首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Songligou gold‐telluride deposit, located in Songxian County, western Henan Province, China, is one of many gold‐telluride deposits in the Xiaoqinling‐Xiong'ershan district. Gold orebodies occur within the Taihua Supergroup and are controlled by the WNW F101 Fault, and the fault was cut across by a granite porphyry dike. Common minerals in gold orebodies include quartz, chlorite, epidote, K‐feldspar, calcite, fluorite, sericite, phlogopite, bastnasite, pyrite, galena, chalcopyrite, sphalerite, tellurides, gold, bismuthinite, magnetite, and hematite, and pyrite is the dominant sulfide. Four mineralization stages are recognized, including pyrite‐quartz stage (I), quartz‐pyrite stage (II), gold‐telluride stage (III), and quartz‐calcite stage (IV). This work reports the Rb–Sr age of gold‐telluride‐bearing pyrite and zircon U–Pb age of granite porphyry, as well as S isotope data of pyrite and galena. The pyrite Rb–Sr isochron age is 126.6 ± 2.3 Ma (MSWD = 1.8), and the average zircon U–Pb age of granite porphyry is 166.8 ± 4.1 Ma (MSWD = 4.9). (87Sr/86Sr) i values of pyrite and δ34S values of sulfides vary from 0.7104 to 0.7105 and ?11.84 to 0.28‰, respectively. The obtained Rb–Sr isochron age represents the ore formation age of the Songligou gold‐telluride deposit, which is much younger than the zircon U–Pb age of the granite porphyry. Strontium and S isotopes, together with the presence of bastnaesite, suggest that the ore‐forming fluid was derived from felsic magmas with input of a mantle component and subsequently interacted with the Taihua Supergroup. Tellurium was derived from metasomatized mantle and was related to the subduction of the Shangdan oceanic crust and Izanagi plate beneath the North China Craton (NCC). This deposit is a part of the Early Cretaceous large‐scale gold mineralization in east NCC and formed in an extensional tectonic setting.  相似文献   

2.
Abstract. The Yuryang gold deposit, comprising a Te‐bearing Au‐Ag vein mineralization, is located in the Cheonan area of the Republic of Korea. The deposit is hosted in Precambrian gneiss and closely related to pegmatite. The mineralized veins display massive quartz textures, with weak alteration adjacent to the veins. The ore mineralization is simple, with a low Ag/Au ratio of 1.5:1, due to the paucity of Ag‐phases. Ore mineralization took place in two different mineral assemblages with paragenetic time; early Fe‐sulfide mineralization and late Fe‐sulfide and Au‐Te mineralization. The early Fe‐sulfide mineralization (pyrite + sphalerite) occurred typically along the vein margins, and the subsequent Au‐Te mineralization is characterized by fracture fillings of galena, sphalerite, pyrrhotite, Te‐bearing minerals (petzite, altaite, hessite and Bi‐Te mineral) and electrum. Fluid inclusions characteristically contain CO2 and can be classified into four types (Ia, Ib, IIa and IIb) according to the phase behavior. The pressure corrected temperatures (≥500d?C) indicate that the deposit was formed at a distinctively high temperature from fluids with moderate to low salinity (<12 wt% equiv. NaCl) and CH4 (1?22 mole %). The sphalerite geo‐barometry yield an estimated pressure about 3.5 ?2.1 kbar. The dominant ore‐deposition mechanisms were CO2 effervescence and concomitant H2S volatilization, which triggered sulfidation and gold mineralization. The measured and calculated isotopic compositions of fluids (δ18OH2O = 10.3 to 12.4 %o; δDH2O = ‐52 to ‐77 %o) may indicate that the gold deposition originated from S‐type magmatic waters. The physicochemical conditions observed in the Yuryang gold deposit indicate that the Jurassic gold deposits in the Cheonan area, including the Yuryang gold deposit are compatible with deposition of the intrusion‐related Au‐Te veins from deeply sourced fluids generated by the late Jurassic Daebo magmatism.  相似文献   

3.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

4.
In Kamchatka, Central Koryak, Central Kamchatka and East Kamchatka metallogenic belts are distributed from northwest to southeast. K–Ar age, sulfur isotopic composition of sulfide minerals, and bulk chemical compositions of ores were analyzed for 13 ore deposits including hydrothermal gold‐silver and base metal, in order to elucidate the geological time periods of ore formation, relationship to regional volcanic belts, type of mineralization, and origin of sulfur in sulfides. The dating yielded ore‐forming ages of 41 Ma for the Ametistovoe deposit in the Central Koryak, 17.1 Ma for the Zolotoe deposit and 6.9 Ma for the Aginskoe deposit in the Central Kamchatka, and 7.4 Ma for the Porozhistoe deposit and 5.1 Ma for the Vilyuchinskoe deposit in the East Kamchatka metallogenic belt. The data combined with previous data of ore‐forming ages indicate that the time periods of ore formation in these metallogenic belts become young towards the southeast. The averaged δ34SCDT of sulfides are ?2.8‰ for the Ametistovoe deposit in Central Koryak, ?1.8‰ to +2.0‰ (av. ?0.1‰) for the Zolotoe, Aginskoe, Baranievskoe and Ozernovskoe deposits in Central Kamchatka, and ?0.7 to +3.8‰ (av. +1.7‰) for Bolshe‐Bannoe, Kumroch, Vilyuchinskoe, Bystrinskoe, Asachinskoe, Rodnikovoe, and Mutnovskoe deposits in East Kamchatka. The negative δ34SCDT value from the Ametistovoe deposit in Central Koryak is ascribed to the contamination of 32S‐enriched sedimentary sulfur in the Ukelayat‐Lesnaya River trough of basement rock. Comparison of the sulfur isotope compositions of the mineral deposits shows similarity between the Central Koryak and Magadan metallogenic belts, and East Kamchatka and Kuril Islands belts. The Central Kamchatka belt is intermediate between these two groups in term of sulfur isotopic composition.  相似文献   

5.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   

6.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The Huangshilao gold deposit (>13.5 t Au) is comprised of stratabound pyrite‐dominant massive sulfide ores, and is distinguished from the skarn Cu, Au, and Cu–Au deposits that are dominant in the Tongguanshan orefield, Tongling, east‐central China. The stratabound orebodies are situated along flexural slip faults along the unconformity between the Upper Devonian Wutong and the Upper Carboniferous Huanglong Formations. The ores, dominated by crystallized pyrite, colloform pyrite, and pyrrhotite, are systematically sampled from the underground stopes along strike drifts. The δ34S values of ore sulfides yield a wide variation from ?11.3 to 11.4‰, but mostly within 4–8‰, corresponding to the δ34S range (3.4–8.7‰) of the Yanshanian Tongguanshan and Tianshan quartz diorite intrusions in the Tongguanshan orefield, suggesting a magmatic dominated sulfur source. Few obvious negative δ34S values are induced by an involvement of sedimentation‐related biogenic sulfur. The wide δ34S variation denotes an incongruent physical and chemical interaction of the two sources. Combined analysis of gold contents and sulfur isotopes of the sulfides show that the magmatic hydrothermal solution provides primary metals despite a small quantity that may have been contributed by the sedimentary pyrites. The hydrothermal alteration, thermal metamorphism, trace element concentration in pyrites, and existing aeromagnetic data jointly suggest that the hydrothermal fluid migrated vertically from an intrusion below, along the flexural slip faults, but not laterally from the nearby outcrop of Tianshan stock.  相似文献   

8.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

9.
More than 200 analyses of the sulfur isotopic composition of sulfides from various terrigenous and intrusive host rocks, metasomatically altered wall rocks, and gold lodes of the Upper Kolyma region are presented. In accessory pyrite of the metaterrigenous rocks, δ34S varies from ?23.1 to +5.7‰ δ34S of pyrite and arsenopyrite from gold-quartz mineralization is within the range ?10.6 to ?0.4‰ and is close to the average δ34S of pyrite from the metaterrigenous rocks (?4.4‰). In the intrusive rocks, δ34S of pyrite varies from ?3.8 to +2.6‰ (+0.7‰, on average) and drastically differs from δ34S of arsenopyrite from postmagmatic gold-rare-metal mineralization (?7.9 to ?2.7‰; ?5.2‰, on average). The comparison of the δ34S of accessory sulfides from the host rocks with δ34S of sulfides from the gold deposits suggests that sulfur mobilized from the terrigenous sequences participated in the hydrothermal process. The results obtained are consistent with the metamorphic model of the formation of gold-quartz deposits in the Upper Kolyma region.  相似文献   

10.
Electron probe micro-analysis(EPMA) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS) have been used to investigate the principal ore minerals and coexisting metallic mineral inclusions in polished thin sections from the Tiegelongnan deposit, which consists of a high-sulfidation epithermal system(HSES) and a porphyry system(PS). Molybdenite,chalcopyrite, bornite, tennantite, enargite, digenite, anilite, covellite, and tetrahedrite have been identified by EPMA. Intergrowth, cross-cutting and replacement relationships between the metallic minerals suggest that molybdenite formed first(stage 1),followed by chalcopyrite ± bornite ± hematite(stage 2),then bornite ± Cu-sulfides ± Cu-Fe-sulfoarsenides(stage 3),and lastly Cu-Fe-sulfoarsenides ±Cu-sulfides(stage 4). Pyrite is developed throughout all the stages. Droplet-like inclusions of Au-Te minerals commonly occur in tennantite but not in the other major sulfides(molybdenite, chalcopyrite and bornite),implying that tennantite is the most important Au telluride carrier. The pervasive binary equilibrium phases of calaverite and altaite constrain f_(Te2) in the range from ~-6.5 to ~-8 and f_(S2)-11.The intergrowth of bornite and chalcopyrite and the conversion from bornite to digenite suggest fluctuated and relatively low precipitation temperature conditions in the HSES relative to the PS.Contrastingly, the dominance of chalcopyrite in the PS, with minor bornite, suggests relatively high temperature conditions. These new results are important for further understanding the mineral formation processes superimposed by HSES and PS systems.  相似文献   

11.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

12.
The Dongping gold deposit is located near the center of the northern margin of the North China Craton. It is hosted in the Shuiquangou syenite and characterized by large amounts of tellurides. Numerous studies have addressed this deposit; the mineral paragenesis and ore‐forming processes, however, are still poorly studied. In this contribution, a new mineral paragenesis has been evaluated to further understand ore formation, including sulfides (pyrite, chalcopyrite, galena, sphalerite, molybdenite, and bornite), tellurides (altaite, calaverite, hessite, muthmannite, petzite, rucklidgeite, sylvanite, tellurobismuthite, tetradymite, and volynskite), and native elements (tellurium and gold). Molybdenite, muthmannite, rucklidgeite, and volynskite are reported for the first time in this deposit. We consider the Dongping gold deposit mainly formed in the Devonian, and the ore‐forming processes and the physicochemical conditions for ore formation can be reconstructed based on our newly identified ore paragenesis, that is, iron oxides → (CO2 effervescence) → sulfides → (fTe2/fS2 ratio increase) → Pb‐Bi‐tellurides → (condensation of H2Te vapor) → Au‐Ag‐tellurides → (mixing with oxidizing water) → carbonate and microporous gold → secondary minerals → secondary minerals. The logfO2 values increase from the early to late stages, while the fH2S and logfS2 values increase initially and then decrease. CO2 effervescence is the main mechanism of sulfides precipitation; this sulfidation and condensation of H2Te vapor lead to deposition of tellurides. The development of microporous gold indicates that the deposit might experience overprint after mineralization. The Dongping gold deposit has a close genetic relationship with the Shuiquangou syenite, and tellurium likely originated from Shuiquangou alkaline magmatic degassing.  相似文献   

13.
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO_2-CH_4 single phase FIs,2) CO_2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO_2- and CH_4-rich FIs of the CO_2-CH4-H_2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO_2-rich FIs of the CO_2-H_2O-NaCl system and liquid-rich FIs of the H_2O-NaCl system.For the CO_2-CH_4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO_2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm~3 to 0.8 g/cm~3;for two- or three-phase FIs of the CO_2-CH_4-H_2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm~3 to 1.0 g/cm~3,respectively.For CO_2-H_2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H_2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm~3 to 1.0 g/cm~3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO_2 and CH_4 contents and reducibility(indicated by the presence of CH_4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.  相似文献   

14.
The Southern Great Xing'an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ~(34)S_(cDT) values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ~(34) S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.  相似文献   

15.
ABSTRACT

The Suyunhe porphyry Mo deposit, located in the West Junggar terrane, is the largest molybdenum deposit found in Xinjiang to date, with a proven reserve of 0.57 Mt. The Suyunhe deposit is associated with Early Permian granitic rocks, which emplaced into the volcano-sedimentary sequences of the Middle Devonian Barluk Formation. Four metallogenic stages are identified in this study. Stage I is marked by the quartz-magnetite-K-feldspar±biotite±pyrite±molybdenite veins, which mainly occurred in the intensively potassic alternation zone and were formed at high temperature (>481°C), high salinity (58.6?65.18 wt.%), and relatively high oxygen fugacity conditions with a fluid system of NaCl-H2O-CO2. Stage II is the main metallogenic stage and develops numerous quartz-molybdenite±pyrite veins associated with muscovite–chlorite alteration, which were formed by immiscible fluids at medium-high temperature (210?427°C), medium-high salinity (43.36?49.90 wt.%), and relatively low oxygen fugacity conditions with the fluid system of NaCl-H2O-CO2-CH4-C2H6. After the main Mo-mineralization, quartz-polymetallic sulphides veins associated with quartz–sericite alteration were formed by fluids at medium-low temperature, low-salinity conditions with the fluid system of NaCl-H2O-CO2 in stage III. The following quartz-polymetallic sulphide veins are quartz-calcite±pyrite veins associated with calcite alteration, which were formed by fluids at low temperature and low-salinity conditions with a fluid system of NaCl-H2O in stage IV.

The δ18O‰ values indicate that the ore fluids of stages I and II are dominated by magmatic water, whereas stages III and IV are dominated by meteoric water. A wide range of δ34S‰ values (?7.1 to 3.4‰) of sulphides between stages I and II indicates that increasing the reducibility plays an important role in molybdenum mineralization. The δ13CCH4 values suggest that CH4 of the ore fluids mainly results from the assimilation–contamination of carbonaceous country rocks, and partly derives from magma. However, the δ13CCO2 values suggest that CO2 of the ore fluids mainly originates from magma, and minor derives from wall-rocks as well as meteoric water.  相似文献   

16.
The Xiaoqinling district, the second largest gold producing district in China, is located on the southern margin of the North China Craton. It consists of three ore belts, namely, the northern ore belt, the middle ore belt and the southern ore belt. Pyrite from the Dahu gold deposit in the northern ore belt and Wenyu and Yinxin gold deposits in the southern ore belt were investigated using a combination of ore microscopy and in-situ laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS). A range of trace elements was analyzed, including Au, Te, Ag, Pb, Bi, Cu, Co, Ni, Zn, Mo, Hg, As and Si. The results show that there are no systematic differences between the trace element compositions of pyrite in the three deposits from different ore belts. In general, Au concentrations in pyrite are low (from < 0.01 ppm to 2.2 ppm) but Ni concentrations are rather high (up to 8425 ppm). A four-stage mineralization process is indicated by microscopic and field observations and this can be related to the systematic trace element differences between distinct generations of pyrite. Stage I precedes the main gold mineralization stage; pyrite of this stage has the lowest Au concentrations. Stages II and III contributed most of the gold to the ore-forming system. The corresponding pyrite yielded the highest concentrations of Au and Ni. Our microscopic observations suggest that pyrite in the main gold mineralization stage precipitated simultaneously with molybdenite that has been previously dated as Indosinian (~ 218 Ma by Re–Os molybdenite dating), indicating the Indosinian as the main gold mineralization stage. The Indosinian mineralization age and the geological and geochemical features of these gold deposits (e.g., low salinity, CO2-rich ore fluids; spatial association with large-scale compressional structures of the Qinling orogen; δ18O and δD data suggestive of mixing between metamorphic and meteoric waters; δ34S and Pb-isotopic data that point to a mixed crustal-mantle source) all point to typical orogenic-type gold deposits. High Ni concentrations (up to 8425 ppm) of pyrite possibly linked to deep-seated mafic/ultramafic metamorphic rocks provide further evidence on the orogenic gold deposit affinity, but against the model of a granitic derivation of the mineralizing fluid as previously suggested by some workers. Generally low Au concentration in pyrite is also consistent with those from worldwide orogenic gold deposits. Therefore, the gold mineralization in the Xiaoqinling district is described as orogenic type, and is probably related to Indosinian collision between the North China Craton and the Yangtze Craton.  相似文献   

17.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

18.
The Sawayaerdun gold deposit, located in Wuqia County, Southwest Tianshan, China, occurs in Upper Silurian and Lower Devonian low‐grade metamorphic carbonaceous turbidites. The orebodies are controlled by a series of NE‐NNE‐trending, brittle–ductile shear zones. Twenty‐four gold mineralized zones have been recognized in the Sawayaerdun ore deposit. Among these, the up to 4‐km‐long and 200‐m wide No. IV mineralized zone is economically the most important. The average gold grade is 1–6 g/t. Gold reserves of the Sawayaerdun deposit have been identified at approximately 37 tonnes and an inferred resource of 123 tonnes. Hydrothermal alteration is characterized by silicification, pyritization, arsenopyritization, sericitization, carbonatization and chloritization. On the basis of field evidence and petrographic analysis, five stages of vein emplacement and hydrothermal mineralization can be distinguished: stage 1, early quartz stage, characterized by the occurrence of quartz veins; stage 2, arsenopyrite–pyrite–quartz stage, characterized by the formation of auriferous quartz veinlets and stockworks; stage 3, polymetallic sulfide quartz stage, characterized by the presence of auriferous polymetallic sulfide quartz veinlets and stockworks; stage 4, antimony–quartz stage, characterized by the formation of stibnite–jamesonite quartz veins; and stage 5, quartz–carbonate vein stage. Stages 2 and 3 represent the main gold mineralization, with stage 4 representing a major antimony mineralization episode in the Sawayaerdun deposit. Two types of fluid inclusion, namely H2O–NaCl and H2O–CO2–NaCl types, have been recognized in quartz and calcite. Aqueous inclusions show a wide range of homogenization temperatures from 125 to 340°C, and can be correlated with the mineralization stage during which the inclusions formed. Similarly, salinities and densities of these fluids range for each stage of mineralization from 2.57 to 22 equivalent wt% NaCl and 0.76 to 1.05 g/cm3, respectively. The ore‐forming fluids thus are representative of a medium‐ to low‐temperature, low‐ to medium‐salinity H2O–NaCl–CO2–CH4–N2 system. The δ34SCDT values of sulfides associated with mineralization fall into a narrow range of ?3.0 to +2.6‰ with a mean of +0.1‰. The δ13CPDB values of dolomite and siderite from the Sawayaerdun gold deposit range from ?5.4 to ?0.6‰, possibly reflecting derivation of the carbonate carbon from a mixed magmatic/sedimentary source. Changes in physico‐chemical conditions and composition of the hydrothermal fluids, water–rock exchange and immiscibility of hydrothermal fluids are inferred to have played important roles in the ore‐forming process of the Sawayaerdun gold–antimony deposit.  相似文献   

19.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   

20.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号