首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum phosphate-sulfate (APS) minerals are present as small, disseminated crystals in the upper Cretaceous shallow marine ooidal ironstones, E-NE Aswan area, southern Egypt. Their association with the ironstones is considered as a proxy of subaerial weathering and post-diagenetic meteoric water alteration. The mineralogical composition of the ooidal ironstones was investigated by optical and scanning electron microscopes, X-ray diffraction, Fourier transform infrared and Raman spectroscopy. The ooidal ironstones are composed mainly of ooids and groundmass, both of which consist of a mixture of detrital (quartz) and diagenetic (fluorapatite, chamosite and pyrite) mineral assemblages. These mineral assemblages are destabilized under acidic and oxidizing, continental conditions. These conditions resulted from the oxidation of pyrite and probably organic matter under warm and humid, tropical climate followed the Santonian Sea regression and subaerial exposure. These pedogenic conditions promoted corrosion of quartz, dissolution of chamosite and apatite and hydrolysis of feldspars of the nearby exposed granitoids. The released Si, Al and Sr from quartz, chamosite and feldspars; Fe and S from pyrite and P, Ca and light rare earth elements (LREE) from apatite are reprecipitated as hematite, kaolinite, apatite and APS minerals from the pore fluids or along fractures. The paragenetic sequence and textural relationships of this post-diagenetic mineral assemblage indicate that hematite was formed by replacement of chamosite followed by formation of a secondary generation of pore filling chlorapatite and APS minerals and finally the precipitation of kaolinite in the remaining pore spaces. The formation of APS minerals and chlorapatite is simultaneous, but APS minerals are stable at shallow depths under acidic to neutral pH conditions, whereas chlorapatite is stable under alkaline pH conditions. Alkaline conditions were maintained at greater depths when the infiltrated acidic fluids reacted with chamosite. The APS minerals display a homogeneous chemical composition in all ironstone locations in Aswan area, corresponding to a solid solution between crandallite (CaAl3(PO4)2(OH)5·H2O), goyazite (SrAl3(PO4)2(OH)5·H2O), svanbergite (SrAl3(PO4)(SO4)(OH)6) and woodhouseite (CaAl3(PO4)(SO4)(OH)6) end-members. The variations in the APS mineral chemistry (AB3(XO4)2(OH)6) are essentially due to variable substitutions of Sr and LREE for Ca at the A site and limited S for P at the X site. The spatial distribution of APS minerals and their composition in the ooidal ironstones of Aswan area permitted to consider them as good tracers of physicochemical and paleoenvironmental changes, in particular those associated with subaerial exposure and pedogenesis. The post-diagenetic phosphatization and kaolinization of the Aswan ironstones decrease their economic potentiality; thus, understanding paragenetic sequence and textural relationships is essential for the iron ore beneficiation.  相似文献   

2.
Palaeosols of the Koluel‐Kaike Formation, a red colour‐banded, pyroclastic succession from southern Argentina, constitute a proxy for Eocene climate changes. Reticulated and vertically elongated ferric mottles, along with iron and manganese nodules are the most significant climate indicators, which originated by alternating cycles of waterlogging and drying conditions causing Fe‐Mn mobilization and fixation. Clay minerals vary from a kaolinite > smectite suite in the lower and middle sections, to a smectite > kaolinite one in the upper part. High concentrations of iron oxides/hydroxides and kaolinite, lack of exchangeable bases, absence of carbonate cement, presence of ironstone and redness of hue in most of the palaeosols suggest intense chemical weathering related to leaching and lateritization processes. Five pedotypes, ordered in a stratigraphic sense, were identified. Strongly developed, red to orange Chornk (Fragiaquult) and Kápenk (Plinthaquult) pedotypes display argillic horizons, abundant ferric nodules and slickensides; they are dominant in the lower and middle sections, and formed in seasonal humid and megathermic (tropical) conditions with a mean annual precipitation of 1200 to 1300 mm and a mean annual temperature of 15 °C. Weakly developed, less structured Ornek (Vitrand) and Pólnek (Placaquand) pedotypes occur in the middle and upper sections, and originated in sub‐humid and mesic‐megathermic conditions with a mean annual precipitation around 1000 mm and a mean annual temperature around 12 °C. The brownish Soorsh (Argialboll) pedotype exhibits a granular structure and is present at the uppermost part of the unit. It developed in sub‐humid/semi‐arid and mesic conditions, with a mean annual precipitation of 600 to 700 mm and a mean annual temperature around 10 °C. This pedotype succession and clay mineral distribution indicates a decrease in chemical weathering and degree of soil development with time. Koluel‐Kaike palaeosols from Central Patagonia are some of the first continental non‐palaeobiological data linked to the Early Palaeogene global warming in South America; they show an especially close relationship with the Early Eocene Climatic Optimum and the following long‐term cooling and drying initiated by Middle to Late Eocene time.  相似文献   

3.
The Campanian-Maastrichtian Agbaja Ironstone Formation of the Nupe basin, Nigeria, forms a major part of the about 2 billion tons of iron ore reserves of the Middle Niger Embayment. The ironstone deposits were previously reported to be similar to the Minette-type ironstones because of their depositional patterns, composition and inferred origin. Four rock-types are recognized within the Agbaja Ironstone Formation: ooidal pack-ironstone, pisoidal pack-ironstone, mud-ironstone and bog iron ore. In the ironstones, kaolinite of both the groundmass and the ooids/pisoids is of lateritic origin, whereas the associated quartz, mica and heavy minerals are of detrital origin. Ooids and pisoids were formed by mechanical accretion of platy kaolinite crystals by rolling on the sea floor in a near-shore environment, and were subsequently transported and deposited together with a fine-grained kaolinitic groundmass. Pyrite (mainly framboidal) and siderite (both exclusively occurring as pseudomorphs of goethite and/or hematite) are diagenetic whereas goethite is post-diagenetic in origin, resulting from the ferruginization of the kaolinitic precursor. Crandallite-gorxeicite-goyazite, bolivarite and boehmite are also post-diagenetic in origin. Hematite was formed from the dehydration of goethite, whereas gibbsite (restricted to the upper part of the deposit) is of recent and in situ lateritic origin. The presence of newly formed authigenic pyrite and siderite (now replaced by hematite and goethite) are indicators of a reducing environment during diagenesis. The absence of diagenetic chamositic clay minerals, evidently caused by a low Mg concentration, suggests that fully marine conditions were not established during sedimentation. This is supported by the lack of fossils, brecciated shell materials and bioturbation features in the deposit. Reworking and redeposition of the primary constituents are inferred from broken pisoids, nuclei of pisoidal/ooidal fragments in pisoids and high iron concentrations present in the pisoids and ooids compared to that of the groundmass. These observations indicate that the Agbaja ironstone deposits of the Lokoja study area exhibit some environmental and mineralogical characteristics that are markedly different from other known deposits of Minette-type, where primary chamositic clay minerals generally form the protore for the ironstones. The recognition of kaolinite as the precursor constituent and the occurrence of similar deposits of the same age (Late Cretaceous) in Nigeria, Sudan and Egypt have implications for the paleoenvironmental interpretations of Phanerozoic ironstone deposits. Received: 16 February 1998 / Accepted: 8 July 1998  相似文献   

4.
The Late Coniacian, shallow-marine Bad Heart Formation of the Western Canada foreland basin is very unusual in that it contains economically significant ooidal ironstone. Deposition of shallow-water and iron-rich facies appears to have been localized over the crest and flanks of a subtle intrabasinal arch, in part interpreted as a forebulge and partly attributed to reactivation of the long-lived Peace River Arch. The formation comprises two upward-shoaling allomembers, typically 5–10 m thick, that are bounded by regionally mappable ravinement surfaces. The lower unit, allomember 1, grades up from laminated mudstone to bioturbated silty sandstone, which is abruptly overlain by bioturbated ooidal silty sandstone grading into an almost clastic-free ooidal ironstone up to 7 m thick. Ooidal ironstone was concentrated into NW- to SE-trending ridges, kilometres wide and tens of kilometres long. Ironstone formation appears to have been promoted by: (a) drowning of the arch, which progressively curtailed sediment supply; and (b) enhanced reworking over the shallowly submerged arch and over a fault-bounded block that underwent episodic vertical movement of 10–20 m during Bad Heart deposition. Allomember 2 also shoals upwards from mudstone to bioturbated and laminated silty sandstone but lacks ooids, apparently reflecting a rejuvenated supply of detrital sediment from the arch. The marine ravinement surface above allomember 2 is a Skolithos firmground, above which is developed a regional blanket of ooidal sediment. In the east, ooids are dispersed in a bioturbated silty sandstone with abundant evidence of repeated reworking and early siderite and phosphate cements. Westwards, this facies grades, over about 40 km, into almost clastic-free ooidal ironstone about 5 m thick; the lateral facies change may reflect progressive clastic starvation distal to a low-relief source area. The two allomembers are interpreted to reflect eustatic oscillations of about 10 m, superimposed on episodic tectonic warping and block-faulting events. The development of ooidal ironstone immediately above initial marine flooding surfaces indicates a close relationship to marine transgression, reflecting sediment-starved conditions. Ironstone does not appear to be related to either sequence boundaries or maximum flooding surfaces. The Bad Heart Formation is blanketed by marine mudstone deposited in response to major flexural subsidence and rejuvenation of clastic sources in the Cordillera to the SW.  相似文献   

5.
Identifying evidence of oxidative weathering in the geological record is essential to trace the evolution of Earth's atmosphere oxygenation. Metamorphosed residues of lateritic weathering have been identified as two rock types in the 2.1‐Ga‐old Cercadinho Formation, Piracicaba Group, Quadrilátero Ferrífero of Minas Gerais. One is tourmaline–hematite–sillimanite–kyanite quartzite; the other is rutile–tourmaline–hematite–muscovite phyllite. Both rocks have abundant tourmaline with δ11B values between about ?17‰ and ?13‰. The Cercadinho tourmaline is roughly parallel to the povondraite–“oxy‐dravite” join of meta‐evaporitic tourmaline, in its more aluminous segment, offset to higher contents of iron. These compositional and isotopic characteristics of the Cercadinho tourmaline indicate that continental evaporitic brines interacted with aluminium‐ and iron‐rich residues of lateritic weathering. The abundance of disseminated tourmaline, a mineral poorly reported from palaeosols worldwide, implies a boron‐rich brine overprint on the lateritic profile before the onset of metamorphism, reflecting a climatic change from humid to arid conditions in a continental setting. The recognition of lateritic weathering in the Cercadinho Formation contributes to the amount of evidence for increased levels of atmospheric oxygen between 2.22 and 2.06 Ga ago.  相似文献   

6.
During the early Middle Devonian in South China, an extensive carbonate platform was broken up through extension to create a complex pattern of platforms, and interplatform basins. In Givetian and Frasnian carbonate successions, five depositional facies, including peritidal, restricted shallow subtidal, semi‐restricted subtidal, intermediate subtidal and deep subtidal facies, and 18 lithofacies units are recognized from measured sections on three isolated platforms. These deposits are arranged into metre‐scale, upward‐shallowing peritidal and subtidal cycles. Nine third‐order sequences are identified from changes in cycle stacking patterns, vertical facies changes and the stratigraphic distribution of subaerial exposure indicators. These sequences mostly consist of a lower transgressive part and an upper regressive part. Transgressive packages are dominated by thicker‐than‐average subtidal cycles, and regressive packages by thinner‐than‐average peritidal cycles. Sequence boundaries are transitional zones composed of stacked, high‐frequency, thinner‐than‐average cycles with upward‐increasing intensity of subaerial exposure, rather than individual, laterally traceable surfaces. These sequences can be further grouped into catch‐up and keep‐up sequence sets from the long‐term (second‐order) changes in accommodation and vertical facies changes. Catch‐up sequences are characterized by relatively thick cycle packages with a high percentage of intermediate to shallow subtidal facies, and even deep subtidal facies locally within some individual sequences, recording long‐term accommodation gain. Keep‐up sequences are characterized by relatively thin cycle packages with a high percentage of peritidal facies within sequences, recording long‐term accommodation loss. Correlation of long‐term accommodation changes expressed by Fischer plots reveals that during the late Givetian to early Frasnian increased accommodation loss on platforms coincided with increased accommodation gain in interplatform basins. This suggests that movement on faults resulted in the relative uplift of platforms and subsidence of interplatform basins. In the early Frasnian, extensive siliceous deposits in most interplatform basins and megabreccias at basin margins correspond to exposure disconformities on platforms.  相似文献   

7.
铁建造和鲕铁岩是地史上两类主要的富铁沉积,不仅记录了地球大气与海洋氧化还原状态和化学条件演变,而且也反 应了构造运动、岩浆活动和生物的相互作用过程.过去对铁建造已有深入研究,而有关前寒武纪铁岩成因与古海洋和构造背景 研究甚少.运用扫描电镜(scanningelectronicmicroscopy,简称SEM)、X射线衍射(X-raydiffraction,简称XRD)、能谱(energy dispersive spectroscopy,简称EDS)技术分析铁鲕的微组构、矿物成分和化学组成,讨论华北串岭沟组(1.65~1.64Ga)鲕铁岩 的成因环境及其与Columbia超大陆裂解的关系.研究表明,铁鲕主要由赤铁矿和少量高岭石组成,贫陆源碎屑和Al2O3;鲕包 壳由微片状赤铁矿构成的致密和疏松纹层交互组成;Fe-Al呈明显的负相关性,表明铁主要源于缺氧富铁深海水体而非陆源 风化.鲕铁岩集中在快速海进和低陆源输入引起的沉积饥饿期,发育于氧化还原界面附近的潮下贫氧环境.与超大陆裂解伴生 的岩浆活动、基底沉降和快速海侵是促进鲕铁岩形成的重要因素.串岭沟组底部铁岩是华北地台响应Columbia超大陆裂解而 发生构造与环境转化的重要沉积记录.   相似文献   

8.
TThe Roper Group is a cyclic, predominantly marine, siliciclastic succession of Calymmian (Early Mesoproterozoic) age. It has a distribution of at least 145 000 km2 and a maximum known thickness of ~5000 m. In the Roper River district the middle part of the Roper Group (~1300 m thick) is characterised by the cyclical alternation of mudstone and sandstone units, and can be divided into six third‐order depositional sequences. A typical sequence is broadly progradational in aspect, and comprises a lower, mudstone‐rich, storm‐dominated shelf succession (up to 330 m thick), and a sequence‐capping unit dominated by tidal‐platform cross‐bedded sandstone (up to 80 m thick); both are interpreted as highstand systems tracts. Transgressive strata are poorly represented but where present are characterised by paralic to fluvial redbed assemblages that include ooidal ironstone. Roper Group sequences lack a distinct condensed section and sequence boundaries are mostly conformable. Erosional contacts separate mud‐rich shelf facies from sequence‐capping sandstones. We infer that these erosion surfaces were generated by episodic flexural tectonism, which also generated the accommodation and sediment supply for Roper sequences.  相似文献   

9.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   

10.
11.
Two types of ooidal ironstone deposits, all of Late Cretaceous age, were recognised in an area trending from Nigeria in a northeasterly direction via Sudan to Egypt. The two types of ironstones are of the kaolinite-type deposits (Agbaja area, Bida area, Sokoto and Potiskum, Nigeria; Shendi and Wadi Haifa, Sudan; and Kalabscha, Egypt) and of the chamosite-type deposits (Aswan, Egypt and Okigwe, Nigeria). Post-diagenetic ferruginisation of these deposits is reflected in only small variations in the chemical composition of the two types. Obvious differences include the varying MgO concentrations, which are considerably higher in the chamosite-type (in the range from ∼0.5–6.75 wt%). In the kaolinite-type, MgO varies from 0.0 to ∼0.4 wt%.One of the principal characteristics of the chamosite-type deposits is the occurrence of fossils, especially of brecciated shell material and bioturbation. These features are unknown in the kaolinite-type. In both types, pyrite and siderite are common constituents. These minerals are of diagenetic origin and were formed under reducing conditions in the presence of either chamositic clay minerals or kaolinite. The protoliths of both the kaolinite and the chamositic types were lateritic weathered rocks of the hinterland, transported via fluvial drainage systems and deposited in marine basins. The differences of the two types have been explained by the attendant environmental conditions. The environment of the chamosite-type is compatible with fully marine conditions and normal salinity, resulting in the availability of Mg leading to the formation of chamositic clay during diagenesis. The environment of the kaolinite-type is thought to be a marginal basin with high river discharge and thus lower salinity with zero or negligibly low Mg concentration. In this environment, a diagenetic transformation of the sedimentary kaolinite precorsur into chamositic clay failed to occur. The model is supported by the distribution patterns of the two ironstone types. Within the study area, the chamositic-types are located at the extreme positions and are thus closest to the open sea where fully marine conditions are most likely to have occurred.  相似文献   

12.
The microbial origin of Precambrian iron formations is debated due to the lack of direct fossil evidence. In order to reveal the genesis of ironstones under low-oxygen levels, integrative studies of sedimentology, petrography, mineralogy, and geochemistry were conducted on the intertidal to shallow subtidal ooidal and stromatolitic ironstones from the terminal Paleoproterozoic Chuanlinggou Formation (ca. 1.65–1.64 Ga) of North China, using microscopy, SEM, EDS, ICP-OES, ICP-MS and MC-ICP-MS techniques. Mineralogical study shows that the Fe-rich mineral is predominantly hematite that resulted from dehydration of amorphous Fe-oxyhydroxide during diagenesis. Petrographic observation indicates that the iron was oxidized and precipitated from seawater rather than sourced from terrestrial detritus. Basinward increases of the ironstone abundance, Eu anomalies (from 1.39 to 1.56) and δ56Fe values of the ironstones (from +0.5‰ to +1.0‰) suggest that the iron was mainly sourced from seafloor hydrothermal fluids, and partially oxidized and precipitated in shallow subtidal to intertidal environments. The common existence of Fe-oxide coated sheaths, spiral stalks, residual extracellular polymer substances (EPS) and other biogenic fabrics indicates that microaerophilic iron-oxidizing bacteria (FeOB) may have played an important role in precipitating the Chuanlinggou ironstones. The extremely low oxygen concentrations implied by the proliferation of microaerophilic FeOB in the shallow waters, the weak positive Ce anomalies (0.94–1.12) and low Mn concentrations in the ironstones are broadly consistent with the previous result of a Cr isotope study. Thus the establishment of a microaerophilic FeOB genetic model for the widespread Chuanlinggou ironstones in North China provides new insight into the origin of Precambrian iron formations and the redox evolution of ocean-atmosphere systems during the “Boring Billion”.  相似文献   

13.
ABSTRACT

Albian–Cenomanian successions (Kazhdumi and Sarvak formations) represent remarkable variations in thickness, facies, fauna, and environments throughout the Zagros area. In the Coastal Fars (Charmu section), sedimentological and paleontological data evidence an intrashelf, with depths of 10s–100s m, surrounded by a shallow carbonate platform. Due to its depth, deposition of sequences in this setting has been controlled by eustatic sea-level changes rather than eurybathic changes, and several condensation episodes occurred related to marine transgressions. These observations are different from those in the adjacent sections in the Coastal Fars which recorded subaerial exposures instead. Combined with previous studies, this study denotes several intrashelf basins enclosed by a shallow carbonate platform on the southeastern margin of the Neo-Tethys during the Albian–Cenomanian. Development of intrashelf basins corresponds to basement faults in the Fars Salient. Likely, an extensional tectonic regime associated with a rifting event created horst–graben architecture by exerting extension along the basement faults and reactivating salt structures. Deposition on these troughs and highs led to the facies and thickness variations of the concomitant sequences. Development of several intrashelf basins on the southeastern margin of the Neo-Tethys indicates that syn-depositional continental rifting event could occur during the Albian–Cenomanian, prior to the tectonic inversion around the earliest Turonian.  相似文献   

14.
The Middle Shoalhaven Plain is a large, tray‐like depression bounded in the west by the Mulwaree fault and in the east by cliffed Permian sediments. The plain is probably Mesozoic in origin and was partially alluviated during the Early to mid‐Eocene. Much of the plain and sediments were covered by basalts during the Late Eocene. This was followed by an episode of deep weathering, which culminated in the formation of widespread bauxitic and lateritic crusts and manganocrete and silcrete during the mid‐Tertiary. A second minor weathering event is recorded during the latest Tertiary to Early Pleistocene. Two new basalt dates are consistent with earlier ones at about 43 Ma. Palaeomagnetism shows bauxites and ferricretes to be mid‐Tertiary.  相似文献   

15.
The Lower Cretaceous sections in northern Sinai are composed of the Risan Aneiza (upper Barremian-middle Albian) and the Halal (middle Albian-lower Cenomanian) formations. The facies reflect subtle paleobathymetry from inner to outer ramp facies. The inner ramp facies are peritidal, protected to open marine lagoons, shoals and rudist biostrome facies. The inner ramp facies grade northward into outer ramp deposits. The upper Barremian-lower Cenomanian succession is subdivided into nine depositional sequences correlated with those recognized in the neighbouring Tethyan areas. These sequences are subdivided into 19 medium-scale sequences based on the facies evolution, the recorded hardgrounds and flooding surfaces, interpreted as the result of eustatic sea level changes and local tectonic activities of the early Syrian Arc rifting stage. Each sequence contains a lower retrogradational parasequence set that constituted the transgressive systems tracts and an upper progradational parasequence set that formed the highstand systems tracts. Nine rudist levels are recorded in the upper Barremian through lower Cenomanian succession at Gabal Raghawi. At Gabal Yelleg two rudist levels are found in the Albian. The rudist levels are associated with the highstand systems tract deposits because of the suitability of the trophic conditions in the rudist-dominated ramp.  相似文献   

16.
The phylostratigraphy, taphonomy and palaeoecology of the Late Cretaceous neoselachian Ptychodus of northern Germany appears to be facies related. Ptychodus is not present in lower Cenomanian shark-tooth-rich rocks. First P. oweni records seem to relate to middle Cenomanian strata. P. decurrens appears in the middle to upper Cenomanian mainly in non-coastal environments of the shallow marine carbonate ramp and swell facies which isolated teeth were found partly in giant ammonite scour troughs on the Northwestphalian-Lippe High submarine swell in the southern Pre-North Sea Basin. They are recorded rare in deeper basin black shales facies (upwelling influenced, OAE Event II). P. polygyrus seems to be restricted to upwelling influenced basin and deeper ramp facies mainly of the uppermost Cenomanian and basal lower Turonian (OAE II Event). P. mammillaris is mostly represented during the lower to middle Turonian in the inoceramid-rich ramp and the near shore greensand facies along the Münsterland Cretaceous Basin coast north of the Rhenish Massif mainland. Finally, P. latissimus is recorded by two new tooth sets and appears in the upper Turonian basin swell facies and the coastal greensands. Autochthonous post-Turonian Ptychodus remains are unrecorded in the Santonian–Campanian of Germany yet. Reworked material from Cenomanian/Turonian strata was found in early Santonian and middle Eocene shark-tooth-rich condensation beds. With the regression starting in the Coniacian, Ptychodus disappeared in at least the Münster Cretaceous Basin (NW-Germany), but remained present at least in North America in the Western Interior Seaway. The Cenomanian/Turonian Ptychodus species indicate a rapid neoselachian evolution within the marine transgression and global high stand. A correlation between inoceramid shell sizes, thicknesses and their increasing size during the Cenomanian and Turonian might explain the more robust and coarser ridged enamel surfaces in Ptychodus teeth, if Ptychodus is believed to have preyed on epifaunistic inoceramid bivalves.  相似文献   

17.
《International Geology Review》2012,54(12):1419-1442
The Palaeogene deposits of the Thrace Basin have evolved over a basement composed of the Rhodope and Sakarya continents, juxtaposed in northwest Turkey. Continental and marine sedimentation began in the early Eocene in the southwest part, in the early-middle Eocene in the central part, and in the late Lutetian in the north-northeast part of the basin. Early Eocene deposition in the southern half of the present Thrace Basin began unconformably over a relict basin consisting of uppermost Cretaceous–Palaeocene pelagic sediments. The initial early-middle Eocene deposition began during the last stage of early Palaeogene transtension and was controlled by the eastern extension (the Central Thrace Strike–Slip Fault Zone) of the Balkan-Thrace dextral fault to the north. Following the northward migration of this faulting, the Thrace Palaeogene Basin evolved towards the north during the late Lutetian. From the late Lutetian to the early Oligocene, transpression caused the formation of finger-shaped, eastward-connected highs and sub-basins. The NW–SE-trending right-lateral strike–slip Strandja Fault Zone began to develop and the Strandja Highland formed as a positive flower structure that controlled the deposition of the middle-upper Eocene alluvial fans in the northern parts of the Thrace Palaeogene Basin. Also, in the southern half of the basin, the upper Eocene–lower Oligocene turbiditic series with debris flows and olistostrome horizons were deposited in sub-basins adjacent to the highs, while shelf deposits were deposited in the northern half and southeast margin of the basin. At least since the early Eocene, a NE-trending magmatic belt formed a barrier along the southeast margin of the basin. From the late Oligocene onwards, the Thrace Palaeogene Basin evolved as an intermontane basin in a compressional tectonic setting.  相似文献   

18.
The intra- and epicontinental basins in north-east Africa (Egypt, Sudan) bear ample evidence of weathering processes repeatedly having contributed to the formation of mineral deposits throughout the Phanerozoic.The relict primary weathering mantle of Pan-African basement rocks consists of kaolinitic saprolite, laterite (in places bauxitic) and iron oxide crust. On the continent, the reaccumulation of eroded weathering-derived clay minerals (mainly kaolinite) occurred predominantly in fluvio-lacustrine environments, and floodplain and coastal plain deposits. Iron oxides, delivered from ferricretes, accumulated as oolitic ironstones in continental and marine sediments. Elements leached from weathering profiles accumulated in continental basins forming silcrete and alunite or in the marine environment contributing to the formation of attapulgite/saprolite and phosphorites.The Early Paleozoic Tawiga bauxitic laterite of northern Sudan gives a unique testimony of high latitude lateritic weathering under global greenhouse conditions. It formed in close spatial and temporal vicinity to the Late Ordovician glaciation in north Africa. The record of weathering products is essentially complete for the Late Cretaceous/Early Tertiary. From the continental sources in the south to the marine sinks in the north, an almost complete line of lateritic and laterite-derived deposits of bauxitic kaolin, kaolin, iron oxides and phosphates is well documented.  相似文献   

19.
陈志明 《地质科学》1981,(4):337-342
冀西北铁岩的结构和构造类似于碳酸盐岩,因此,借鉴于现代碳酸盐相模式与沉积环境,有可能恢复古代铁岩的沉积环境。本文对铁岩分类及其沉积环境进行了探讨。  相似文献   

20.
The type section of the Lower Cenomanian Bahariya Formation at Gebel El-Dist (Bahariya Oasis, Western Desert), Egypt, comprises claystones, mudstones, siltstones and sandstones deposited in fluvial-deltaic coastal plain, lagoonal, estuarine and shallow marine environments. The formation is characterized by an abundance of ferruginous sandstones that locally weather to form prominent iron crusts. These centimeter to decimeter-scale ferruginous horizons display a continuum of features ranging from unaltered sandstone with a pervasive ferruginous matrix to distinct ironstone beds with massive, nodular, vesicular and pisolitic textures. Ferruginous sandstone typically occurs at the tops of sandstone beds, or bracketing the base and top of beds, in the fining-upward cycles of deltaic plain deposits in the lower part of the formation and on a low-energy fluvial floodplain in the middle of the formation. Indurated ironstone beds occur mainly as the caps of coarsening-upward cycles of prograding shoreface sediments through much of the formation. We interpret the ironstone crusts as ferricretes, formed by iron accumulation that resulted from the oxidation and precipitation of soluble iron or colloids transported in the sediment load or by groundwater. This accumulation possibly took place at the water table or possibly below the water table at the fresh water/saline water interface. However, base-level fall and subsequent subaerial exposure of the sediments resulted in reworking and pedogenic modification of some of the iron-impregnated horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号