首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated fluvial sequence stratigraphic and palaeosol analysis can be used to better reconstruct depositional systems, but these approaches have not been combined to examine halokinetic minibasins. This study characterizes the temporal and spatial patterns of lithofacies and palaeosols in a sequence stratigraphic framework to reconstruct a model of minibasin evolution and identify halokinetic influences on fluvial deposition. This research documents fluvial cycles and stratigraphic hierarchy, palaeosol maturity and apparent sediment accumulation rates in the Chinle Formation within the Big Bend minibasin. This study also uses palaeosols to help identify fluvial aggradational cycle (FAC) sets. The Chinle is divided into two hectometre‐scale (102 m) fluvial sequences, six decametre‐scale (101 m) FAC sets, and variable numbers of metre‐scale FACs depending on proximity to the minibasin. Ten pedotypes representing 225 palaeosol profiles are recognized. The pedotypes include palaeosols similar to modern Entisols, Inceptisols, Aridisols, Vertisols and Alfisols. A maturity index (1–5) is assigned to each pedotype to assess its variability in palaeosol development. Estimated palaeosol development time is used to approximate apparent sediment accumulation rates. Increased subsidence resulted in a greater number and thicker FACs, thicker FAC sets and fluvial sequence sections, and lithofacies associations reflecting more rapid sedimentation along the minibasin axis. Palaeocurrent indicators converge towards the minibasin axis and indicate that it formed and drifted through time. Relative palaeosol maturity is inversely related to stratal thickness, and decreases towards the minibasin where episodic burial by fluvial sediment was more frequent. Metre‐scale FACs are most abundant towards the minibasin axis, and locally have Entisols and Inceptisols developed upon their upper boundaries reflecting increased sediment accumulation rates. Areas outside the minibasin are characterized by fewer FACs that are associated with more mature palaeosols. Palaeosol‐derived apparent sediment accumulation rates are as much as two orders of magnitude greater within the minibasin than in marginal areas. The combined stratigraphic, palaeocurrent and palaeosol evidence is used to develop a model for the evolution of the Big Bend minibasin that illustrates the halokinetic affect on fluvial and landscape processes.  相似文献   

2.
Aeolian sand sheets, which are characterized by low relief surfaces that lack dunes, are common in arid and semi‐arid climatic settings. The surface of an aeolian sand sheet can either be stable and subject to pedogenetic effects, or unstable such that it is affected by deflation or sedimentation. The Marília Formation (Late Cretaceous) may be interpreted as an ancient aeolian sand sheet area, where alternating phases of stability and instability of the accumulation surface have been recorded. Detailed field studies were carried out in several sections of the Marília Formation, where cyclic alternations of palaeosols and aeolian deposits were evident, using palaeopedological and facies analysis methods, supported in the laboratory by the analysis of rock samples, cut and polished in slabs, thin sections, scanning electron microscope images and X‐ray diffraction data from the clay minerals. The deposits comprise three lithofacies that, in order of abundance, are characterized by: (i) translatent wind‐ripple strata; (ii) flood deposits; and (iii) ephemeral river channel deposits. Palaeosols constitute, on average, 65% of the vertical succession. Three types of palaeosols (pedotypes) are recognized: (i) Aridisols; (ii) Entisols; and (iii) Vertisols. Erosional surfaces due to aeolian deflation divide the top of the palaeosol profiles from the overlying aeolian deposits. The palaeoenvironmental interpretation of the deposits and the palaeosols allows the depositional system of the Marília Formation to be defined as a flat area, dominated by aeolian sedimentation, with subordinate ephemeral river sedimentation, and characterized by a dry climatic setting with occasional rainfall. The climate is the main forcing factor controlling the alternation between episodes of active sedimentation and periods of palaeosol development. A climate‐controlled model is proposed in which: (i) the palaeosols are indicative of a stable surface that is developed during the more humid climatic phases; and (ii) the erosional surfaces and the overlying aeolian sediments attest to periods of deflation and subsequent sedimentation, thereby increasing the availability of sediment during the drier climatic phases. The ephemeral fluvial deposits mark the more humid climatic conditions and contribute to the lagged sediment influx caused during the drier periods by the erosion of previously stored sediment.  相似文献   

3.
The Lower Cretaceous (Albian) upper Blairmore Group is part of a thick clastic wedge that formed adjacent to the rising Cordillera in south-western Alberta. Regional transgressive intervals are superimposed on the overall regressive succession. Alluvial conglomerates, sandstones and mudstones were deposited in east-north-eastward draining fluvial systems, orientated transverse to the basin axis. Five facies associations have been identified: igneous pebble conglomerate, thick sandstone, interbedded lenticular sandstone and mudstone, thick mudstone with thin sandstone interlayers, and fossiliferous sandstone and mudstone. The facies associations are interpreted as gravelly fluvial channels, sandy fluvial channels, sand-dominated floodplains, mud-dominated floodplains, and marine shoreline deposits, respectively. Five types of palaeosols are recognized in the upper Blairmore Group based on lithology, the presence of pedogenic features (clay coatings, root traces, ferruginous nodules, slickensides, carbonate nodules) and degree of horizonization. The regional distribution of the various types of palaeosols enables a refinement of the palaeoenvironmental reconstruction permitting an assessment of the controls on floodplain evolution. In source-proximal areas, palaeosol development was inhibited by high rates of sedimentation. In source-distal locations, poor drainage resulting from high watertables, low topography and lower rates of sedimentation also inhibited palaeosol development. The best-developed palaeosols (containing Bt horizons) occur in intermediate alluvial plain positions (tectonic hinge zone) where the floodplains were most stable due to a balance between sedimentation, erosion and subsidence rates. Extrapolating from the upper Blairmore Group suggests that the tectonic hinge zone of continental foreland basins can be established by palaeosol analysis. At the hinge zone, soil development is controlled primarily by climate and tectonics and their effect on sediment supply, whereas closer to the palaeoshoreline, relative sea level fluctuations, resulting in poor drainage, may have a more significant influence.  相似文献   

4.
5.
Analysis of stacked Permo‐Pennsylvanian palaeosols from north‐central Texas documents the influence of palaeolandscape position on pedogenesis in aggradational depositional settings. Palaeosols of the Eastern shelf of the Midland basin exhibit stratigraphic trends in the distribution of soil horizons, structure, rooting density, clay mineralogy and colour that record long‐term changes in soil‐forming conditions driven by both local processes and regional climate. Palaeosols similar to modern histosols, ultisols, vertisols, inceptisols and entisols, all bearing morphological, mineralogical and chemical characteristics consistent with a tropical, humid climate, represent the Late Pennsylvanian suite of palaeosol orders. Palaeosols similar to modern alfisols, vertisols, inceptisols, aridisols and entisols preserve characteristics indicative of a drier and seasonal tropical climate throughout the Lower Permian strata. The changes in palaeosol morphology are interpreted as being a result of an overall climatic trend from relatively humid and tropical, moist conditions characterized by high rainfall in the Late Pennsylvanian to progressively drier, semi‐arid to arid tropical climate characterized by seasonal rainfall in Early Permian time. Based on known Late Palaeozoic palaeogeography and current hypotheses for atmospheric circulation over western equatorial Pangea, the Pennsylvanian palaeosols in this study may be recording a climate that is the result of an orographic control over regional‐scale atmospheric circulation. The trend towards a drier climate interpreted from the Permian palaeosols may be recording the breakdown of this pre‐existing orographic effect and the onset of a monsoonal atmospheric circulation system over this region.  相似文献   

6.
Were Ediacaran siliciclastics of South Australia coastal or deep marine?   总被引:1,自引:0,他引:1  
The Late Neoproterozoic Ediacara Member of the Rawnsley Quartzite in South Australia has been considered aeolian, fluvial, intertidal and deep marine by various authors. Palaeosols would not be expected for the deep marine interpretation, but some palaeosols should be evident for the aeolian–fluvial–intertidal interpretations, and this is the first study to examine the Ediacara Member at a petrographic and geochemical scale appropriate to recognize potential palaeosols. Recognition of palaeosols and floodplain facies in Neoproterozoic rocks is a challenge because such rocks are too ancient for diagnostic non‐marine fossils such as root traces. The varied thickness of Ediacara Member red siltstones and white sandstones is distinct from laterally persistent overlying and underlying grey shales and limestones with acritarchs, stromatolites and other marine fossils. The sandstones are trough cross‐bedded and fill palaeovalleys. The red siltstones have poorly sorted, highly angular, silt‐size grains characteristic of loess. Particular sandy and silty beds were sampled for detailed petrographic and geochemical studies, because they include desiccation cracks, sand crystals, ice cracks, carbonate nodules and soft‐sediment deformation like those of palaeosols. Chemical and grain‐size variations within these beds reveal surficial clay formation and oxidation from feldspar as in soils. Petrographic studies also revealed surficial disruption of these palaeosols by filamentous structures comparable with microbial ropes of biological soil crusts. This array of palaeosol features may be of use for recognizing palaeosols in other Neoproterozoic siliciclastic sequences.  相似文献   

7.
The continental Upper Triassic Tadrart Ouadou Sandstone Member was deposited in an extensional setting on the Pangaean continent, strongly influenced by a low‐latitude climatic regime (10° to 20° north). Complex interaction of basin subsidence and climatically driven processes led to high facies variability and a lack of correlatable units across the Argana Valley exposures. A process‐orientated approach integrating detailed facies with architectural element analysis was undertaken, which resulted in a multistage depositional model for the Tadrart Ouadou Sandstone Member. The basin‐scale model shows that basal alluvial fan and braided river systems are confined to the centre of the Argana Valley exposures. Aeolian deposits occur throughout the sequence, but dominate in the north. After a phase of playa deposition, prominent basin‐wide fluvial incision of up to 8 m marks the onset of perennial fluvial flow. These well‐sorted, internally complex and locally highly amalgamated fluvial sandstones are widespread throughout the basin and are focused in a north to south (south‐west) flowing channel system. After a final stage of aeolian sedimentation, sandstone deposition of the Tadrart Ouadou Sandstone Member in the Argana Valley is terminated rapidly by the onlap of lacustrine mudstones of the Sidi Mansour Member. The study revealed that, except for one pronounced period of perennial conditions, sedimentation is controlled largely by ephemeral fluvial flow, alternating ground water tables, deflation processes and periods with limited periodic local run‐off. The study highlights that facies architecture in the basin is the result of complex interaction of local syn‐sedimentary tectonics and the climatic regime within the basin, but also the climate of the catchment area to the east. The data suggest a proximal to mid‐distal basin setting in the rain‐shadow to the west of a mountain range (Massif Ancien), which exerted a strong control on the depositional environments of Triassic deposits exposed in this part of South‐west Morocco.  相似文献   

8.
Lower and middle Eocene ironstone sequences of the Naqb and Qazzun formations from the north‐east Bahariya Depression, Western Desert, Egypt, represent a proxy for early Palaeogene climate and sea‐level changes. These sequences represent the only Palaeogene economic ooidal ironstone record of the Southern Tethys. These ironstone sequences rest unconformably on three structurally controlled Cenomanian palaeohighs (for example, the Gedida, Harra and Ghorabi mines) and formed on the inner ramp of a carbonate platform. These palaeohighs were exposed and subjected to subaerial lateritic weathering from the Cenomanian to early Eocene. The lower and middle Eocene ironstone sequences consist of quiet water ironstone facies overlain by higher energy ironstone facies. The distribution of low‐energy ironstone facies is controlled by depositional relief. These deposits consist of lagoonal, burrow‐mottled mud‐ironstone and laterally equivalent tidal flat, stromatolitic ironstones. The agitated water ironstone facies consist of shallow subtidal–intertidal nummulitic–ooidal–oncoidal and back‐barrier storm‐generated fossiliferous ironstones. The formation of these marginal marine sequences was associated with major marine transgressive–regressive megacycles that separated by subaerial exposure and lateritic weathering. The formation of lateritic palaeosols with their characteristic dissolution and reprecipitation features, such as colloform texture and alveolar voids, implies periods of humid and warm climate followed major marine regressions. The formation of the lower to middle Eocene ironstone succession and the associated lateritic palaeosols can be linked to the early Palaeogene global warming and eustatic sea‐level changes. The reworking of the middle Eocene palaeosol and the deposition of the upper Eocene phosphate‐rich glauconitic sandstones of the overlying Hamra Formation may record the initial stages of the palaeoclimatic transition from greenhouse to icehouse conditions.  相似文献   

9.
内蒙古平庄盆地黑水地区上白垩统孙家湾组上段沉积相为冲积扇相,宏观上分为近端砾质辫状平原、远端砂质辫状平原及扇前洪泛平原3个亚相,进一步细分为泥石流、砾质辫状河道、砾质坝、砂质辫状河道、砂质坝、洪泛细粒、泥炭沼泽等微相。孙家湾组上段可划分为3个亚段,第一亚段为干旱_潮湿过渡气候下形成的退积型序列的旱地扇沉积;第二亚段为潮湿气候下形成的退积型序列的湿地扇沉积;第三亚段为潮湿气候下形成的进积型序列的湿地扇沉积。黑水地区的孙家湾组上段经历了早期退积型旱地扇—中期退积型湿地扇—晚期进积型湿地扇的过程。沉积相对该区铀成矿具有控制作用,铀矿化主要以不连续、局部富集的形式赋存于远端砂质辫状平原前缘的砂质辫状河砂体中,泥炭沼泽和泥质含量少的泥石流沉积中有少量存在。泥炭沼泽沉积所形成的泥岩及泥质含量高的泥石流沉积充当了局部隔水层,但由于泥炭沼泽沉积较薄,以及泥石流沉积的不均一性,致使铀矿(化)不连续、不稳定。  相似文献   

10.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

11.
Carboniferous calcretes in the Canadian Arctic   总被引:1,自引:0,他引:1  
Calcrete palaeosols have been found in the Upper Carboniferous Canyon Fiord Formation of southwestern Ellesmere Island, Canadian Arctic. These calcretes were developed in fluvial and shallow marine sediments that accumulated within two adjacent subbasins, in which the tectono-sedimentary environment led to the deposition of five different sedimentary facies: (i) floodbasin sandstones; (ii) alluvial fan sandstones; (iii) alluvial fan conglomerates; (iv) braided fluvial sandstones; and (v) shallow marine limestones. Nodular/massive palaeosol profiles, consisting of cryptic, nodular, massive and laminar horizons, occur within the floodbasin sandstone and alluvial fan sandstone facies. Plugged palaeosol profiles, consisting of cryptic, plugged and laminar horizons, are restricted to the alluvial fan conglomerate facies. Massive/brecciated palaeosol profiles, consisting of cryptic, massive/brecciated and laminar horizons, occur essentially within the shallow marine limestone facies. The relationships between calcrete profiles and sedimentary facies suggest that profile types were controlled mainly by the texture and composition of the parent material: nodular/massive profiles are restricted to silicate-rich sandstone hosts, plugged profiles are restricted to carbonate-rich conglomerate hosts and massive/brecciated profiles are restricted to limestone hosts. Important relationships also exist between the maturity levels of nodular/massive profiles and sedimentary facies: profiles are generally mature in the floodbasin sandstones, invariably immature in the alluvial fan sandstones and absent from the braided fluvial sandstones. These different maturity levels were probably controlled mainly by exposure time, vegetation and substrate composition.  相似文献   

12.
The Lower Freshwater Molasse (Untere Susswasser Molasse) crops out over a wide area of the Swiss Molasse Basin. Coarse grained alluvial fan conglomerates dominate in proximal basin areas along the Alpine front. These conglomerates pass northwards into sandstones and mudstones of an extensive northeastward draining meandering river system which ran parallel to the basin axis. Sedimentological study of outcrops, quarry exposures and boreholes in the basal Miocene (‘Aquitanian‘) has permitted detailed facies analysis of this distal alluvial sequence. The distal Aquitanian is made up of distinct ‘architectural elements’characterized by their geometries and sedimentary structures. Each may be assigned to a particular depositional setting: meander belt, levees, crevasse channels and splays, overbank fines and palaeosols, and lacustrine. Meander belt sandstones were deposited in mixed load channels with a dominant bedload component. Sandstones commonly comprise amalgamated and locally stacked ribbon bodies 2–15 m thick and 150–1500 m wide. Interbedded rippled, laminated and mottled fine grained levee sandstones and siltstones form lenticular packages up to 3 m thick and 30–100 m across. Small scale crevasse channel sandstones 2–4 m thick and 5–10 m across pass laterally into metre scale, medium to fine grained crevasse sandstone sheets. Rare laminated lacustrine siltstones occur only in the north-east part of the basin. Floodplain mudstones and marls make up the remainder of the succession. These display a variety of pedogenic features recording cyclical palaeosol development. Palaeosols show strong variations in morphology and maturity both laterally across the floodplain and downstream along the basin axis, reflecting local variation in aggradation rate associated with proximity to alluvial channel courses as well as regional variation in subsidence and floodplain drainage. Analysis of the organization and distribution of the various sediment bodies permits reconstruction of the fluvial system and allows development of a model for the sedimentary architecture of the Lower Freshwater Molasse in the study area. Integration of palaeosol studies into a well defined architectural framework assists recognition of areal facies belts and may aid location of sand-prone sequences in the subsurface.  相似文献   

13.
Little is known about controls on river avulsion at geological time scales longer than 104 years, primarily because it is difficult to link observed changes in alluvial architecture to well‐defined allogenic mechanisms and to disentangle allogenic from autogenic processes. Recognition of Milankovitch‐sale orbital forcing in alluvial stratigraphy would provide unprecedented age control in terrestrial deposits, and also exploit models of allogenic forcing enabling more rigorous testing of allocyclic and autocyclic controls. The Willwood Formation of the Bighorn Basin is a lower Eocene fluvial unit distinctive for its thick sequence of laterally extensive lithological cycles on a scale of 4 to 10 m. Intervals of red palaeosols that formed on overbank mudstones are related to periods of relative channel stability when gradients between channel belts and floodplains were low. The intervening drab, heterolithic intervals with weak palaeosol development are attributed to episodes of channel avulsion that occurred when channels became super‐elevated above the floodplain. In the Deer Creek Amphitheater section in the McCullough Peaks area, these overbank and avulsion deposits alternate with a dominant cycle thickness of ca 7·1 m. Using integrated stratigraphic age constraints, this cyclicity has an estimated period of ca 21·6 kyr, which is in the range of the period of precession climate cycles in the early Eocene. Previous analyses of three older and younger sections in the Bighorn Basin showed a similar 7 to 8 m spacing of red palaeosol clusters with an estimated duration close to the precession period. Intervals of floodplain stability alternating with episodes of large‐scale reorganization of the fluvial system could be entirely autogenic; however, the remarkable regularity and the match in time scales documented here indicate that these alternations were probably paced by allogenic, astronomically forced climate change.  相似文献   

14.
15.
Distinct styles of fluvial deposition in a Cambrian rift basin   总被引:1,自引:0,他引:1  
Process‐based and facies models to account for the origin of pre‐vegetation (i.e. pre‐Silurian) preserved fluvial sedimentary architectures remain poorly defined in terms of their ability to account for the nature of the fluvial conditions required to accumulate and preserve architectural elements in the absence of the stabilizing influence of vegetation. In pre‐vegetation fluvial successions, the repeated reworking of bars and minor channels that resulted in the generation and preservation of broad, tabular, stacked sandstone‐sheets has been previously regarded as the dominant sedimentary mechanism. This situation is closely analogous to modern‐day poorly vegetated systems developed in arid climatic settings. However, this study demonstrates the widespread presence of substantially more complex stratigraphic architectures. The Guarda Velha Formation of Southern Brazil is a >500 m‐thick synrift fluvial succession of Cambrian age that records the deposits and sedimentary architecture of three distinct fluvial successions: (i) an early rift‐stage system characterized by coarse‐grained channel elements indicative of a distributive pattern with flow transverse to the basin axis; and two coeval systems from the early‐ to climax‐rift stages that represent (ii) an axially directed, trunk fluvial system characterized by large‐scale amalgamated sandy braid‐bar elements, and (iii) a distributive fluvial system characterized by multi‐storey, sandy braided‐channel elements that flowed transverse to the basin axis. Integration of facies and architectural‐element analysis with regional stratigraphic basin analysis, palaeocurrent and pebble‐provenance analysis demonstrates the mechanisms responsible for preserving the varied range of fluvial architectures present in this pre‐vegetation, rift‐basin setting. Identified major controls that influenced pre‐vegetation fluvial sedimentary style include: (i) spatial and temporal variation in discharge regime; (ii) the varying sedimentological characteristics of distinct catchment areas; (iii) the role of tectonic basin configuration and its direct role in influencing palaeoflow direction and fluvial style, whereby both the axial and transverse fluvial systems undertook a distinctive response to syn‐depositional movement on basin‐bounding faults. Detailed architectural analyses of these deposits reveal significant variations in geometry, with characteristics considerably more complex than that of simple, laterally extensive, stacked sandstone‐sheets predicted by most existing depositional models for pre‐vegetation fluvial systems. These results suggest that the sheet‐braided style actually encompasses a varied number of different pre‐vegetation fluvial styles. Moreover, this study demonstrates that contemporaneous axial and transverse fluvial systems with distinctive architectural expressions can be preserved in the same overall tectonic and climatic setting.  相似文献   

16.
Five lateral sand–loess–palaeosol continua occur within the last glacial sediments of the central Loess Plateau of China along a 500 km north to south climatic gradient. The continua shift southward or northward in concert with desert expansion or contraction, respectively. Lateral lithofacies (desert sand to loess) variations are evident at the north end of the gradient and follow Walther's Law of the correlation of facies. Lateral pedofacies (loess to palaeosol) variations are present near the south end of the gradient, where the climate was warmer and wetter. The lateral stratigraphic changes from sand to loess or loess to soil are driven by variations in the rate of sedimentation along a climatic gradient.Vertical stratigraphic profiles at the north end of the gradient reveal alternating sand and loess beds. In contrast, alternating loess and palaeosols occur within the same stratigraphic interval in the southern Loess Plateau, where dust accretion rates were lower. However, in high resolution studies of climate change vertical profiles of alternating loess and palaeosols (especially weak palaeosols) may not reflect regional or global climate change. Alternating loess and weak palaeosols may reflect local variations in the balance between the rates of dust accretion and pedogenesis. Local fluctuations in either of these rates could result in the presence of time equivalent loess and palaeosols at high resolutions. Thus, some of the high resolution loess-palaeosol alternations may reflect local climatic variation rather than global or hemispherical climate change.  相似文献   

17.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

18.
Columnar structured horizons have been recognized in ancient coastal palaeosols of several Lower Permian (Asselian) stratigraphic units of north-central Kansas. These strongly developed columnar, polygonal-shaped peds are characteristic of sodium-influenced (natric) argillic horizons, and are commonly indicative of semi-arid to arid environments. Evaporite features above and below these palaeosols support the conclusion for a dry palaeoclimate. The columnar peds are typically 3–15 cm in diameter and exhibit domed tops. Fine clay fills the cracks between the columnar peds, and is generally of a darker colour than the peds. Each natric horizon has a low value and chroma colour, apparently the result of carbonate accumulation. The natric horizons in these Permian palaeosols appear to have been partially influenced by sodium-rich groundwaters. Root traces and root moulds are found between peds in all natric horizons, indicating plant succession after columnar ped formation. These sodium-influenced palaeosol profiles occur as part of a spectrum of palaeosol types that indicate cyclical climate change associated with glacioeustatic sea-level fluctuations.  相似文献   

19.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

20.
黑水地区孙家湾组上段可划分为3个亚段,主要为冲积扇相,宏观上分为近端砾质辫状平原、远端砂质辫状平原、扇前洪泛平原3个亚相,进一步细分为泥石流、砾质辫状河道、砾质坝、砂质辫状河道、砂质坝、洪泛细粒、泥炭沼泽沉积等微相。孙家湾组上段第1亚段为在干旱-潮湿过渡气候下形成的退积型旱地扇沉积;第2亚段为在潮湿气候下形成的退积型湿地扇沉积;第3亚段为在潮湿气候下形成的进积型湿地扇沉积。黑水地区孙家湾组经历了早期退积型的干旱扇、中期退积型的湿地扇和晚期进积型的湿地扇的演化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号