首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
In order to determine the extreme sea-state encountered by oceangoing vessels,a method forthe prediction of wave parameters based on the data of long-term distribution sample is developed by useof the fitting approach with the Weibull probability functions and the power functions.As an example aspecial calculation result is given including the analysis of wave parameters for the data of the NorthAtlantic Basin and the computation of motion and load encountered by two container ships CSLR andCSBV in different loading conditions.All computation results are satisfactory compared with corre-sponding design results.  相似文献   

2.
Short-term wave design approach of marine structures, using nonlinear time domain simulations, is a design procedure that is recognized by various modern standard codes. One of the most challenging points of this approach is the evaluation of the characteristic extreme values for response parameters used in the design check equations. The most straightforward and recommended way to evaluate a response characteristic value is by fitting an extreme value probability distribution to the N-sample of extreme values extracted from N independent time domain simulations with duration equal to the short-term period indicated by the code, which is usually taken as 3 h. However, this procedure would not be practical for some types of marine structures, such as risers and mooring lines, under numerous design load cases and demanding huge finite element models. A more feasible approach would be to assess the response extreme value distribution using only a single short-term time domain simulation with duration shorter than 3 h. But reduced time simulations always introduce some additional statistical uncertainty into the extreme values estimates. This paper discusses a workable way of properly taking into account the statistical uncertainty associated with the simulation length in the assessment of a characteristic short-term extreme response value based on a single time series.  相似文献   

3.
The design of mooring systems for floating production units usually considers extreme environmental conditions as a primary design parameter. However, in the case of FPSO (Floating, Production, Storage and Offloading) units, the worst response for the mooring system may be associated with other sea state conditions due to the fact that its extreme response may be associated with a resonant period instead of an extreme wave height. The best way to deal with this problem is by performing long-term analysis in order to obtain extreme response estimates. This procedure is computationally very demanding, since many short-term environmental conditions, and their associated stochastic nonlinear time domain numerical simulations of the mooring lines, are required to obtain such estimates. A simplified approach for the long-term analysis is the environmental contour-line design approach. In this paper a Monte Carlo-based integration procedure combined with an interpolation scheme to obtain the parameters of the short-term response distribution is employed to hasten the long-term analysis. Numerical simulations are carried out for an FPSO at three different locations considering a North Sea joint probability distribution for the environmental parameters. The long-term analysis results are compared against those obtained using extreme environmental conditions and environmental contour-line methodology. These results represent the characteristic load effect for the design of mooring systems of floating units using the reliability analysis for mooring line. The results show that the long-term results are usually more critical than those obtained with the other approaches and even different mooring lines can be identified as the critical ones.  相似文献   

4.
尤再进 《海洋与湖沼》2022,53(4):1015-1025
重现期波高是港口海岸及海洋工程设计中不可回避的一个重要设计参数,尤其对深水海港、海上平台、海底油气管道、沿海核电站等重大涉海工程设计具有巨大的经济价值和深远的社会效益。但是,现有重现期波高推算缺乏统一的计算方法,导致计算结果相差悬殊。研究重现期波高的统一化计算方法,分析重现期波高计算中存在的各种不确定因素,提出减少这些不确定因素的新方法,建立误差小、应用方便、方法统一的重现期波高计算方法。基于澳大利亚悉尼站的长期连续观测波浪数据,研究发现:广义帕累托函数(generalized Pareto distribution III,GPD-III)和威布尔(Weibull)是重现期波高计算的最佳候选极值分布函数,新推导的函数形状参数计算公式较好提高重现期波高的计算精度,极值波高数据的分析方法和样本大小是影响重现期波高计算精确度的两个重要因素,短期波浪资料和年极值法可能高估重现期波高值。逐个风暴的极值波高数据分析法及最佳候选极值分布函数GPD-III和Weibull建议应用于涉海工程设计的重现期波高推算。  相似文献   

5.
A. Naess  O. Gaidai  S. Haver 《Ocean Engineering》2007,34(16):2188-2197
The paper describes a novel approach to the problem of estimating the extreme response statistics of a drag-dominated offshore structure exhibiting a pronounced dynamic behaviour when subjected to harsh weather conditions. It is shown that the key quantity for extreme response prediction is the mean upcrossing rate function, which can be simply extracted from simulated response time histories. A commonly adopted practice for obtaining adequate extremes for design purposes requires the execution of 20 or more 3-h time domain analyses for several extreme sea states. For early phase considerations, it would be convenient if extremes of a reasonable accuracy could be obtained based on shorter and fewer simulations. The aim of the work reported in the present paper has therefore been to develop specific methods which make it possible to extract the necessary information about the extreme response from relatively short time histories.The method proposed in this paper opens up the possibility to predict simply and efficiently both short-term and long-term extreme response statistics. The results presented are based on extensive simulation results for the Kvitebjørn jacket structure, in operation on the Norwegian Continental Shelf. Specifically, deck response time histories for different sea states simulated from an MDOF model were used as the basis for our analyses.  相似文献   

6.
《Applied Ocean Research》2007,29(1-2):1-16
Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is of great value in the design of these structures. Wave loading on slender members of bottom-supported jacket or jack-up structures is frequently calculated by Morison’s equation. Due to nonlinearity of the drag component of Morison wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of their extreme response probability distribution are not available. Finite-memory nonlinear systems (FMNS) are extensively used in establishing a simple relationship between the output and input of complicated nonlinear systems. In this paper, it will be shown how the response of an offshore structure exposed to Morison wave loading can be approximated by the response of an equivalent finite-memory nonlinear system. The approximate models can then be used to determine the probability distribution of response extreme values with great efficiency. Part I of this paper is devoted to the development of an efficient FMNS model for offshore structural response while part II is devoted to the validation of the developed models.  相似文献   

7.
This paper addresses some important issues related to the estimation of long-term extreme responses of marine structures. Several convolution models to establish the long-term distribution of a marine structure response parameter are available in the literature. These methods are typically based either on all short-term peaks, all extreme short-term peaks or all short-term upcrossing rates. The main assumptions and simplifications of the five models most usually found in the literature are discussed in this paper. A linear single-degree-of-freedom (SDOF) system along with a bi-lognormal probability model for significant wave heights and zero-crossing wave periods have been used for numerical tests. An improved approach to efficiently evaluate the long-term convolution integrals is also proposed in this paper. It is shown that a combination of the Inverse First Order Reliability Method (IFORM) and an Importance Sampling Monte Carlo Simulation (ISMCS) approach can be used to obtain a very good result for the exact solution of long-term integrals.  相似文献   

8.
The present study considers the prediction of extreme values of the second-order hydrodynamic parameters related to offshore structures in waves, where the application of Gaussian distribution is not valid. Particularly, this study focuses on a characteristic function approach in the frequency domain to estimate the probability distribution of the second-order quantities, and the results are compared with direct simulations in the time domain. The stochastic behaviors of the second-order hydrodynamic quantities are investigated with the characteristic function approach, which involves eigenvalue analyses of Hermitian kernels constructed with quadratic transfer functions. Three different second-order responses are considered: the springing responses of TLP tendons representative of the sum-frequency problem, the slow-drift motions of a semi-submersible platform moored in waves as a representative of the difference-frequency problem, and the wave run-up around a vertical column for regular and irregular waves. The applicability of the present approach in predicting extreme values is assessed by comparing the results with the values obtained from time-domain signals.  相似文献   

9.
The design and performance of an offshore structure depends largely upon the response of the structure to the environmental loading such as waves. The extreme response chosen for the design of a structure should meet its lifetime response, operational response as well as the fatigue damage. The failure of the structural member may be caused by the maximum instantaneous stress experienced by the member due to a given environment. This is considered short-term as opposed to long-term or fatigue damage. The short-term response statistics are obtained on the basis of one particular seastate. Since this seastate is invariably high, nonlinearity in the excitation and response of the structure is almost invariably present. The general nonlinear problem in the extreme response prediction is largely unsolved. Response characteristics are often obtained from the perturbation methods and equivalent linearization techniques. Unlike nonlinear problems, these methods greatly simplify the analysis for extreme values. This paper reviews the available approximation techniques in the response computation and the limits of their applicability in a design situation. Results are illustrated so that a designer may evaluate the suitability of a method in a particular design condition.  相似文献   

10.
The fish cage design requires accurate predictions of long-term extreme loads and responses. Compared with the time-consuming full long-term analysis method integrating all the probability distribution of the short-term extremes,the environmental contour method gains much attention in predicting the long-term extreme values due to the less computational effort. This paper investigates the long-term extreme response of a fish cage using the environmental contour method. The fish cage is numerically simulated based on the lumped-mass method and the curved beam theory. Based on the one-dimensional(1D) and two-dimensional(2D) environmental contour, the extreme responses,including the surge and heave motions, mooring force, and vertical bending of the floater, are predicted for different return periods and compared with the full long-term analysis results. Results indicate that the 1D method greatly underestimates the extreme values. The 2D environmental contour method with a higher percentile level, namely90%, provides reasonable estimations and seems to be suitable for the long-term value analysis. Sensitivity studies show that the mooring arrangement and the bending stiffness have great effects on the bending moment and the mooring force and the mooring line pre-tension has minor effects on the fish cage response.  相似文献   

11.
浮式平台承受风浪流等多种海洋环境载荷作用,呈现出复杂的运动学响应状态.通过对"南海挑战号"半潜式平台的实测六自由度响应数据进行分析,采用广义极值分布建立六自由度响应的概率密度和分布模型,并通过K-S(Kolmogorov-Smirnov)检验验证了分布模型的合理性,进而开展了对该平台多年一遇重现期的六自由度响应极值预测研究.通过与平台的初始设计指标进行对比,发现平台的横荡、纵荡等五个自由度表现良好,而垂荡的响应极值超出设计指标,在现场作业中应予以注意研究成果对平台的安全作业具有辅助指导意义,可将预测结果作为极端恶劣海况下,人员提前撤离的辅助决策支持.通过更新平台的监测数据进行极值分析和预测研究可评估平台的性能变化行为.  相似文献   

12.
Since offshore towers are high-cost, high-risk structures, reliability analysis is of great importance in their design. This paper presents a possible practical approach to certify a design through selective critical member reliability estimates. After a brief review of current research in this field, the authors outline a procedure for reliability estimation of structural members in extreme stress and fatigue limit states. A spectral approach for the extreme response statistics with stochastic loading is described. The reliabilities are computed by the Level II first-order second moment (advanced) method. The fatigue reliability is estimated with a narrow-banded stress assumption with discrete, but significant sea states within the life of the structure. Two numerical examples, a three shallow water model and a two-dimensional deep water model are presented along with the influences of stochastic variables (sea state, current, tubular member diameter) on reliabilities (extreme stress and fatigue damage).  相似文献   

13.
This paper proposes a new methodology to select an optimal threshold level to be used in the peak over threshold (POT) method for the prediction of short-term distributions of load extremes of offshore wind turbines. Such an optimal threshold level is found based on the estimation of the variance-to-mean ratio for the occurrence of peak values, which characterizes the Poisson assumption. A generalized Pareto distribution is then fitted to the extracted peaks over the optimal threshold level and the distribution parameters are estimated by the method of the maximum spacing estimation. This methodology is applied to estimate the short-term distributions of load extremes of the blade bending moment and the tower base bending moment at the mudline of a monopile-supported 5MW offshore wind turbine as an example. The accuracy of the POT method using the optimal threshold level is shown to be better, in terms of the distribution fitting, than that of the POT methods using empirical threshold levels. The comparisons among the short-term extreme response values predicted by using the POT method with the optimal threshold levels and with the empirical threshold levels and by using direct simulation results further substantiate the validity of the proposed new methodology.  相似文献   

14.
《Applied Ocean Research》2007,29(1-2):17-36
Finite-memory nonlinear systems (FMNS) are extensively used in establishing a simple relationship between the output and input of complicated nonlinear systems. In Part I of this paper, it was shown how the response of an offshore structure exposed to (random) Morison wave loading can be approximated by the response of an equivalent finite-memory nonlinear system. The approximate FMNS models can then be used to determine, with great efficiency, the probability distribution of response extreme values. Part I of this paper was devoted to the development of FMNS models for offshore structural response. In this part, the validity of the developed models has been investigated by examining the response of three test structures under different environmental conditions. The results are promising.  相似文献   

15.
The extreme behavior of surface waves as they encounter and pass compliant deepwater platforms is an important class of problems for offshore engineers attempting to specify the platform deck elevation. In this study analytical expressions for the probability density and cumulative distribution functions that utilize empirical coefficients in an attempt to accurately model surface wave runup and airgap problems are presented. The analysis focuses upon interpreting the tails of the measured data histograms using two parameter Weibull distribution models. The appropriate empirical constants, assumed to be solely dependent upon the significant wave height, were evaluated and compared for all the test data. Based upon a small select set of data, for a mini-TLP and two Spar platforms, the airgap problem was found to be adequately modeled using a Rayleigh distribution. Further, for the seven seastates analyzed, the Weibull shape parameter was nearly constant and the data confirmed that the exclusive fit of the scale parameter assuming dependence only on the significant wave height was a reasonable approach for modeling the wave runup. Finally, by combining these models with a Poisson return model for each storm the associated reliability estimates for various deck heights were estimated.  相似文献   

16.
长期极值统计理论及其在海洋环境参数统计分析中的应用   总被引:1,自引:0,他引:1  
海洋环境极值参数(如风速、流速、波高、周期等)在海洋工程设计中具有重要意义。利用次序统计和极值理论方面的较新研究成果,从理论上证明了多种统计分布中Weibull分布是最优的,使长期极值统计建立在一个更坚实的基础上;同时引入基于序列统计的最大似然估计方法。利用大量数据.对最小二乘估计方法和最大似然估计法进行对比分析,指出最大似然估计法是精确估计.而最小二乘估计方法是保守估计。  相似文献   

17.
Ocean waves and forces induced by them on offshore structures are random in nature. Experience has shown that short term statistics of wave heights can be described by the Rayleigh distribution for narrow band spectra (Longuet-Higgins, 1952) and that the long term statistics or the evaluation of design wave is based on certain well known extreme value distribution such as mixed Frechet distribution (Thom, 1973a, b).This paper presents a new application of the double bounded probability density function to describe the ocean wave statistics. The prime importance is to estimate the most probable maximum wave height for offshore structural designs.  相似文献   

18.
This work presents a semi-analytical methodology to select design environmental conditions based on long-term cross-section utilization ratios at the TDZ (Touchdown Zone) for steel catenary risers. This approach uses simplified analytical models to calculate time series of short-term utilization ratios, defined according to the DnV-OS-F201 (2010) standard. After processing these time series, long-term utilization ratios can be determined with relatively low computational cost. By evaluating long-term utilization ratios, it is possible to define short-term design environmental conditions, defined as short-term conditions for which the extreme riser responses are equal to the long-term ones. This kind of methodology may represent a substantial change to the traditional focus given to riser design, which is based on responses obtained from extreme environmental conditions, instead of on the extreme responses.  相似文献   

19.
Offshore wind turbines can exhibit dynamic resonant behavior due to sea states with wave excitation frequencies coinciding with the structural eigenfrequencies. In addition to significant contributions to fatigue actions, dynamic load amplification can govern extreme wind turbine responses. However, current design requirements lack specifications for assessment of resonant loads, particularly during parked or idling conditions where aerodynamic damping contributions are significantly reduced. This study demonstrates a probabilistic approach for assessment of offshore wind turbines under extreme resonant responses during parked situations. Based on in-situ metocean observations on the North Sea, the environmental contour method is used to establish relevant design conditions. A case study on a feasible large monopile design showed that resonant loads can govern the design loads. The presented framework can be applied to assess the reliability of wave-sensitive offshore wind turbine structures for a given site-specific metocean conditions and support structure design.  相似文献   

20.
为了研究欧洲北海海域的波高全区域概率分布情况,从而为海洋平台等海洋浮式结构物的选址和结构设计提供依据。首先基于Global Waves Statistics(GWS)提供的实测数据,确定典型计算工况的发生概率;同时考虑实测数据中极端波浪环境下的数据缺失导致大波高分布概率偏小的问题,利用三参数Weibull分布确定不同重现期下的极值风速,作为典型计算工况的补充。以不同风速、风向的定常风场为输入项,利用第三代海浪数值模型SWAN模型,对北海全区域波高进行数值模拟。将数值模拟的稳态形式依照各工况的发生概率进行归一化累加处理,认为其结果可以表征全区域的波高概率分布情况。以波高概率分布的计算结果为依据,分析北海海域波浪环境的统计学特征,发现有效波高为7 m以上的大波高频发区在北海北部区域有大范围分布;有效波高4~5 m为北海东北区域的多发海况,极端海况下的有效波高主要分布于7~14 m区间,在地形突变区域的波高发生显著变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号