成的断片向南东置于四川盆地的中生代红层之上 ,构成典型的薄皮构造。许多研究由此断定松潘—甘孜褶皱带和四川盆地之间在中生代发生过大规模的北西—南东向挤压。然而 ,汶川—茂汶断裂西侧的松潘—甘孜褶皱带内部的挤压构造线大多是垂直于而不是平形于龙门山断裂带 ,这表明当时的挤压应力不是北西—南东向而是北东—南西向。近年来在龙门山构造带内发现 ,在三叠纪时龙门山断裂带在发生推覆的同时还经历过大规模的北东—南西向的左旋走滑运动 ,协调走滑运动的主要构造为汶川—茂汶断裂。走滑运动的成因与松潘—甘孜褶皱带北东—南西向缩短有关。汶川—茂汶断裂的左旋走滑在龙门山的北东端被古特提斯海沿勉略俯冲带的消减和发生在大巴山的古生代 /中生代岩层的褶皱和冲断作用所吸收 ,在龙门山的南西端被古特提斯海沿甘孜—理塘俯冲带的消减和松潘—甘孜三叠纪复理石的褶皱和冲断作用所吸?  相似文献   

7.
Genesis of the so‐called Bentong‐Raub Suture of Malay Peninsula does not fit to the model of subduction‐related collision. It has evolved from transpression tectonics resulting closure and exhumation of the inland basin which underwent extensive back‐arc extension during Triassic. Crust having similar thickness (average ~35 km) below entire Malay Peninsula nagate collision of two separate continental blocks rather supports single continental block that collided with South China continental block during Permo‐Triassic. Westward subduction of intervening sea (Proto South China Sea) below Malay Peninsula resulted in widespread I‐ and S‐Type granitization and volcanism in the back‐arc basins during Triassic. Extensive occurrence of Permo‐Triassic Pahang volcanics of predominantly rhyolitic tuff suggest its derivation from back‐arc extension. Back‐arc extension, basin development and sedimentation of the central belt of the peninsula continued until Cretaceous. A‐Type granite of metaluminous to peraluminous character indicates their emplacement in an intraplate tectonic setting. Malay Peninsula suffered an anticlockwise rotation due to the rifting of Luconia–Dangerous Grounds from the east Asia in the Late Cretaceous–Early Tertiary. Extensive ductile and brittle deformation including crustal segmentation, pull‐apart fracturing and faulting occurred during the closure and exhumation of the basins developed in the peninsula during Late Cretaceous–Early Tertiary. Crustal shortening in the central belt of the peninsula has been accomodated through strike‐slip displacement, shearing and uplift.  相似文献   

8.
西准噶尔走滑断裂系元素分布特征及其成矿意义   总被引:8,自引:2,他引:6  
我国新疆西北部西准噶尔走滑断裂构造体系(简称"西准系")是中亚造山带巴尔喀什马蹄形构造的向东延伸部分,由于中生代成吉思-准噶尔断裂的右行走滑断裂作用而被分成了两个部分。西准系是一个多米诺式的走滑断裂构造体系,主要由达拉布特断裂、玛依勒断裂、巴尔鲁克断裂等三条NE走向的左行走滑断裂及其夹在它们之间的地块所组成,可能是晚古生代与走滑断裂相关的陆条弯曲(褶皱)作用的产物。同时,西准噶尔地区也是重要的晚古生代成矿带,产出有一些大型和超大型的金属矿床,包括包古图斑岩铜矿、哈图金矿、萨尔托海铬铁矿和杨庄铍矿床等。本文分析了西准系走滑断裂构造与元素分布之间的关系。结果显示,西准噶尔成矿带元素与地球化学块体以及铜、金、钼、铬铁矿等矿床的分布,均受晚古生代西准系的形成与演化过程的控制。其中,庙尔沟、红山岩体与金地球化学块体之间的反对称分布特征,说明了花岗岩类侵入体和金元素在达拉布特断裂左行走滑过程中发生了重要的物质调整与迁移作用。庙尔沟岩体的逆时针旋转运动,造成了环状断裂与裂隙系统,以及与之相对应的Cu、Pb等元素风火轮式的分布形式。走滑断裂作用与岩体旋转运动的共同结果,导致了金元素沿断裂和裂隙的迁移与成矿,使得西准地区金矿床在断裂和裂隙中的发育。断裂构造体系与元素地球化学异常之间的关系,可以用来有效指导西准地区未来矿产资源的勘查。  相似文献   

9.
张之孟 《地球学报》1994,15(Z1):14-31
中国北方的中朝克拉通与南方的扬子克拉通无论在基底年代及盖层发育程度、沉积环境及古生物群上都有差异。它们是两个构造发育史不同的大陆。这两个古大陆之间的大洋究竟有多宽?是何时关闭的?合并时的构造运动强烈程度?在挽近地质历史时期有无相类似的情况?这些问题一直是中外地质学家所关注,并在不同程度上讨论过的问题。近年来的地质工作,提供了一些可据以回答上述问题的成果,但全面可靠地回答上述全部问题还有待今后的努力。笔者在过去的文章(1-3)曾讨论一些有关问题。本文,拟就近期国内外的研究成果,发表一些评论,并提出作者的看法  相似文献   

10.
Syn-collisional transform faulting of the Tan-Lu fault zone,East China   总被引:21,自引:0,他引:21  
Origin of the continental-scale Tan-Lu fault zone (TLFZ), East China, remains controversial. About 550 km sinistral offset of the Dabie orogenic belt (DOB) and Sulu orogenic belt (SOB) is shown along the NE-NNE-striking TLFZ. Syn-collisional, sinistral ductile shear belts in the TLFZ have been identified. Thirteen phengite bulk separates from the mylonites were dated by the 40Ar/39Ar method. They gave cooling ages of the 198–181 Ma for the shear belts along the eastern margin of the DOB and 221–210 Ma from the western margin of the SOB. Distribution of the foreland basin deposits suggests that sinistral offset of the DOB and SOB by the TLFZ took place prior to deposition of the Upper Triassic strata. The marginal structures around the DOB and SOB support syn-collisional faulting, and indicate anticlockwise rotation of the DOB during the displacement. The folding and thrust faulting related to crustal subduction, coeval with the Tan-Lu faulting, is older than the foreland basin deposition related to the orogenic exhumation. Several lines of evidence demonstrate that the TLFZ was developed as a syn-collisional transform fault during latest Middle to earliest Late Triassic time when the DOB and SOB experienced crustal subduction of the South China Block (SCB). Eastward increase of the crustal subduction rates is believed to be responsible for the sinistral transform faulting.  相似文献   

11.
新疆古生代构造—生物古地理   总被引:4,自引:0,他引:4  
郭福祥 《新疆地质》2001,19(1):20-26
通过6幅图表达了新疆古生代板块的构造-生物古地理区系。早古生代,包括劳伦,波罗的、西伯利亚和哈萨克斯坦4陆块的亚帕特斯古陆(Iapetusa)群,与由其余陆块构成的冈瓦纳古陆群隔原特提斯洋相对峙。石炭-二叠纪,欧美、安加拉、太平洋和冈瓦纳4古陆共存并立。西伯利亚和哈萨克斯担板块经历了早古生代亚伯特斯古陆、晚古生代安加拉古陆和早二叠世晚期以来欧亚大陆3个发展阶段。塔里木、中朝、华南-东南亚板块经历了早古生代冈瓦纳古陆、晚古生代太平洋古陆和早二叠世晚期以来欧亚大陆3个发展阶段。指出在中晚寒武世和晚奥陶世哈萨克斯坦板块靠近塔里木、中朝和华南-东南亚板块;在早古生代其余时期它接近西伯利亚板块。伊犁和托克逊-雅满苏地体是在中泥盆世之前裂解自塔里木板块,尔后在早二叠世晚期接近安加拉古陆。塔里木板块北东缘北山地区在早二叠世早期首先靠近安加拉古陆。塔里木与西伯利亚-哈萨克斯坦板块之间缝合时代大抵上和土耳其-中伊朗-冈底斯与华南-东南亚板块之间缝合时代一致。缝合事件发生在早二叠世早期,而相应的构造运动出现在早晚二叠世之交。  相似文献   

12.
We document the structure and kinematics of the southeastern part of the fold-and-thrust belt of the Pakistani Himalaya. Field analysis documents the importance of strike–slip faulting associated with folding. Accordingly, a transpression regime is inferred to be responsible for variable amounts of shortening, from fault block to fault block. The analysis of fault populations that affect the Mesozoic to early Miocene sediments allows distinguishing two paleostress tensor directions: a dominant NW–SE compression and a minor E–W compression are compatible with buckling around the N–S axis of the near-by Hazara-Kashmir syntaxis. From the lack of both systematic overprinting-relationships and spatial trend (the two tensors were obtained at different locations) we conclude that in each location any of these two shortening directions can dominate. The distribution of the paleostress tensors substantiates a transpressional regime due to far-field Himalayan compression and a lateral escape component of the allochthonous fold-and-thrust belt away from the growing Hazara-Kashmir anticline.  相似文献   

13.
巴尔喀什成矿带晚古生代地壳增生与构造演化   总被引:6,自引:4,他引:2  
巴尔喀什成矿带是中亚成矿域重要的晚古生代斑岩铜钼成矿带。巴尔喀什成矿带晚古生代花岗岩类(石炭-二叠纪)主要为高钾钙碱性系列,晚期出现钾玄岩系列岩石,主要为I型花岗岩类;石炭纪处在同碰撞和火山弧环境,二叠纪为后碰撞环境。分析表明,博尔雷属于经典的岛弧花岗岩区,科翁腊德、阿克斗卡和萨亚克属于埃达克岩(Adakite)区。巴尔喀什成矿带内花岗岩类εNd(t)值为(-5.87~+5.94),εSr(t)值为(-17.16~+51.10)。以巴尔喀什中央断裂为界,成矿带东、西分带,断裂两侧具有不同的地壳生长历史:断裂以东的萨亚克和阿克斗卡地区εNd(t)值较高,具有亏损地幔组分特征,为古生代增生的新生陆壳;以西的科翁腊德和博尔雷εNd(t)值较低,主要是壳幔岩浆混合的结果,反映了古老基底的存在,主要为新元古代增生地壳。成矿带花岗岩类206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值范围分别为18.3346~20.9929、15.5213~15.7321和38.2874~40.0209,为造山带花岗岩类,具有与天山、阿尔泰和准噶尔花岗岩类的亲缘性。  相似文献   

14.
襄樊——广济断裂西段的三里岗——三阳地区出露有构造混杂岩,以含蛇绿岩残块为特征,经历了复杂的构造变形和演化过程。不同区段的构造解析与对比表明,中生代以来该构造混杂岩带主要遭受了4期变形构造的叠加改造:1)高温塑性变形(D1),表现为蛇绿岩残块内部具网状强应变带和透镜状弱应变域相互交织的构造变形样式,强应变带形成以镁铁质糜棱岩为特征的高温韧性剪切带,显示深层次构造变形特征;2)逆冲推覆变形(D2),构造混杂岩带发育叠瓦状逆冲推覆构造和双冲构造,南界韧性剪切带是构造混杂岩带整体运移的主推覆面,发育长英质糜棱岩,形成于中等构造层次,岩石中发育镁铁质糜棱岩糜棱面理的褶皱构造,显示陆内逆冲推覆对先期高温塑性变形构造的叠加改造;3)韧脆性右行平移剪切(D3),形成构造混杂岩带内部浅层次构造变形,构造混杂岩带南侧的花山群钙质片岩揉皱变形,形成枢纽近直立的不对称褶皱,指示右行平移剪切变形;4)伸展正断层(D4),主要发育于构造混杂岩带北侧,呈NW——SE向展布,控制晚白垩世断陷盆地的形成与沉积充填。  相似文献   

15.
The Denali fault system forms an arc, convex to the north, across southern Alaska. In the central Alaska Range, the system consists of a northern Hines Creek strand and a southern McKinley strand, up to 30 km apart. The Hines Creek fault may preserve a record of the early history of the fault system. Strong contrasts between juxtaposed lower Paleozoic rocks appear to require large dextral strike-slip or a combination of dipslip and strike-slip displacements along this fault. Thus the fault system may mark a reactivated suture zone between continental rocks to the north and a late Paleozoic island arc to the south, as suggested by Richter and Jones (1973). Major movements on the Hines Creek fault ceased by the Late Cretaceous, but local dip-slip movements continued into the Cenozoic.The McKinley fault is an active dextral strike-slip fault with a mean Holocene displacement rate of 1–2 cm/y. Post-Late Cretaceous dextral offset on this fault is probably at least 30 km and possibly as great as 400 km. Patterns of early Tertiary folding and reverse faulting indicate that the McKinley fault was active at that time and suggest that this fault developed shortly after strike-slip activity ceased on the Hines Creek fault. Oligocene — middle Miocene tectonic stability and late Miocene—Pliocene uplift of crustal blocks may reflect periods of quiescence and activity, on the McKinley fault.The two strands of the Denali fault divide the central Alaska Range into northern, central, and southern terranes. During the Paleozoic—Mesozoic there is evidence for at least two episodes of compressive deformation in the northern terrane, four in the central terrane, and two in the southern. During each, the axis of maximum compressive strain was subhorizontal and about north—south. This pattern suggests a Paleozoic and Mesozoic setting dominated by plate convergence, despite the possible large pre-Late Cretaceous lateral movement on the Hines Creek fault.The Cenozoic pattern of faulting and folding appears compatible with a plate tectonic model of (1) rapid northward movement of the Pacific plate relative to Alaska during the early Tertiary; (2) slow northwestward movement of the Pacific plate during the Oligicene and (3) rapid northwestward movement of the Pacific plate from the end of the Oligocene to the present.  相似文献   

16.
中国西天山南缘盆山构造转换解析   总被引:15,自引:4,他引:11  
李向东  王克卓 《新疆地质》2000,18(3):211-219
在西天山南缘,天山造山带向塔里木盆地北缘的盆山过渡,是以前陆褶皱冲断构造形式向库车一拜城前陆盆地渐变,表现为一系列褶皱冲断组合的构造样式。根据独库公路南段构造变形分析,可组合成6个部分:库尔干一铁力买提达坂根带褶皱系、南天山南缘逆冲断裂带、前陆逆冲推覆构造带、前陆双冲褶皱构造带、前陆隐伏逆冲前缘构造带、沙雅一轮台前缘叠加变形构造带。前陆盆地的发展可以划分为晚二叠一早三叠世、中三叠世一侏罗纪、白垩一  相似文献   

17.
兴蒙陆内造山带   总被引:21,自引:9,他引:12  
徐备  王志伟  张立杨  王智慧  杨振宁  贺跃 《岩石学报》2018,34(10):2819-2844
本文提出了"兴蒙陆内造山带"的新概念(Xing-Meng Intracontinent Orogenic Belt,XMIOB),从大地构造、沉积建造、岩浆作用和变质作用等方面论述了XMIOB从晚古生代到中生代初的陆内伸展及陆内造山过程,为探讨晚古生代构造演化提供了新模式。根据对内蒙古中西部晚古生代构造格局的总体认识,可将XMIOB划分为五个构造单元即:早石炭世二连-贺根山裂谷带、晚石炭世陆表海盆地、早二叠世艾力格庙-二连伸展构造带、早-中二叠世盆岭构造带和晚二叠世索伦山-乌兰沟伸展构造带。晚石炭世末-二叠纪在兴蒙造山带基底上发育三期伸展构造:第一期见于内蒙古北部二连-艾力格庙地区,形成陆内裂谷盆地及其盆缘三角洲沉积,发育时代为302~298Ma;第二期在内蒙古中西部广泛分布,以隆起与凹陷相间分布的盆岭构造为特征,发育时代为290~260Ma;第三期见于内蒙古南部索伦山到温都尔庙乌兰沟一带,形成主动裂谷背景下的红海型小洋盆,发育时代为260~250Ma。晚古生代与伸展过程有关的岩浆活动可分四期:1)早石炭世贺根山期:以蛇绿岩为主,发育于具有前寒武纪古老基底和早古生代造山带年轻基底的陆壳伸展区; 2)晚石炭世达青牧场期:主要沿北造山带分布,以基性和酸性岩浆构成的双峰式侵火成岩为特征; 3)早二叠世大石寨期:形成的岩石种类多样,分布广泛,包括双峰式火山岩、双峰式侵入岩和碱性岩; 4)二叠纪末-三叠纪初索伦山期:形成陆缘型蛇绿岩或基性岩-超基性岩组合,产生于软流圈上涌造成的主动裂谷背景。兴蒙陆内造山带的构造变形可分为两期,第一期为晚古生代地层大范围褶皱变形,造成盆-岭构造带的缩短;第二期为沿盆-岭构造的边界强烈剪切变形,产生向东逃逸的挤出构造,其构造背景是北部蒙古-鄂霍茨克造山带和南部大别-秦岭中央造山带的远距离效应引起的被动闭合作用。兴蒙陆内造山带的变质作用分为两个阶段,早期变质作用主要表现为石炭纪期间与陆内伸展有关的低压高温变质,晚期为二叠纪末到三叠纪初区域大面积的低压绿片岩相变质以及沿构造边界的局部中-低压型低温变质。  相似文献   

18.
新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次   总被引:1,自引:1,他引:0  
大型走滑断裂构造是大陆地壳内部基本的构造变形样式,通常是大陆地壳形成的标志.卡拉麦里构造带是新疆东准地区构造演化研究的重要构造单元.前人的研究认为卡拉麦里构造带是板块碰撞形成的缝合带.本文结合野外考察、构造分析和年代学工作认为,该构造带主要反映了走滑构造带的特点.在遥感影像上,卡拉麦里构造带呈断续的线状延伸特征.地震剖面上,卡拉麦里断裂带主断面产状近于直立向下延伸至基底,与一般张性断层、压性逆冲断层所显示的上陡下缓的铲状特征截然不同.野外考察显示,该构造带发育密集而陡立劈理,主断面附近劈理面倾角近于直立,在相对较浅层次的地层上,劈理面成花状散开,体现花状构造的特点.卡拉麦里构造带内的石炭系、泥盆系地层以及蛇绿岩系受到强烈改造,超糜棱岩化、糜棱岩化、千枚岩化现象普遍.糜棱岩中,硅质岩透镜体拖尾指示右旋走滑特征,与同构造岩脉次级张裂面指示的结果相一致.结合前人研究资料以及地层变形证据,可以推断构造带活动时限为270~260Ma.因此,卡拉麦里构造带是一条在晚古生代-早中生代活动的右旋剪切走滑构造带,准东地区与卡拉麦里构造带相关的缝合带确认,必须以卡拉麦里走滑构造带性质的准确厘定为基础.卡拉麦里构造二叠纪时期的走滑活动性质的确定,指示新疆北部二叠纪大陆地壳已经形成,而且,新疆北部后期叠加构造变形序次研究也显示具有大区域上的共性,指示新疆北部二叠纪以来进入基本统一大陆内部构造演化阶段.  相似文献   

19.
三塘湖盆地处于西伯利亚板块南缘,早石炭世晚期,盆地褶皱基底形成;晚石炭世早期,总体处于碰撞期后伸展构造环境;晚石炭世晚期,洋壳消亡,断陷收缩与整体抬升,形成剥蚀不整合.早二叠世,进入陆内前陆盆地演化阶段;中二叠世,盆地进入推覆体前缘前陆盆地发育期;晚二叠世,构造褶皱回返,前陆盆地消失;三叠纪晚期至侏罗纪中期,进入统一坳...  相似文献   

20.
天山地区碰撞后构造与盆山演化   总被引:48,自引:0,他引:48  
研究表明,近东西向的天山造山带基本格架在古生代晚期已经初步形成;平行造山带广泛分布的二叠纪红色磨拉石证明当时造山隆升作用非常强烈,导致前陆盆地普遍发育。三叠纪,天山造山带遭受区域剥蚀夷平,盆山高差缩小,盆地规模进一步扩大。侏罗纪—古近纪,由于板内伸展作用,在准平原化的天山地区形成了一系列伸展盆地,呈近东西向分布。新近纪以来,受南面印度—欧亚陆—陆碰撞的影响,天山地区发生强烈陆内变形,以逆冲推覆和褶皱堆叠为特征;节理统计表明新生代的主压应力为南北方向。晚新生代,由印度和欧亚大陆碰撞产生的强烈挤压作用对大陆腹地的天山地区影响很大:前中生代块体发生剧烈隆升和褶皱,伴随大规模新生代坳陷的形成,导致盆山高差急剧增大;脆性剪切与挤压变形构造叠加在韧性变形的古生代岩层之上。同时,中生代拉伸盆地发生构造反转,形成新生代挤压盆地,盆山交接带变形以台阶状逆断层和断层相关褶皱为特征。由于盆地朝造山带的下插作用,使古生代的岩层呈构造岩片方式逆冲推覆在盆地边缘的中新生代岩层之上,当穿越不同地质构造单元时表现出不同的运动学特征。强烈挤压褶皱冲断是晚新生代盆山交接带的基本特征和最普遍的盆-山耦合方式,局部伴有小规模近东西向的走滑断层。中生代沉积岩的褶皱与断裂、侏罗纪煤层自燃及烧结岩的形成、强烈地震与断层活动、以及新疆独特的镶嵌状盆山格局,都是新近纪以来构造作用的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号