首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wind and tracer data from the Oklahoma City Joint Urban 2003 (JU2003) and the Manhattan Madison Square Garden 2005 (MSG05) urban field experiments are being analyzed to aid in understanding air flow and dispersion near street-level in built-up downtown areas. The mean winds are separately calculated for groups of anemometers having similar exposures such as “near street level” and “on building top”. Several general results are found, such as the scalar wind speed at street level is about 1/3 of that at building top. Turbulent standard deviations of wind speed components and temperature, and vertical fluxes of momentum and sensible heat, are calculated from sonic anemometers near street level at 20 locations in JU2003 and five locations in MSG05, and from two rooftop locations in MSG05. The turbulence observations are consistent with observations in the literature at other cities, although the JU2003 and MSG05 data are unique in that many data are available near street level. For example, it is found that the local (i.e., at the measuring height) averages about 1.5 and the local averages about 0.25 in the two cities, where is the standard deviation of vertical velocity fluctuations, is the friction velocity, and u is the wind speed. The ratio of temperature fluctuations to temperature scale, , averages about −3 in both cities, consistent with similarity theory for slightly unstable conditions, where is the standard deviation of temperature fluctuations, and is the temperature scale. The calculated Obukhov length, L, is also consistent with slightly unstable conditions near street level, even at night during JU2003. The SF6 tracer concentration observations from JU2003 are analyzed. Values of for the continuous releases are calculated for each release and arc distance, where is the 30-min average arc maximum concentration, Q is the continuous source emission rate, and u is the spatial-averaged wind speed in the downtown area. The basic characteristics of the JU2003 plot of averaged agree reasonably well with similar plots for other urban experiments in Salt Lake City and London (i.e., at . A is found to be about 3 during the day and about 10 during the night.  相似文献   

2.
A comprehensive model for the prediction of concentration fluctuations in plumes dispersing in the complex and highly disturbed wind flows in an urban environment is formulated. The mean flow and turbulence fields in the urban area are obtained using a Reynolds-averaged Navier-Stokes (RANS) flow model, while the standard k-ϵ turbulence model (k is the turbulence kinetic energy and ϵ is the viscous dissipation rate) is used to close the model. The RANS model provides a specification of the velocity statistics of the highly disturbed wind flow in the urban area, required for the solution of the transport equations for the mean concentration and concentration variance (both of which are formulated in the Eulerian framework). A physically-based formulation for the scalar dissipation time scale t d , required for the closure of the transport equation for , is presented. This formulation relates t d to an inner time scale corresponding to “internal” concentration fluctuation associated with relative dispersion, rather than an outer time scale associated with the entire portion of the fluctuation spectrum. The two lowest-order moments of concentration ( and ) are used to determine the parameters of a pre-chosen functional form for the concentration probability density function (clipped-gamma distribution). Results of detailed comparisons between a water-channel experiment of flow and dispersion in an idealized obstacle array and the model predictions for mean flow, turbulence kinetic energy, mean concentration, concentration variance, and concentration probability density function are presented.  相似文献   

3.
Time Scales in the Unstable Atmospheric Surface Layer   总被引:2,自引:2,他引:0  
Calculation of eddy covariances in the atmospheric surface layer (ASL) requires separating the instantaneous signal into mean and fluctuating components. Since the ASL is not statistically stationary, an inherent ambiguity exists in defining the mean quantities. The present study compares four methods of calculating physically relevant time scales in the unstable ASL that may be used to remove the unsteady mean components of instantaneous time signals, in order to yield local turbulent fluxes that appear to be statistically stationary. The four mean-removal time scales are: (t c ) based on the location of the maximum in the ogive of the heat flux cospectra, () the location of the zero crossing in the multiresolution decomposition of the heat flux, (t *) the ratio of the mixed-layer depth over the convective velocity, and () the convergence time of the vertical velocity and temperature variances. The four time scales are evaluated using high quality, three-dimensional sonic anemometry data acquired at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility located on the salt flats of Utah’s western desert. Results indicate that and , with t c achieving values about 2–3 times greater than t *. The sensitivity of the eddy covariances to the mean-removal time scale (given a fixed 4-h averaging period during midday) is also demonstrated.  相似文献   

4.
We describe one-dimensional (1D) simulations of the countergradient zone of mean potential temperature observed in the convective boundary layer (CBL). The method takes into account the third-order moments (TOMs) in a turbulent scheme of relatively low order, using the turbulent kinetic energy equation but without prognostic equations for other second-order moments. The countergradient term is formally linked to the third-order moments and , and a simple parameterization of these TOMs is proposed. It is validated for several cases of a dry CBL, using large-eddy simulations that have been realized from the MESO-NH model. The analysis of the simulations shows that TOMs are responsible for the inversion of the sign of in the higher part of the CBL, and budget analysis shows that the main terms responsible for turbulent fluxes and variances are now well reproduced.  相似文献   

5.
We present surface-layer measurements of temperature fluctuation variance from a site characterized by small-scale inhomogeneities. Periods of marked radiative forcing are selected. The data characterized by diabatic conditions and vertical heat flux larger than some threshold (here, chosen to be 0.01 K ms−1) agree quite well with the convective scaling in unstable cases, and with the z-less parameterisation (with a large scatter) in stable cases. For near-neutral cases, the similarity function diverges because of the loss of significance of the temperature scale. Departures from similarity are highlighted in cases with smaller thermal fluxes, because horizontal heterogeneity and unsteadiness become important as production terms.  相似文献   

6.
A dataset from two campaigns conducted at the Vielsalm experimental site in Belgium was used as a basis for discussing some methodological problems and providing intermediate results on estimating CO2 advection. The analysis focused on the horizontal [CO2] gradient and on the vertical velocity w, the variables most affected by uncertainty. The sampling error for half-hourly horizontal [CO2] gradients was estimated to be 1.3 μmol mol−1. Despite this important random error for half-hour estimations of [CO2], the mean horizontal [CO2] gradients in advective conditions were shown to be representative at the ecosystem scale and to extend only to the lowest part of a drainage sub-layer, which developed in the trunk space. By contrast, under daytime conditions, this gradient was shown to be more sensitive to local source heterogeneities. The estimation of the short-term averaged vertical velocity ( was the greater source of error when computing advection terms. The traditional correction methods used to obtain are discussed and a (co)sine correction is tested to highlight the instrumental origin of the offset in w. A comparison of measurements by sonic anemometers placed close together above the canopy showed that the uncertainty on was 0.042 m s−1, which is of the same order of magnitude as the velocity itself. In addition, as the drainage sub-layer is limited to the lowest part of the canopy, the representativeness of is questionable. An alternative computation using the divergence of the horizontal wind speed in the trunk space produced a estimation that was four times lower than the single-point measurement. However, this value gives a more realistic estimate of the vertical advection term and improves the CO2 budget closure at the site.  相似文献   

7.
The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric boundary-layer flows. The approach implements only standard model coefficients C φ1 and C φ2 in the production and destruction terms of the φ equation, respectively. Numerical tests illustrate the practical applicability of the method, where, for example, simulations with the Eω model (where is the specific dissipation and is the dissipation rate of E) properly reproduce both the surface-layer wind profile estimated from the Monin-Obukhov similarity theory and the mixing-height evolution observed above forested terrain in Southern Finland.  相似文献   

8.
In order to quantitatively investigate the role of leads and sea-ice in air-mass modification, aircraft observations were conducted over the partially ice-covered Sea of Okhotsk. We investigated two cold-air outbreak events with different sea-ice concentrations. In both cases, the difference between the temperatures of surface air and the sea surface (ΔT) dropped rapidly with the accumulated fetch-width of leads up to about 35-40 km, and then decreased very slowly. The surface sensible heat flux originating from open water was about 300 W m−2 within a few kilometres from the coast and decreased with increasing accumulated fetch-width. The sensible heat flux was about 100 W m−2 on average. These results indicate that the downwind air-mass modification depends mainly on the total (accumulated) extent of open water. The total buoyancy flux calculated by the joint frequency distribution method correlated very well with ice concentration. Such a relationship was not clear in the case of the moisture flux . The ratio between rising thermals and cold downdrafts differed significantly between upwind and downwind regions; that is, the buoyancy flux was dominated by in the developing stage of the boundary layer, while also became important after the development of the boundary layer.  相似文献   

9.
To investigate how velocity variances and spectra are modified by the simultaneous action of topography and canopy, two flume experiments were carried out on a train of gentle cosine hills differing in surface cover. The first experiment was conducted above a bare surface while the second experiment was conducted within and above a densely arrayed rod canopy. The velocity variances and spectra from these two experiments were compared in the middle, inner, and near-surface layers. In the middle layer, and for the canopy surface, longitudinal and vertical velocity variances () were in phase with the hill-induced spatial mean velocity perturbation (Δu) around the so-called background state (taken here as the longitudinal mean at a given height) as predicted by rapid distortion theory (RDT). However, for the bare surface case, and remained out of phase with Δu by about L/2, where L is the hill half-length. In the canopy layer, wake production was a significant source of turbulent energy for , and its action was to re-align velocity variances with Δu in those layers, a mechanism completely absent for the bare surface case. Such a lower ‘boundary condition’ resulted in longitudinal variations of to be nearly in phase with Δu above the canopy surface. In the inner and middle layers, the spectral distortions by the hill remained significant for the background state of the bare surface case but not for the canopy surface case. In particular, in the inner and middle layers of the bare surface case, the effective exponents derived from the locally measured power spectra diverged from their expected  − 5/3 value for inertial subrange scales. These departures spatially correlated with the hill surface. However, for the canopy surface case, the spectral exponents were near  − 5/3 above the canopy though the minor differences from  − 5/3 were also correlated with the hill surface. Inside the canopy, wake production and energy short-circuiting resulted in significant departures from  − 5/3. These departures from  − 5/3 also appeared correlated with the hill surface through the wake production contribution and its alignment with Δu. Moreover, scales commensurate with Von Karman street vorticies well described wake production scales inside the canopy, confirming the important role of the mean flow in producing wakes. The spectra inside the canopy on the lee side of the hill, where a negative mean flow delineated a recirculation zone, suggested that the wake production scales there were ‘broader’ when compared to their counterpart outside the recirculation zone. Inside the recirculation zone, there was significantly more energy at higher frequencies when compared to regions outside the recirculation zone.  相似文献   

10.
A modification of the most popular two-equation (E–φ) models, taking into account the plant drag, is proposed. Here E is the turbulent kinetic energy (TKE) and φ is any of the following variables: El (product of E and the mixing length l), (dissipation rate of TKE), and ω (specific dissipation of TKE, ). The proposed modification is due to the fact that the model constants estimated experimentally for ‘free-air’ flow do not allow for adequate reconstruction of the ratio between the production and dissipation rates of TKE in the vegetation canopy and have to be adjusted. The modification is universal, i.e. of the same type for all E–φ models considered. The numerical experiments carried out for both homogeneous and heterogeneous plant canopies with E–φ models (and with the El model taken as a kind of reference) show that the modification performs well. They also suggest that E– and E–ω schemes are more promising than the EEl scheme for canopy flow simulation since they are not limited by the need to use a wall function.In addition, a new parameterization for enhanced dissipation within the plant canopy is derived. It minimizes the model sensitivity to C μ, the key parameter for two-equation schemes, and whose estimates unfortunately vary considerably from experiment to experiment. The comparison of results of new modified E– and E –ω models with observations from both field and wind-tunnel experiments shows that the proposed parameterization is quite robust. However, because of uncertainties with the turbulence Prandtl and Schmidt numbers for the E– model within the canopy, the E–ω model is recommended for future implementation, with the suggested modifications.  相似文献   

11.
The two-year (1999–2000) rainwater chemistry at two monitoring sites in nearby coastal areas [Taiwan (TW) and Hong Kong (HK)] within the Western Pacific region has been studied. The volume weighted average pH values for the entire sampling period in TW and HK were 4.6 and 4.2, respectively. Sea salt Na+ and Cl were the most abundant species in the TW samples but and H+ were the most abundant in the HK samples. The sea salt and concentrations at TW were higher than those at HK both in the cold and warm seasons. Chloride depletion was minimal in the rainwater samples at both sites. Non seasalt- was associated with . Under the influence of the East Asian Winter Monsoon, the back-trajectory studies revealed that elevated anthropogenic species concentrations were associated with trajectories (1) very near to the continental boundary layer of Mainland China; or (2) along the coastline of Eastern China where large cities/industrial areas are located or (3) passing through the region of stagnant air over Northern/Eastern China. The lowest anthropogenic and crustal species concentrations measured in HK are associated with the summer monsoon and are attributed not only to the clean marine air masses but also to the relatively low SO2, NO x and NH3 emissions from the South/ South East Asian countries, as well as infrequent biomass burning activities and wet scavenging at sources during the summer months. Approaching tropical cyclones led to the lowest pH values (4.2 in TW and 3.8 in HK) amongst the other weather categories. The findings here have been compared with other studies within East Asia and elsewhere.  相似文献   

12.
We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model permits the existence of turbulence at any gradient Richardson number, Ri. Instead of the critical value of Richardson number separating—as is usually assumed—the turbulent and the laminar regimes, the suggested model reveals a transitional interval, , which separates two regimes of essentially different nature but both turbulent: strong turbulence at ; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at . Predictions from this model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulation and large-eddy simulation.  相似文献   

13.
Levels of fine Particulate Matter (PMfine), SO2 and NOx are interlinked through atmospheric reactions to a large extent. NOx, NH3, SO2, temperature and humidity are the important atmospheric constituents/conditions governing formation of fine particulate sulfates and nitrates. To understand the formation of inorganic secondary particles (nitrates and sulfates) in the atmosphere, a study was undertaken in Kanpur, India. Specifically, the study was designed to measure the atmospheric levels of covering winter and summer seasons and day and night samplings to capture the diurnal variations. Results showed are found to be significantly high in winter season compared to the summer season. In winter, the molar ratio of to was found to be greater than 2:1. This higher molar ratio suggests that in addition to (NH4)2SO4, NH4NO3 will be formed because of excess quantity of present. In summer, the molar ratio was less than 2:1 indicating deficit of to produce NH4NO3. The nitrogen conversion ratio (NO2 to NO3) was found to be nearly 50% in the study area that suggested quick conversion of NO2 into nitric acid. As an overall conclusion, this study finds that NH3 plays a vital role in the formation of fine inorganic secondary particles particularly so in winter months and there is a need to identify and assess sources of ammonia emissions in India.  相似文献   

14.
Data from the Antarctic winter at Halley Base have been used in order to evaluate qualitatively and quantitatively how the stratification in the low atmosphere (evaluated with the gradient Richardson number, Ri) influences the eddy transfers of heat and momentum. Vertical profiles of wind and temperature up to 32 m, and turbulent fluxes ( , and ) measured from three ultrasonic thermo-anemometers installed at 5, 17 and 32 m are employed to calculate Ri, the friction velocity (u *) and the eddy diffusivities for heat (K h ) and momentum (K m ). The results show a big dependence of stability onK m ,K h andu *, with a sharp decrease of these turbulent parameters with increasing stability. The ratio of eddy diffusivities (K h /K m ) is also analyzed and presents a decreasing tendency as Ri increases, reaching values even less than 1, i.e., there were situations where the turbulent transfer of momentum was greater than that of heat. Possible mechanisms of turbulent mixing are discussed.  相似文献   

15.
Flux Footprint Simulation Downwind of a Forest Edge   总被引:2,自引:2,他引:0  
Surface fluxes, originating from forest patches, are commonly calculated from atmospheric flux measurements at some height above that patch using a correction for flux arising from upwind surfaces. Footprint models have been developed to calculate such a correction. These models commonly assume homogeneous turbulence, resulting in a simulated atmospheric flux equal to the average surface flux in the footprint area. However, atmospheric scalar fluxes downwind of a forest edge have been observed to exceed surface fluxes in the footprint area. Variations in atmospheric turbulence downwind of the forest edge, as simulated with an E – model, can explain enhanced atmospheric scalar fluxes. This E – model is used to calculate the footprint of atmospheric measurements downwind of a forest edge. Atmospheric fluxes appear mainly enhanced as a result of a stronger sensitivity to fluxes from the upwind surface. A sensitivity analysis shows that the fetch over forest, necessary to reach equilibrium between atmospheric fluxes and surface fluxes, tends to be longer for scalar fluxes as compared to momentum fluxes. With increasing forest density, atmospheric fluxes deviate even more strongly from surface fluxes, but over shorter fetches. It is concluded that scalar fluxes over forests are commonly affected by inhomogeneous turbulence over large fetches downwind of an edge. It is recommended to take horizontal variations in turbulence into account when the footprint is calculated for atmospheric flux measurements downwind of a forest edge. The spatially integrated footprint is recommended to describe the ratio between the atmospheric flux and the average surface flux in the footprint.  相似文献   

16.
Spatial Variability of Flow Statistics within Regular Building Arrays   总被引:2,自引:2,他引:0  
Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of . The flow statistics analysed are mean streamwise velocity (), shear stress (), turbulent kinetic energy (k) and dispersive stress fraction (). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.  相似文献   

17.
The goal of this study is to determine the chemical composition of rain, in the wider region of Athens, Greece for the time period 1st September 2001 to 31st August 2002. Two model automatic rain samplers were installed in the Meteorological Station of Laboratory of Climatology (latitude: 37° 58′ N, longitude: 23° 47′ E) inside the Athens University Campus and in a site at Heraklio Attica, a northern suburb of Athens (latitude: 38° 03′ N, longitude: 23° 45′ E). The concentrations (μeq l−1) of the major cations (H+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, , και ), as well as pH and conductivity of rain in 39 total samples were determined. The figures of pH range from 6.4 to 8.4 and conductivity from 8 to 207 μS cm−1. The analysis showed that Ca2+ ions are abundant within all examined samples, while and present the highest concentrations from the anions. In order to find out the origin of the air masses, the air mass back trajectories were calculated. Five sectors of the origin of air masses were revealed: the North, the South, the Local, the West and the East sector. Multivariate methods included Factor Analysis and Discriminant Analysis were applied to the examined ion concentrations and three main factors were extracted, which discriminated the ions according to their origin. The first group of ions is interpreted as the result of the anthropogenic activity, the second group represents the acidity–alkalinity independently of their source and the third one the marine influence.  相似文献   

18.
The reactions of three structurally similar unsaturated alcohols, 2-buten-1-ol (crotyl alcohol), 2-methyl-2-propen-1-ol (MPO221) and 3-methyl-2-buten-1-ol (MBO321) with Cl atoms, have been investigated for the first time, using a 400 l Teflon reaction chamber coupled with gas chromatograph-coupled with flame-ionization detection (GC-FID). The experiments were performed at atmospheric pressure and at temperatures between 255 and 298 K, in air or nitrogen as the bath gas. The obtained kinetic data were used to derive the Arrhenius expressions , , (in units of cm3 molecule−1 s−1). Finally, atmospheric lifetimes of those unsaturated alcohols with respect to OH, NO3, O3 and Cl have been calculated.  相似文献   

19.
This article presents a complete study of the diurnal chemical reactivity of the biogenic volatile organic compound (BVOC), 2-methyl-3-buten-2-ol (MBO) in the troposphere. Reactions of MBO with OH and with ozone were studied to analyse the respective parts of both processes in the global budget of MBO atmospheric reactivity. They were investigated under controlled conditions for pressure (atmospheric pressure) and temperature (298 ± 2 K) using three complementary European simulation chambers. Reaction with OH radicals was studied in the presence of and in the absence of NO x . The kinetic study was carried out by relative rate study using isoprene as a reference. The rate constant found for this reaction was molecule−1 cm3 s−1. FTIR spectroscopy, DNPH- and PFBHA-derivatisation analyses were performed for reactions with both OH radicals and ozone. In both reactions, the hydroxycarbonyl compound, 2-hydroxy-2-methylpropanal (HMPr) was positively identified and quantified, with a yield of in the reaction with OH, and a yield of and 0.84 ± 0.08 in the reaction with ozone under dry (HR < 1%) and humid conditions (HR = 20%–30%). A primary production of two other carbonyl compounds, acetone , and formaldehyde was found in the case of the dry ozonolysis experiments. Under humid conditions, only formaldehyde was co-produced with HMPr as a primary carbonyl compound, with a yield of . For the reaction with OH, three other carbonyl compounds were detected, acetone , formaldehyde and glycolaldehyde . In addition some realistic photo-oxidation experiments were performed to understand in an overall way the transformations of MBO in the atmosphere. The realistic photo-oxidation experiments were conducted in the EUPHORE outdoor simulation chamber. It was found that this compound is a weak secondary aerosol producer (less than 1% of the carbon balance). But it was confirmed that it is a potentially significant source of acetone, Δ[Acetone]/Δ[MBO] = 0.45. With our experimental conditions ([MBO]0 = 200 ppb, [NO]o = 50 ppb), an ozone yield of Δ[O3]/Δ[MBO] = 1.05 was found.  相似文献   

20.
A linear model for neutral surface-layer flow over orography is presented. The Reynolds-Averaged Navier-Stokes and E– turbulence closure equations are expressed in a terrain-following coordinate system created from a simple analytical expression in the Fourier domain. The perturbation equations are solved spectrally horizontally and by numerical integration vertically. Non-dimensional solutions are stored in look-up tables for quick re-use. Model results are compared to measurements, as well as other authors’ flow models in three test cases. The model is implemented and tested in two-dimensional space; the equations for a full three-dimensional version are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号