首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Response of the runoff in the headwater region of the Yellow River to climate change and its sensibility are analyzed based on the measured data at the four hydrological stations and ten weather stations during the period 1959-2008. The result indicates that change of temperature in the region has an obvious corresponding relationship with global warming and the changes of annual average temperature in each subregion in the region have been presenting a fluctuant and rising state in the past 50 years. However the change of precipitation is more intricate than the change of temperature in the region because of the influences of the different geographical positions and environments in various areas, and the change of annual precipitation in the main runoff-producing area has been presenting a fluctuant and decreasing state in the past 50 years. And there is a remarkable nonlinear correlativity between runoff and precipitation and temperature in the region. The runoff in the region has been decreasing continuously since 1990 because the precipitation in the main runoff- producing area obviously decreases and the annual average temperature continuously rises. As a whole, the runoff in each subregion of the headwater region of the Yellow River is quite sensitive to precipitation change, while the runoff in the subregion above Jimai is more sensitive to temperature change than that in the others in the region, correspondingly.  相似文献   

2.
黄河源区径流对气候变化的响应及敏感性分析(英文)   总被引:4,自引:1,他引:3  
Response of the runoff in the headwater region of the Yellow River to climate change and its sensibility are analyzed based on the measured data at the four hydrological stations and ten weather stations during the period 1959–2008. The result indicates that change of temperature in the region has an obvious corresponding relationship with global warming and the changes of annual average temperature in each subregion in the region have been presenting a fluctuant and rising state in the past 50 years. However the change of precipitation is more intricate than the change of temperature in the region because of the influences of the different geographical positions and environments in various areas, and the change of annual precipitation in the main runoff-producing area has been presenting a fluctuant and decreasing state in the past 50 years. And there is a remarkable nonlinear correlativity between runoff and precipitation and temperature in the region. The runoff in the region has been decreasing continuously since 1990 because the precipitation in the main runoff-producing area obviously decreases and the annual average temperature continuously rises. As a whole, the runoff in each subregion of the headwater region of the Yellow River is quite sensitive to precipitation change, while the runoff in the subregion above Jimai is more sensitive to temperature change than that in the others in the region, correspondingly.  相似文献   

3.
三江源区径流演变及其对气候变化的响应   总被引:4,自引:0,他引:4  
利用水循环模型、统计检测、对比分析等手段对三江源区水循环过程进行了分析,模拟和检测了1958-2005 年黄河源区出口唐乃亥站、长江源区直门达站、澜沧江源区昌都站汛期、非汛期和年径流过程的变化趋势。在此基础上,检测CSIRO和NCAR两种气候模式A1B和B1 排放情景下未来2010-2039 年源区出口断面的径流演变趋势,对比分析了气候变化的影响。研究表明过去48 年三江源区出口唐乃亥站年径流和非汛期径流过程呈显著减少趋势,而直门达和昌都站径流过程变化趋势并不显著。这将导致对黄河中下游地区的水资源补给显著减少,加剧黄河流域水资源短缺。气候变化背景下,未来30 年黄河源区径流量与现状相比有所减少,尤其是在非汛期,将持续加剧黄河中下游流域水资源短缺的现象。长江源区径流量将呈增加趋势,而且远远高于现状流量,尤其是在汛期,长江中下游地区防洪形势严峻。而澜沧江源区未来30 年径流量均高于现状流量,但汛期和年径流变化并不显著,而非汛期径流变化存在不确定性,CSIRO模式B1 情景显著减小,而NCAR模式B1 情景显著增加。气候变化对长江源区径流影响最显著,黄河源区其次,而澜沧江源区最小。  相似文献   

4.
黄河入海径流变化及影响因素   总被引:1,自引:1,他引:0  
孔岩  王红  任立良 《地理研究》2012,31(11):1981-1990
黄河入海径流是黄河水循环的重要分量,涉及整个流域,它的变化是流域气候与人类活动的综合体现。以黄河入海口利津水文站1963~2009年实测径流量年均值为基础,采用随机水文学方法,对入海径流动态变化进行了分析;结合流域内7个径流来源区的78个气象站同时段月均降水和气温数据及流域内取水量和水利工程等资料,探讨了不同径流来源区的气候因素和人类活动对入海径流量的影响。结果表明:近50年来入海实测径流量呈显着下降趋势,且存在1968年、1985年、1996年与2002年这四个突变点;入海天然径流量同样呈显着下降趋势,只有1985年一个突变点。唐乃亥以上区间的降水量、兰州至龙门区间的气温以及龙门至三门峡区间的降水和气温是引起入海天然径流量变化主要因素;气温因素的季节性变化对入海天然径流量也有影响,其中夏季降水与冬季气温是重要的因素。自20世纪70年代以来,人类活动对入海径流量的影响不断加强,且在耗水量、水土保持及水利工程等方面表现出明显的空间差异。取水量、降水、气温对黄河入海实测径流量变化的贡献率分别为42.2%、39.2%、18.6%.  相似文献   

5.
全球气候变化对黄河流域天然径流量影响的情景分析   总被引:29,自引:6,他引:23  
张光辉 《地理研究》2006,25(2):268-275
本文从干旱指数蒸发率函数出发,以HadCM3 GCM对降水和温度的模拟结果为基础,在IPCC不同发展情景下,分析了未来近100年内黄河流域天然径流量的变化趋势。研究结果表明,在不同气候变化情景下,多年平均年径流量的变化随着区域的不同而有显著差异,其变化幅度在-48.0%203.0%之间。全球气候变化引起的多年平均天然径流量的变化从东向西逐渐减小。就黄河流域而言,20062035年、20362065年、20662095年A2情景下(人口快速增长、经济发展缓慢)多年平均天然径流量的变化量分别为5.0%、11.7%、8.1%,B2情景下(强调社会技术创新)相应的变化分别为7.2%、-3.1%、2.6%。  相似文献   

6.
三江源气候变化及其对径流的驱动分析   总被引:14,自引:3,他引:11  
以1965-2004 年三江源地区12 个气象台站的降水和气温资料以及长江源区直门达、黄河源区唐乃亥和澜沧江源区昌都水文站的径流资料为基础,分析三江源地区的降水、气温和径流的变化趋势,并采用Mann-Kendall-Sneyers 方法进行趋势显著性检验;采用Makkink 公式计算三江源区12 个气象站点的潜在蒸发,建立三江源区降水和潜在蒸发对径流的驱动模型,并对气候变化(降水和气温的变化) 对径流的驱动进行情景分析。研究表明:1965-2004 年三江源区气温升高,径流减少,并且气温和径流都在1994 年发生突变,但降水的变化趋势不明显。降水和潜在蒸发对径流深的驱动模型表明三江源区降水对径流起正向的驱动作用,潜在蒸发对径流起负向的驱动作用,具体来说,澜沧江源区潜在蒸发对径流的驱动力最大,长江源区次之,黄河源区最小。借助驱动模型对三江源气候变化(降水和气温的变化) 对径流的影响进行情景分析,结果显示,降水和气温对径流的驱动在总体上虽然分别是正、负方向上的驱动,但在具体情景下其各自的驱动作用又呈现出波动的特征。  相似文献   

7.
黄河源区径流量与区域气候变化的多时间尺度相关   总被引:8,自引:2,他引:6  
采用交叉小波变换方法,分析了黄河源区实测径流量与区域降水量、蒸发量以及最高、最低气温之间的时频域统计特征,讨论了黄河源区径流与区域气候变化之间的多时间尺度相关.结果表明,黄河源区径流和区域气候变化具有多时间尺度结构,两者都存在准2a、4a、6~8a、12~14a和20a以上尺度的显著变化周期,不同尺度周期振荡能量的强弱和时域分布的位相差异是两者相关不稳定和存在时延相关的重要原因.径流与区域降水量之间正相关振荡的凝聚性最强,区域降水量对径流变化起主控作用,前期降水异常对后期径流变化具有持续性影响.径流变化与区域蒸发量存在显著负相关振荡,年际尺度相关存在不稳定和时延现象.年代际尺度上径流与最高气温的负相关比其与最低气温的正相关凝聚性更强,最高气温升高对增大流域蒸发量导致径流补给的减少作用大于最低气温升高引起冰雪融水补给的增大作用;两者年际尺度相关不稳定,径流对气温变化的响应时间不同.分析认为,区域降水量是黄河源区径流变化的主导因子,最高气温是重要因子;在区域降水量逐年减小的背景下,气温升高进一步加剧了径流量的减小.区域蒸发量和最低气温变化对径流量也有不同程度的影响,气候因子的综合作用是黄河源区径流变化的根本原因.  相似文献   

8.
50年来秦岭金钱河流域水文特征及其对降水变化的响应   总被引:3,自引:1,他引:2  
白红英  侯钦磊  马新萍  章杰  袁博 《地理科学》2012,(10):1229-1235
运用集中度和集中期、Kendall秩相关系数、R/S分析法、降水—径流双累积曲线模型及其他数理统计方法,分析了金钱河流域径流的变化特征,探讨了年际、季节及月尺度上径流变化的趋势并预测了未来趋势,用集中期指标反映了径流对降水响应的滞后效应,并定量分析了降水变化和人类活动对径流变化的贡献率。结果表明:50 a来径流量呈现出显著的递减趋势(p<0.05),递减率为34.33 m3(/s 10a),Hurst指数H=0.669>0.5,表明未来的一段时间内变化趋势与现在相同;1~12月各月径流均表现为下降趋势。流域内径流对降水的响应存在滞后效应,50 a径流对降水平均每年滞后23.6 d,且滞后天数具有明显上升趋势。50 a来径流系数呈极显著减小趋势,降水量转化为径流的部分在逐年减少,被植物截留、填洼、入渗和蒸发的部分增加;径流发生突变后比突变前径流系数降低了35.2%。50 a来降水变化对径流变化的影响率为53.4%,高于人类活动影响率46.6%,是导致径流变化的主要原因,人类活动为次要原因。  相似文献   

9.
1933~2012年无定河径流突变与周期特征诊断   总被引:1,自引:1,他引:0  
选取黄河中游区实施水土保持最早的一级支流无定河流域,利用滑动-T、曼-肯德尔和山本等3种突变检测方法相互验证,确定了在受人类活动显著影响下,径流的突变年份为1972年,自此径流平均减少3.55×108m3;基于径流突变前降水与径流的显著相关性,并借助地统计克里格空间插值法,重建1933~2012年无定河流域出口控制水位站天然径流变化序列。采用小波分析法诊断天然径流序列的周期变化,结果显示:天然年径流存在6个不同时间尺度的“丰-枯”演变特征,其平均周期分别对应着35.5、22.2、16.8、12.2、9.3和3.3 a。  相似文献   

10.
江河源区NDVI时空变化及其与气候因子的关系(英文)   总被引:5,自引:3,他引:2  
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multitemporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the correlation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3×3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source region of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI change was980 Journal of Geographical Sciences positively correlated with average temperature, precipitation and shallow ground temperature. Shallow ground temperature had the greatest effect on NDVI change, and the second greatest factor influencing NDVI was average temperature. The correlation between NDVI and shallow ground temperature in the source regions of the Yangtze and Yellow rivers increased significantly with the depth of soil layer.  相似文献   

11.
By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source region of the Yellow River with db3 wavelet, runoff of different hydrologic stations tends to be declining in the seasons of spring flood, summer flood and dry ones except for that in Tuotuo River. The declining flood/dry seasons series was summer > spring > dry; while runoff of Tuotuo River was always increasing in different stages from 1965 to 2007 with a higher increase rate in summer flood seasons than that in spring ones. Complex Morlet wavelet was selected to detect runoff periodicity of the four hydrologic stations mentioned above. Over all seasons the periodicity was 11-12 years in the source region of the Yellow River. For the source region of the Yangtze River the periodicity was 4-6 years in the spring flood seasons and 13-14 years in the summer flood seasons. The differences of variations of flow periodicity between the upper catchment areas of the Yellow River and the Yangtze River and between seasons were considered in relation to glacial melt and annual snowfall and rainfall as providers of water for runoff.  相似文献   

12.
Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June  相似文献   

13.
三江源区径流演变及其对气候变化的响应(英文)   总被引:2,自引:2,他引:0  
Runoff at the three time scales(non-flooding season,flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai(Yellow River Source Region:YeSR),Zhimenda(Yangtze River Source Region:YaSR) and Changdu(Lancang River Source Region:LcSR) by hydrological modeling,trend detection and comparative analysis.Also,future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested.The results showed that the annual and non-flooding season runoff decreased significantly in YeSR,which decreased the water discharge to the midstream and downstream of the Yellow River,and intensified the water shortage in the Yellow River Basin,but the other two regions were not statistically significant in the last 48 years.Compared with the runoff in baseline(1990s),the runoff in YeSR would decrease in the following 30 years(2010-2039),especially in the non-flooding season.Thus the water shortage in the midstream and downstream of the Yellow River Basin would be serious continuously.The runoff in YaSR would increase,especially in the flooding season,thus the flood control situation would be severe.The runoff in LcSR would also be greater than the current runoff,and the annual and flooding season runoff would not change significantly,while the runoff variation in the non-flooding season is uncertain.It would increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model.Furthermore,the most sensitive region to climate change is YaSR,followed by YeSR and LcSR.  相似文献   

14.
气候变化对径流的影响是全球变化研究领域的重点问题。论文采用BCC-CSM1-1模拟的过去千年(850—2012年)气候与水文变化数据,基于Budyko假设与傅抱璞公式开展了中世纪气候异常期(MCA)、小冰期(LIA)和现代暖期(MWP)黄河中、上游径流变化及其归因分析。结果表明:① 在3个气候特征期之间,上游地区径流与气候冷暖变化位相相同,MWP时期径流最高,LIA时期径流最低;中游地区径流则与气候冷暖变化位相相反,LIA径流最高,MCA径流最低。② 径流对各因子的敏感性不仅存在地理差异,而且受特征期之间气候冷暖转变的影响。中游地区径流对降水和潜在蒸发的弹性系数(绝对值)大于上游,且在冷转暖过程中的弹性系数(绝对值)略大于暖转冷过程。同时,持续偏暖过程中、上游地表变化的弹性系数(绝对值)均明显大于暖转冷与冷转暖过程。③ 3个特征期之间径流差异主要由降水主导,地表变化影响甚微,但潜在蒸发的作用存在地域差异,上游地区潜在蒸发部分抵消了降水变化的贡献而中游地区潜在蒸发则加强了降水导致的径流变化。研究量化了黄河流域各因子对过去千年百年尺度径流变化的贡献,明确了不同气候转变期各因子贡献的差异,为更好地研究径流量多尺度变化及其成因奠定了基础。  相似文献   

15.
运用集中期、M-K突变检验法、径流系数等数理统计方法,基于1960-2011年马渡王与南宽坪径流数据及气象数据,对比分析灞河与金钱河流域径流变化特征,揭示秦岭南北气候变化差异得出:(1)52 a来灞河与金钱河年均径流深变化趋势相似,金钱河年径流深的变异程度大于灞河;(2)灞河与金钱河流域径流与降水在年内分配上存在滞后效应,秦岭南北从流域降水开始经过停蓄、漫流、河槽集流,然后汇流至金钱河河道大概需要20 d 左右的时间;(3)秦岭南北气候因子突变的时间点具有一致性,均发生在1990年左右,该突变可能是由于大尺度的气候变化导致局部地区自然环境变化引起的;(4)径流变化的下降趋势是降水、气温、植被变化和人类活动综合作用的结果。20世纪90年代末的径流突变主要原因是气候变化引起的,人类活动对其影响十分微小,因此,某些明显的突变现象是由于大的气候变化引起的,人类活动的影响是一个长期的过程,所以对自然资源应采取开发与治理同时进行。  相似文献   

16.
黄河源区径流对气候变化的响应及未来趋势(英文)   总被引:4,自引:1,他引:3  
This study examines the hydrological and meteorological data of the source region of the Yellow River from 1956 to 2010 and future climate scenarios from regional climate model (PRECIS) during 2010-2020. Through analyzing the flow variations and revealing the climate causes, it predicts the variation trend for future flows. It is found that the annual mean flow showed a decreasing trend in recent 50 years in the source region of the Yellow River with quasi-periods of 5a, 8a, 15a, 22a and 42a; the weakened South China Sea summer monsoon induced precipitation decrease, as well as evaporation increase and frozen soil degeneration in the scenario of global warming are the climate factors, which have caused flow decrease. Based on the regional climate model PRECIS prediction, the flows in the source region of the Yellow River are likely to decrease generally in the next 20 years.  相似文献   

17.
 乌鲁木齐河源区径流是供给中下游地区和乌鲁木齐市的重要水源。通过对河源区3个水文断面(1号冰川、空冰斗和总控)有观测记录以来的径流变化研究,一方面提供径流观测的最新资料,使人们对乌鲁木齐河源区径流近期变化有新的认识;另一方面通过对气候、冰川变化的综合分析,揭示乌鲁木齐河源区径流近50 a变化事实和可能的原因。结果表明:河源区3个水文断面径流自有观测记录以来整体上呈增加趋势,其中总控水文断面径流虽有增加,但不显著。影响3个水文断面径流变化的因素不同,1号冰川水文断面径流变化受控于冰川区热量条件,当消融期气温大于2 ℃时,径流呈加速增长。1号冰川径流不仅包含了冰川对气候变化的瞬时响应,也包含了冰川对气候变化的滞后响应,由冰川物质平衡和面积计算的冰川体积损失量变化较好地验证了径流变化。对于空冰斗融雪径流,降水量多寡是导致径流变化的主导因素,但冰斗区固态降水多,气温亦起着不可忽视的作用。总控水文断面径流大小与气温和降水关系比较复杂,表现为近年来气温和降水增加,径流却有下降趋势,这可能与河源区实际蒸散增强、冰川快速退缩导致径流峰值已经出现、大范围冻土消融导致的地下渗漏量增多等原因有关。  相似文献   

18.
泾河合水川流域近50年径流演变特征及影响因素分析   总被引:1,自引:0,他引:1  
在泾河合水川流域1964~2011年的年降雨、径流变化特征分析基础上,利用Mann-Kendall法、双累计曲线法定量分析了其趋势及相互关系,并探讨了变化成因。结果表明,1964~2011年的年降雨量呈轻微下降趋势(P=0.52),年变率-0.04 mm/a;径流深呈不显著下降趋势(P=0.97),年变率-0.10 mm/a。变化趋势与泾河东北部、黄河河口-龙门区间西南部类似,与黄河中游其它子流域差异较大。二者突变年份分别为2000年和1978年。1964~1978年是该流域降雨-径流关系的天然时期,1979年后受水保工程修建、植被覆盖增加等人类活动影响,降雨-径流关系发生变化。  相似文献   

19.
中国东南部植被NPP的时空格局变化及其与气候的关系研究   总被引:2,自引:0,他引:2  
崔林丽  杜华强  史军  陈昭  郭巍 《地理科学》2016,36(5):787-793
基于2001~2010年MOD17A3年均NPP数据和气象站点气温、降水资料,利用GIS空间分析技术和数理统计方法研究中国东南部植被NPP的时空格局、动态变化及与气候要素的关系。结果表明,中国东南部植被年均NPP总体上呈现从南到北、由东至西逐渐减少的分布,不同植被类型的NPP存在明显差异,以常绿阔叶林最高,落叶针叶林最低。2001~2010年间,植被NPP整体上略有减少。空间上植被NPP在南部地区明显减少,而在北部地区明显增加。植被NPP与降水和气温的相关性均表现出明显的地域差异。  相似文献   

20.
黄河流域上游降水时空结构特征   总被引:23,自引:2,他引:21  
黄河兰州以上区域水资源量占黄河流域水资源的一半以上,研究黄河上游兰州以上区域降水时空结构变化具有重要意义。本文利用黄河兰州以上19个降水站点1959~1998年系列数据,采用EOF技术分析了黄河上游降水的时空结构特征与变化。结果表明:黄河上游兰州以上区域降水存在四种典型降水类型,即“全部一致型”、“南北型”、“东西型”和“相间复杂型”。但第一特征向量为主导,其时间变化系数与年降水量基本一致,说明黄河流域兰州以上降水主要受青藏高原大尺度气候影响,具有降水偏多(少)一致性特征。从时间尺度上降水有减少的趋势;并伴随3、6、和11年的周期变化,而且在1986和1991年发生突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号