首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid biomarkers of hopanoids in cold seep carbonates from the South China Sea continental slope were investigated by gas chromatography–mass spectrometer (GC–MS) and gas chromatography-isotope ratio-mass spectrometer (GC-ir-MS). The distribution of hopanes/hopenes shows a preference for the ‘biological’ 17β(H), 21β(H)-over the ‘geological’ 17α(H), 21β(H)-configuration. This interpretation is in agreement with the strong odd–even preference of long-chain n-alkanes in those samples, suggesting that the ββ hopanes may be the early diagenetic products of biohopanoids and the αβ, βα configurations of hopanes were mainly derived from allochthonous sources contributing to the organic matter of the carbonates. In terms of hopanoid acids, the C30 to C33 17β(H), 21β(H)-hopanoid acids were detected with C32 17β(H), 21β(H)-hopanoid acid being the most abundant. However, there is a significant difference in stable carbon isotopic compostions of the C32 17β(H), 21β(H)-hopanoic acid among samples (−30.7‰ to −69.8‰). The δ13C values match well with the carbon isotopic compositions of SRB-derived iso-/anteiso-C15:0 fatty acids in the samples, which strongly depend on the carbon utilization types by microbe. The most abundant compound of hopanols detected in the samples, C30-17β(H), 21β(H)-hopanol, may be a good indicator of diagenetic product of type I methanotrophs. The molecular and carbon isotopic compositions of hopanoids demonstrate clearly that there is a combination contribution of both SRB and type I or type X methanotrophs to the source organism in the seep carbonates from the South China Sea continental slope.  相似文献   

2.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

3.
Two types of Oman crude oils reveal unusual sterane distributions. Type “A”, which is the more common (74 examples), is characterised by a predominance of C29 iso- and normal-steranes and generally none or only very low relative concentrations of rearranged-steranes. The triterpanes are characterised by the predominance of the C29 17αH, 21βH norhopane over the C30 17αH, 21βH hopane and non-predominant C20–C30 tricyclic terpanes. The C29 steranes of this type of crude were not derived from the C29 sterols of land-plant origin (frequently proposed as the source of C29 steranes) since there is good geological evidence that these crudes were generated from a pre-Cambrian source rock, a geological period when land-plants did not exist.The type “B” crude oil (11 known examples) is characterised by a strong predominance of C27 iso-, normal- and rearranged-steranes, relatively lower concentrations of 17αH, 21βH hopanes and relatively high concentrations of C20–C30 tricyclic terpanes.The remarkably different biomarker characteristics of these crude oils imply that the organisms active in the depositional environment of the respective source rocks were significantly different.  相似文献   

4.
Numerous Ordovician oils worldwide are known to show unusual and distinctive distributions of hydrocarbons which, it has been suggested, are derived from a “unique benthonic mat-forming non-photosynthetic prokaryotic organism”, Gloeocapsomorpha prisca Zalessky 1917, which is the major contributor of organic matter. Organic matter-rich sediments from the Canning and Amadeus Basins of Australia, known to contain G. prisca fossils and to have the characteristic predominance of odd carbon number (C13–C19) n-alkanes, were investigated to determine other hydrocarbon distributions. Sediments from both basins contained abundant n-alkylcyclohexanes with odd carbon number predominance (C13–C19) and methyl-n-alkylcyclohexanes (C14–C20) which, in immature sediments, showed an even carbon number predominance. The isomer distribution of these latter compounds was determined by direct comparison with synthetic standards. The sediments from both basins also contained very similar distributions of steranes and pentacyclic triterpanes and the derived kerogens had a characteristically light carbon isotope signature.Pyrolysis of a G. prisca-rich kerogen yielded a hydrocarbon mixture with a similar composition to the sediment extract, except that there was a marked increase in the relative abundance of pristane, phytane, alkylcyclohexanes, steranes and hopanes relative to n-alkanes. We argue on the basis of the geological, geochemical and palynological data that G. prisca was probably planktonic, photosynthetic and very possibly eukaryotic and that the striking character of Ordovician oils and sediments derive from bacterial and other diagenetic imprints superimposed on the primary signature of this organism.  相似文献   

5.
Based on the compositions and distributions of biomarkers in thirty-five representative oil samples, oils from the Tarim Basin of northwestern China are mainly divided into two oil families. One oil family contains relatively low amounts of C15-C20 isoprenoid hydrocarbons and shows pristane predominance with Pr/Ph ratios ranging from 1.50 to 3.00. The GC/MS analytical data of these oils show the occurrence of abundant hopanes, and low concentrations of steranes and tricyclic terpanes with hopanes/steranes ratios from 6.25 to 12.24 and tricyclic terpanes/hopanes ratios from 0.03 to 0.24. These oils contain low drimane relative to homodrimane (C15/C16 < 1.0) and abundant rearranged bicyclanes in bicyclic sesquiterpanes. They are dominated by low carbon number (C19-C21) compounds in the tricyclic terpanes, and are rich in rearranged hopanes, C29Ts and an unknown C30 compound in pentacyclic triterpanes. These geochemical characteristics suggest that the oils were generated mainly from terrigenous organic matter. The other oil family shows remarkably different biomarker compositions and distributions. The oils revealed Pr/Ph ratios of about 1.0, high drimane/homodrimane ratios (>1.0), low hopanes/steranes ratios (0.65–2.50), high tricyclic terpanes/hopanes ratios (0.30–2.00) and a dominant peak at C23 in tricyclic tepanes, suggesting a marine organic origin. Oil-source rock correlation indicates that these two oil families seem to have been derived from Mesozoic Jurassic-Triassic terrestrial source rocks (shales and coal seams) and Lower Paleozoic Ordovician-Cambrian marine source rocks, respectively.  相似文献   

6.
A geochemical investigation of oils in sandstone core plugs and drill stem test oils was carried out on samples from a North Sea reservoir. A sample of diesel used as a constituent of the drilling fluids was also analysed. The aliphatic and aromatic hydrocarbons and polar non-hydrocarbons were isolated using solid phase extraction methods. GC analysis of the hydrocarbon fraction of the core extract indicated that contamination may be diesel derived. From analysis of diesel some compound classes are less likely to be affected by contamination from diesel itself including: steranes, hopanes, aromatic steroid hydrocarbons, benzocarbazoles and C0–C3-alkylphenols.  相似文献   

7.
The current geochemical study of n-alkanes, steranes, and triterpanes in bitumen from the Late Maastrichtian–Paleocene El Haria organic-rich facies in West of Gafsa, southern Tunisia, was performed in order to characterize with accuracy their geochemical pattern. The type of organic matter as deduced from n-alkanes, steranes, and triterpanes distributions is type II/III mixed oil/gas prone organic matter. Isoprenoids and biomarkers maturity parameters (i.e., T s/T m, 22S/(22S?+?22R) of the C31 αβ-hopanes ratios, 20S/(20R?+?20S) and ββ/(ββ?+?αα) of C29 steranes), revel that the organic-rich facies were deposited during enhanced anoxic conditions in southern Tunisa. The organic matter is placed prior to the peak stage of the conventional oil window (end of diagenesis–beginning of catagenesis). All these result are suggested by total organic carbon analysis, bitumen extraction and liquid chromatography data. Thus, the n-alkanes, triterpane, and steranes study remains valuable and practical for geochemical characterization of sedimentary organic matter.  相似文献   

8.
Biodegradation, one of the most important weathering processes, alters the composition of spilled oil, making it difficult to identify the source of the release and to monitor its fate in the environment. A laboratory experiment was conducted to simulate oil spill weathering process of microbial degradation to investigate compositional changes in a range of source- and weathering-dependent molecular parameters in oil residues, and the conventional diagnostic ratios for oil spill identification were also evaluated. The conventional diagnostic ratios of n-alkane displayed obvious changes after biodegradation, especially for Pr/n-C17 and Ph/n-C18 with relative standard deviation more than 118.84 %, which suggests they are invalid for oil source identification of the middle-serious spill. Many polycyclic aromatic hydrocarbons (PAHs) are more resistant to biodegradation process than their saturated hydrocarbon counterparts, thus making PAHs to be one of the most valuable fingerprinting classes of hydrocarbons for oil identification. Biomarker ratios of hopanes and steranes were also useful for source identification even after moderate biodegradation, and the diagnostic ratios from them could be used in tracking origin and sources of hydrocarbon pollution. Finally, the carbon isotopic type curve may provide another diagnostic means for correlation and differentiation of spilled oils, and be particularly valuable for lighter refined products or severely biodegraded oils, the source of which may be difficult to identify by routine biomarker techniques.  相似文献   

9.
Analyses of some Australian crude oils show that many contain varying concentrations of A/ B-ring demethylated hopanes. These range from C26 to C34 and have been identified from their retention times and mass spectral data as 17α(H)-25-norhopanes. Comparison of hopane and demethylated hopane concentrations and distributions in source-related, biodegraded oils suggests that demethylated hopanes are biotransformation products of the hopanes. Further, it appears that the process occurs at a late stage of biodegradation, after partial degradation of steranes has occurred. Demethylated hopanes are proposed as biomarkers for this stage of severe biodegradation. The presence of these compounds in apparently undegraded crude oils is thought to be due to the presence of biodegraded crude oil residues which have been dissolved by the undegraded crude oil during accumulation in the reservoir sands. The timing of hopane demethylation, relative to the degradation of other compounds, has been assessed and the progressive changes in crude oil composition with increasing extent of biodegradation have been identified. The use of demethylated hopanes as maturity parameters for severely biodegraded crude oils, and the applicability of established biomarker maturity parameters to such oils, are also discussed.  相似文献   

10.
Geochemical characterisation of 18 crude oils from the Potwar Basin (Upper Indus), Pakistan is carried out in this study. Their relative thermal maturities, environment of deposition, source of organic matter (OM) and the extent of biodegradation based on the hydrocarbon (HC) distributions are investigated. A detailed oil-oil correlation of the area is established. Gas chromatography-mass spectrometry (GC-MS) analyses and bulk stable carbon and hydrogen isotopic compositions of saturated and aromatic HC fractions reveals three compositional groups of oils. Most of the oils from the basin are typically generated from shallow marine source rocks. However, group A contains terrigenous OM deposited under highly oxic/fluvio-deltaic conditions reflected by high pristane/phytane (Pr/Ph), C30 diahopane/C29Ts, diahopane/hopane and diasterane/sterane ratios and low dibenzothiophene (DBT)/phenanthrene (P) ratios. The abundance of C19-tricyclic and C24-tetracyclic terpanes are consistent with a predominant terrigenous OM source for group A. Saturated HC biomarker parameters from the rest of the oils show a predominant marine origin, however groups B and C are clearly separated by bulk δ13C and δD and the distributions of the saturated HC fractions supporting variations in source and environment of deposition of their respective source rocks. Moreover, various saturated HC biomarker ratios such as steranes/hopanes, diasteranes/steranes, C23-tricyclic/C30 hopane, C28-tricyclic/C30 hopane, total tricyclic terpanes/hopanes and C31(R + S)/C30 hopane show that two different groups are present. These biomarker ratios show that group B oils are generated from clastic-rich source rocks deposited under more suboxic depositional environments compared to group C oils. Group C oils show a relatively higher input of algal mixed with terrigenous OM, supported by the abundance of extended tricyclic terpanes (up to C41+) and steranes.Biomarker thermal maturity parameters mostly reached to their equilibrium values indicating that the source rocks for Potwar Basin oils must have reached the early to peak oil generation window, while aromatic HC parameters suggest up to late oil window thermal maturity. The extent of biodegradation of the Potwar Basin oils is determined using various saturated HC parameters and variations in bulk properties such as API gravity. Groups A and C oils are not biodegraded and show mature HC profiles, while some of the oils from group B show minor levels of biodegradation consistent with high Pr/n-C17, Ph/n-C18 and low API gravities.  相似文献   

11.
A suite of 27 oils from the Qinjiatun–Qikeshu oilfields in the Lishu Fault Depression of the Songliao Basin was analyzed using whole oil gas chromatography. In combination with the relative distribution of C27, C28, and C29 regular steranes, detailed geochemical analyses of light hydrocarbons in oil samples revealed crude oils characterized by the dual input of lower aquatic organisms and higher terrestrial plants. Several light hydrocarbon indicators suggest that the liquid hydrocarbons have maturities equivalent to vitrinite reflectances of around 0.78%–0.93%. This is consistent with the maturity determination of steranes C29 20S/(20S + 20R) and C29 ααβ/(ααα + αββ). Crude oils derived from the two distinct oilfields likely both have source rocks deposited in a lacustrine environment based on light hydrocarbon parameters and on higher molecular weight hydrocarbon parameters. The results show that light hydrocarbon data in crude oils can provide important information for understanding the geochemical characteristics of the Qinjiatun–Qikeshu oils during geologic evolution.  相似文献   

12.
13.
四川南桐地区二叠系龙潭煤层具有良好的生油潜力。其生物标记物包括正构和异构烷烃,类异戊二烯烷烃,倍半萜烷,二萜烷,三环萜烷,藿烷,一种未知结构的五环三萜烷(C30),甾烷,4-甲基甾烷等。煤层生物标记物特征表明在其形成过程中有藻类和细菌等微生物物质的加入。  相似文献   

14.
Hydrocarbon results from gas chromatography of 60 recent sediment and 10 benthic algae samples delineate two distinct shelf environments in the northeastern Gulf of Mexico.Sediments off Florida (shell hashes and sands) have moderate amounts of lipids/total sediment (average 113ppm ± 80%) but low hydrocarbon levels (average 3.06 ppm ± 41%). Aliphatic hydrocarbons are dominated by a series of branched or cyclic, unsaturated C25 isomers. The major n-alkane is n-C17. The n-alkane and isoprenoid patterns are consistent with a marine hydrocarbon source.Sediments closer to the Mississippi River (silts and clays) contain large amounts of lipids (average 232 ppm ± 53%) and hydrocarbons (average 11.7 ppm ± 55%) to total sediment. Aliphatic hydrocarbons are mainly odd carbon number high molecular weight n-alkanes, indicating a terrigenous hydrocarbon source. Isoprenoids are present in greater abundance than in sediments off Florida (n-C17/ pristane and n-C18/phytane ratios ~2to 3). Relatively large amounts of n-C16, together with an even distribution of n-alkanes in the range C14–C20 and a substantial unresolved envelope all point to a fossil fuel input to the Mississippi samples.Samples off the Alabama coast show intermediate characteristics.  相似文献   

15.
传统上认为大分子烃类很难通过微渗漏方式逸散到地表,但已有研究表明高分子量烃类也可以逸散到现代沉积物中。本文基于黄海现代沉积物与典型原油地球化学特征的不同,将二者进行正交配比,系统研究不同配比产物的组成特征。结果表明:随着配比实验中原油比例的增大,正构烷烃和部分芳烃的色谱指纹呈现规律性变化,其正构烷烃奇偶优势逐渐消失,烷基芳烃丰度随之增加;三环萜烷、藿烷、规则甾烷等化合物的绝对浓度,以及二苯并噻吩/菲等的比值也呈现规律性变化,其中三环帖烷、C_(24)四环萜烷/C_(26)三环萜烷和三环萜烷/藿烷三者的变化明显且平稳,其数值范围均在0~3.0,适合用于渗逸图版。将研究区采集的未知样品与配比产物的组成特征进行对比,在排除外源污染的情况下可定性判识该研究区是否存在地下油气藏;将样品的相关参数投到图版上,有望进一步定量判识样品中渗入原油的比例。该方法可以作为常规油气化探的补充,在油气藏评价方面提供诸多信息,甚至在环境污染监控等领域有望获得推广。  相似文献   

16.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

17.
The major steranes of the non-asphaltene fraction of Nigerian tar sand bitumen (maltene) are the c27-c29 diasteranes [13β(H),17α(H); 20R + S] and C28-C29 regular steranes [14β (H),17β (H); 20S]. The reducing metal reaction products of the corresponding asphaltenes (maltene-I) contain mainly C27-C29 regular steranes with the 14β(H),17β(H); 20R + S and 14α(H),17α(H); 20R + S configurations as well as the corresponding diasteranes having the 13β(H),17α(H); 20R + S configuration. These sterane distributions suggest that maltene-I corresponds to an unaltered oil whilst the maltene is equivalent to the product of severe biodegradation of maltene-I. This is consistent with maltene-I being the remnant of “original oil” trapped within the asphaltene matrix and protected from the effect of in-reservior biodégradation.Degradation of Nigerian asphaltenes by refluxing with ferric chloride-acetic anhydride or methanolic potassium hydroxide also releases soluble reaction products having the characteristics of unaltered oil such as the presence of n-alkanes having an unbiased distribution. These methods appear to be milder and more suitable than reducing metal reactions for releasing hydrocarbons occluded by asphaltenes.  相似文献   

18.
19.
The surface sediments collected from the southern Mariana Trench at water depths between ca. 4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture (UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C27–C29 regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent. This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios (ranging from 0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio (10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C19–C22 and the n-fatty acids C20:0–C22:0 were depleted in 13C by 3‰ compared to n-alkanes C16–C18 and the n-fatty acids C14:0–C18:0, respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon “lighter” terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment.  相似文献   

20.
Novel side chain methylated and hexacyclic hopanes have been identified in coals and oils from around the world. Extended hopanes (>C32) with an additional methyl in the side chain (“isohopanes”) were identified by comparison with synthetic standards. The major C33-C35 isohopanes are 31-methylbishomohopanes, 32-methyltrishomohopanes and 33-methyltetrakishomohopanes. Extended hopanes methylated at C-29 were not detected. The 17α(H),21β(H)-31-methyltrishomohopanes show four peaks on gas chromatography because of the extra asymmetric carbon at C-31. Like regular hopanes, the isohopanes extend beyond C35. Low concentrations of novel hexacyclic hopanes having 35 or more carbons were also detected in oils and coal extracts. The C35 hexacyclic hopanes were identified as 29-cyclopentylhopanes. Isohopanes are released from the kerogen by hydrous pyrolysis and hydropyrolysis. The 22S/(22S + 22R) ratio for 31-methylbishomohopanes and other isohopanes is around 0.60 at equilibrium in geological samples. They isomerize slightly more slowly than regular C33 hopanes. Isohop-17(21)-enes, 2α-methylisohopanes and two series of rearranged isohopanes were tentatively identified. Isohopanes can be biodegraded to form the corresponding 25-norhopanes. When 25-norhopanes are not formed, the isohopanes are much more resistant to biodegradation than regular hopanes. In biodegraded oil seeps from Greece, 30-norisohopanes were tentatively assigned. The composition and relative abundance of C33 and C34 isohopanes in a worldwide set of coals and crude oils was determined. Isohopanes are abundant in coal and coal-generated oils, where they can account for more than 5% of all extended hopanes, and low in abundance in oils from source rocks deposited under anoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号