首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对川中丘陵区紫色土坡耕地严重水土流失,选取典型代表李子溪流域为研究区,构建了其SWAT的模型数据库,包括地形、土壤、气象和土地利用数据库。并利用赵家祠水文站1970-1979年的实测径流和泥沙资料,对该流域的SWAT模型参数进行率定再采用1980-1986年的实测资料,对模型的适用性进行验证,同时用相对误差Re和Nash确定性系数Ens评价模拟效果。结果显示,径流和泥沙模拟相对误差均在±15%范围以内,Nash确定性系数均大于等于0.70,说明SWAT模型对李子溪流域年、月径流和年泥沙量的模拟精度较高。同时模拟值与实测值和降雨量的变化趋于一致。可见,用SWAT模型模拟和预测雨量较为丰沛、土壤侵蚀较严重的紫色丘陵地区的产流产沙是实用、可行的。  相似文献   

2.
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m~2) for bare soil plots and from 5.61 to 84.58 g/(min·m~2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.  相似文献   

3.
Aggregate stability is a very important predictor of soil structure and strength,which influences soil erodibility.Several aggregate stability indices were selected for estimating interrill erodibility of four soil types with contrasting properties from temperate and subtropical regions of China.This study was conducted to investigate how closely the soil interrill erodibility factor in the Water Erosion Prediction Project(WEPP) model relates to soil aggregate stability.The mass fractal dimension(FD),geometric mean diameter(GMD),mean weight diameter(MWD),and aggregate stability index(ASI) of soil aggregates were calculated.A rainfall simulator with a drainable flume(3.0 m long × 1.0 m wide × 0.5 m deep) was used at four slope gradients(5°,10°,15° and 20°),and four rainfall intensities(0.6,1.1,1.7 and 2.5 mm/min).Results indicated that the interrill erodibility(Ki) values were significantly correlated to the indices of ASI,MWD,GMD,and FD computed from the aggregate wet-sieve data.The Ki had a strong positive correlation with FD,as well as a strong negative correlation with ASI,GMD,and MWD.Soils with a higher aggregate stability and lower fractal dimension have smaller Ki values.Stable soils were characterized by a high percentage of large aggregates and the erodible soils by a high percentage of smaller aggregates.The correlation coefficients of Ki with ASI and GMD were greater than those with FDand MWD,implying that both the ASI and GMD may be better alternative parameters for empirically predicting the soil Ki factor.ASI and GMD are more reasonable in interrill soil erodibility estimation,compared with Ki calculation in original WEPP model equation.Results demonstrate the validation of soil aggregation characterization as an appropriate indicator of soil susceptibility to erosion in contrasting soil types in China.  相似文献   

4.
Purple soil is highly susceptible for overland flow and surface erosion, therefore understanding surface runoff and soil erosion processes in the purple soil region are important to mitigate flooding and erosion hazards. Slope angle is an important parameter that affects the magnitude of runoff and thus surface erosion in hilly landscapes or bare land area. However, the effect of slope on runoff generation remains unclear in many different soils including Chinese purple soil. The aim of this study was to investigate the relationship between different slope gradients and surface runoff for bare-fallow purple soil, using 5 m × 1.5 m experimental plots under natural rainfall conditions. Four experimental plots(10°, 16°, 20° and 26°) were established in theYanting Agro-ecological Experimental Station of Chinese Academy of Science in central Sichuan Basin. The plot was equipped with water storage tank to monitor water level change. Field monitoring from July 1 to October 31, 2012 observed 42 rainfall events which produced surface runoff from the experimental plots. These water level changes were converted to runoff. The representative eight rainfall events were selected for further analysis, the relationship between slope and runoff coefficient were determined using ANOVA, F-test, and z-score analysis. The results indicated a strong correlation between rainfall and runoff in cumulative amount basis. The mean value of the measured runoff coefficient for four experimental plots was around 0.1. However, no statistically significant relationship was found between slope and runoff coefficient. We reviewed the relationship between slope and runoff in many previous studiesand calculated z-score to compare with our experimental results. The results of z-score analysis indicated that both positive and negative effects of slope on runoff coefficient were obtained, however a moderate gradient(16°-20° in this study) could be a threshold of runoff generation for many different soils including the Chinese purple soil.  相似文献   

5.
Application of swat model in the upstream watershed of the Luohe River   总被引:6,自引:0,他引:6  
1INTRODUCTIONIntheHuanghe(Yellow) Riverbasin, soilerosionisaseriousproblem,whilerunoffandsedimentyieldsim-ulation hasnotbeenextensivelystudiedonthebasisofGIS(GeographicInformationSystem) and dis-tributedhydrologicalmodel.Inthisstudy,theLushiwatershed,whichislocatedattheupstreamoftheLushiHydrologicalStationintheLuoheRiver—thebiggesttributary oftheHuanghe Riveranddown-streamofXiaolangdiDam,isselectedasthestudyarea.ThelevelofsoilerosioninLushiwatershedismoderatein theHuangheRiverbas…  相似文献   

6.
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.  相似文献   

7.
Soil erosion by water under forest cover is a serious problem in southern China. A comparative study was carried out on the use of leaf area index (LAI) and vegetation fractional coverage (VFC) in quantifying soil loss under vegetation cover. Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates (40 mm h−1 and 54 mm h−1) using a portable rainfall simulator. Runoff rate, sediment concentration and soil loss rate were measured at relatively runoff stable state. Significant negative exponential relationship (p < 0.05, R2 = 0.83) and linear relationship (p < 0.05, R2 = 0.84) were obtained between LAI and sediment concentration, while no significant relationship existed between VFC and sediment concentration. The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration. LAI could better quantify such a role than VFC. However, neither LAI nor VFC could explain runoff rate or soil loss rate. Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation.  相似文献   

8.
Erosion agents and patterns profoundly affect hillslope soil loss characteristics. However, few attempts have been made to analyze the effects of rainfall and inflow on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. The objective of this study was to discuss the erosive agent(rainfall or inflow), hillslope erosion pattern(sheet erosion or rill erosion) and slope gradient effects on runoff and soil losses. Two soil pans(2.0 m long, 0.5 m wide and 0.5 m deep) with 5° and 10° slopes were subjected to rainfall(0 and 70 mm h–1) and inflow(0 and 70 mm h–1) experiments. Three experimental combinations of rainfall intensity(RI) and inflow rate(IR) were tested using the same water supply of 70 mm by controllingthe run time. A flat soil surface and a soil bed with a straight initial rill were prepared manually, and represented hillslopes dominated by sheet erosion and rill erosion, respectively. The results showed that soil losses had greater differences among treatments than total runoff. Soil losses decreased in the order of RI70+IR70 RI70+IR0 RI0+IR70. Additionally, soil losses for hillslopes dominated by rill erosion were 1.7-2.2 times greater at 5° and 2.5-6.9 times greater at 10° than those for hillslopes dominated by sheet erosion. The loss of 0.25 mm soil particles and aggregates varying from 47.72%-99.60% of the total soil loss played a dominant role in the sediment. Compared with sheet erosion hillslopes, rill erosion hillslopes selectively transported more microaggregates under a relatively stable rill development stage, but rills transported increasinglymore macroaggregates under an active rill development stage. In conclusion, eliminating raindrop impact on relatively gentle hillslopes and preventing rill development on relatively steep hillslopes would be useful measures to decrease soil erosion and soil degradation in the Mollisol region of northeastern China.  相似文献   

9.
Gully erosion has caused soil degradation and even reduced soil productivity.However,only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region of Northeast China are available.Thus,this study explores the relationships between gully erosion,gully filling and soil parameters.Two sets of soil samples were collected in the field at:(1) 72 sample points in the gully erosion study area,60 sample points in the ephemeral and classical gully erosion area(3,518 m2),12 sample points in the deposition zone(443 m2),(2)10 reference points along a slope unaffected by gully erosion representing the original situation before the gully was formed.All soil samples were analyzed for gravel content(GC),soil organic matter(SOM),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),and available potassium(AK).The soil property values on unaffected slope were fitted by the polynomial curves as the reference values in no gully erosion area.The interpolated soil property values in gully eroded study area were compared with these polynomial curves,respectively,and then,changes of soil property values were analyzed.Gully erosion caused an increase in GC and a decrease in SOM,TN,AN,AP and AK.The change of GC,SOM,TN,AN,AP,AK was 8.8%,-9.04 g kg-1,-0.92 g kg-1,-62.28 mg kg-1,-29.61 mg kg-1,-79.68 mg kg-1.The soil property values in the study area were below optimal values.Thus,we concluded that gully erosion and gully filling caused both on-site and off-site soil degradation.Soil degradation area was 0.65 % of the cultivated land.In addition,it was proved that gully filling were an improper soil and water conservation measure,which seems to exacerbate the problem.Thus,it is suggested that soil where soil is deep is moved to fill the gully,and then the area around the filled gullies should be covered by grass for preventing the formation and development of the gully.  相似文献   

10.
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.  相似文献   

11.
A review on rill erosion process and its influencing factors   总被引:8,自引:0,他引:8  
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.  相似文献   

12.
Under global warming, storm events tend to intensify, particularly in monsoon-affected regions.As an important agricultural area in China, the purple soil region in the Sichuan Basin, where it has a prevailing monsoon climate, is threatened by serious soil erosion. Tillage operations alter runoff and soil erosion processes on croplands by changing the physical properties of the soil surface. To clarify the relationship between tillage and soil erosion in the purple soil region, three different tillage practices in this region were investigated at the plot scale over 4 years: bare land with minimum tillage(BL),conventional tillage(CT) and seasonal no-tillage ridges(SNTR) which was initially designed to prevent soil erosion by contoured ridges and no-tillage techniques. The results showed that although there were no significant differences in the surface runoff and soil erosion among the three practices, BL causedrelatively high surface runoff and soil erosion,followed by CT and SNTR. Classification and comparison of the rainfall events based on cluster analysis(CA) verified that the surface runoff was not significantly different between most intensive event and long intensive events but was significantly different between most intensive and short and medium-duration events. Only the rainfall events with the highest rainfall intensity could trigger serious soil erosion, up to 1000 kg ha-1 in the region. Further detailed investigations on the effects of tillage operations on the soil erosion in a subtropical region with a monsoon climate are needed to provide a basis for modeling catchments and designing better management practices.  相似文献   

13.
Bio-embankment is an important soil and water conservation measure in the purple hilly area in China,which can effectively improve the ability of cultivated soil layers to resist rainfall erosion and runoff scour.In contrast,the ecological effect of bioembankment depends on the stability of the earth bank.Taking the natural grass bank as a control(CK),the root distribution,root tensile properties and shear resistance of root-soil composites for 3 typical soil and water conservation bio-embankments,namely,Morus alba Linn(Morns),Zanthoxylum bungeanum Maxim(Zanthoxylum)and Medicago sativa(Medicago)were analysed.The results included the following:(1)The root system of the bio-embankments generally decreased in extent with the soil depth;fine roots in the o-io cm depth were most prevalent and significantly higher than those at the other depths,and coarse roots were mainly distributed in the o-30cm layer.(2)The stress-strain curves of the roots of each bio-embankment were single-peak curves without clear strain softening phenomena.The smaller the root diameters were,the smoother the stress-strain curves,and the lower the capability of the earth bank to resist collapse.The larger the root diameters were,the lower the tensile strength.The average root tensile force was highest for Zanthoxylum(73.91 N),followed by Medicago(68.07N)and Morus(61.88 N),and the average root tensile strength showed the same trend,16.52 MPa for Zanthoxylum,16.08 MPa for Medicago and 13.02MPa for Morus.(3)The bio-embankment measures significantly improved the soil shear resistance,especially under vertical loads of 1oo kPa and 200kPa.The soil internal friction angle showed a significant log-positive correlation with root morphological parameters of root length density(RLD),root surface area density(RSAD) and rootweight density(RWD),while the soil cohesion force showed a positive linear correlation with these parameters.The results provide effective parameters supporting for the design of bio-embankments and promoting the use of soil reinforcement with suitable species selection in protective earth banks for stability in the purple hilly area.  相似文献   

14.
The Revised Universal Soil Loss Equation(RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system(GIS) and remote sensing(RS) technologies.To improve the accuracy of soil-erosion estimates,a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index(NDVI) datasets.The new C-factor was then applied in the RUSLE to integrate rainfall,soil,vegetation,and topography data of different periods,and thus monitor the distribution of soil erosion patterns and their dynamics during a 30-year period of the upstream watershed of Miyun Reservoir(UWMR),China.The results showed that the new C-factor estimation method,which considers land cover status and dynamics,and explicitly incorporates within-land cover variability,was more rational,quantitative,and reliable.An average annual soil loss in UWMR of 25.68,21.04,and 16.80 t ha-1a-1was estimated for 1990,2000 and 2010,respectively,corroborated by comparing spatial and temporal variation in sediment yield.Between 2000 and 2010,a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1a-1,while during 1990-2000 such lands only increased on average by 0.46%.Areas that classified as severe,very severe and extremely severe accounted for 5.68% of the total UWMR in 2010,and primarily occurred in dry areas or grasslands of sloping fields.The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners.Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land,afforestation,or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.  相似文献   

15.
During the two cruises in March and July of 2011, the tidal cycling of turbulent properties and the T/S profiles at the same location in seasonally stratified East China Sea (ECS) were measured synchronously by a bottom-mounted fast sampling ADCP (acoustic Doppler current profiler) and a RBR CTD (RBR-620) profiler. While focusing on the tide-induced and stratification’s impact on mixing, the Reynolds stress and the turbulent kinetic energy (TKE) production rate were calculated using the ‘variance method’. In spring, the features of mixing mainly induced by tides were clear when the water column was well-mixed. Velocity shear and turbulent parameters intensified towards the seabed due to the bottom friction. The components of the velocity shear and the Reynolds stress displayed a dominant semi-diurnal variation related to velocity changes caused by the flood and ebb of M2 tide. Stratification occurred in summer, and the water column showed a strongly stratified pycnocline with a characteristic squared buoyancy frequency of N2 ~ (1–6) × 10?3 s?2. The components of the velocity shear and the Reynolds stress penetrated upwards very fast from the bottom boundary layer to the whole water column in spring, while in summer they only penetrated to the bottom of the pycnocline with a relatively slow propagation speed. In summer, the TKE production within the pycnocline was comparable with and sometimes larger than that in the well-mixed bottom layer under the pycnocline. Considering the associated high velocity shear, it is speculated that the mixing in the pycnocline is a result of the local velocity shear.  相似文献   

16.
Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes >2 mm. The effects of rock fragments <2 mm in soil are generally ignored. Similar to rock fragments >2 mm, the presence of rock fragments <2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of <2 mm rock fragments on soil shear strength via an unconsolidated undrained (UU) triaxial compression test. Our results were as follows: (1) A certain quantity of <2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of <2 mm rock fragments could improve the shear strength of soils. (2) The different PSDs of soils containing <2 mm rock fragments mainly caused variations in the internal friction angle of soils. (3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that <2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment.  相似文献   

17.
Soilerosionisoneofthemostseriousenvironmentalproblemsinthepresentworld.Itnotonlyrestrictstheproductionofagriculturebadly,butalsothreatensthenaturalenvironmentonwhichhumanbeinglive.Andthismakethemankindconfrontedwithtremendouschallenge.OntheLoessPlateau,soilandwaterlossisterrible,environmentisweak,anditshighsandyieldmakestheriverwayinthelowerreachesoftheHuanghe(Yellow)Riverfilledup,riverbeddrivenup,floodthreatprickedup,andresultsingreathiddentroublestothecontrollingoffloodandtherunningofirrig…  相似文献   

18.
Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards(25° of slope inclination). In the vineyards of the Montes de Málaga(southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways(between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions(a motor driven pump that discharged water flows up to 1.33 l s~(-1) for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds(between 0.16 m s-1 and 0.28 m s~(-1)) and sediment concentrationrates(up to 1538.6 g l~(-1)) than typically found in other Mediterranean areas and land uses(such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.  相似文献   

19.
Accelerated soil erosion and land degradation represent major environmental problems for agricultural lands.Reliable information on the rates of soil loss is urgently needed.The traditional techniques for documenting rates of soil loss may meet this need,but face many limitations.The fallout radionuclides,especially 137 Cs and 210 Pb ex,are increasingly used as effective tracers to quantify soil erosion rates,and they represent a valuable complement to the existing classical methods.This paper aims to introduce the basis for assessing soil erosion rates on cultivated and uncultivated slopes by using 137 Cs and 210 Pb ex measurements,to compare the 137 Cs and 210 Pb ex reference inventories,and to report several case studies undertaken in the hilly area of Sichuan Basin and the Three Gorges area of China.  相似文献   

20.
The Sediment Delivery Ratio (SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrological regime and watershed properties, may influence the SDR at interannual timescales. However, the effect of certain important dynamic factors, such as rainfall peak distribution, runoff erosion power and sediment bulk density, on the sediment delivery ratio of single flood events (SDRe) has received little attention. The Qiaogou headwater basin is in the hilly-gully region of the Chinese Loess Plateau, and it encompasses a 0.45 km2 catchment. Three large-scale field runoff plots at different geomorphological positions were chosen to obtain the observation data, and the 20-year period between 1986 and 2005 is presented. The results showed that the SDRe of the Qiaogou headwaters varied from 0.49 to 2.77. Among the numerous influential factors, rainfall and runoff were the driving factors causing slope erosion and sediment transport. The rainfall erosivity had a significant positive relationship with the sediment transport modulus (R2=0.85, P<0.01) but had no significant relationship with SDRe. The rainfall peak coefficient was significantly positively correlated with the SDRe (R2=0.64, P<0.05), indicating the influence of rainfall energy distribution on the SDRe. The runoff erosion power index was not only significantly related to the sediment transport modulus (R2=0.84, P<0.01) but also significantly related to the SDRe (R2=0.57, P<0.01). In addition, the relative bulk density was significantly related to the SDRe, indicating that hyper-concentrated flow characteristics contributed to more transported sediment in the catchment. Thus, the rainfall peak coefficient, runoff erosion power and sediment relative bulk density could be used as dynamic indexes to predict the SDRe in the hilly areas of the Chinese Loess Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号