首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain. The long-term stress histories of the riser under VIVs are calculated and the mean stresses, the number of stress cycles and amplitudes are determined by the rainflow counting method. The Palmgren-Miner rule for cumulative damage theory with a specified S-N curve is used to estimate the fatigue life of the riser. The corresponding numerical programs numerical simulation of vortex-induced vibrations (NSVIV) which can be used to calculate the VIV response and fatigue life of the riser are compiled. Finally the influences of the riser’s parameters such as flexural rigidity, top tension and internal flow velocity on the fatigue life of the riser are analyzed in detail and some conclusions are drawn.  相似文献   

2.
An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-β method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.  相似文献   

3.
This work aimed to demonstrate possibilities for both active and passive control of the vortex-induced vibration and fatigue life of steel catenary risers via an analysis of the self-organization and evolution of the structural vibration based on synergetic theory. An analysis of the complex interrelated and synergistic relationship between the order parameter and the fast variable was performed, and the master equation of the nodal displacements was established as the order parameter for the evolution of the riser’s structural vibration. Passive control methods include modifying the structure’s elastic modulus, the internal fluid velocity, the top tension and the structural damping ratio, while an active control involves adjusting the external flow rate. Optimized parameters were obtained by analyzing the non-steady state solution of the master equation. The results show that the fatigue life greatly increases as the riser’s elastic modulus decreases. In contrast, the fatigue life decreases with an increase of the internal fluid velocity. With an increase of the top tension, the vibration amplitudes and the number of modes may decrease, resulting in fewer bending stress cycles and a longer fatigue life. Furthermore, the structural damping ratio should be as large as possible. Finally, an active and passive control of the riser structure’s response to vortex-induced vibration and its fatigue life can be achieved by carefully modifying the parameters mentioned above. The results may provide a theoretical framework for engineering practice concerning the design and control of steel catenary riser structures which are affected by vortex-induced vibration.  相似文献   

4.
The compliant vertical access riser(CVAR) is a new riser concept with good compliance; it can significantly reduce operating costs by eliminating the need for additional machines to operate wells directly on the platform. In this study, we determined the optimal riser parameters in terms of the stress and riser weight by optimizing the CVAR, and we compared the optimization results. A two-dimensional nonlinear static CVAR model was deduced according to the principles of virtual work and variation, and the model was verified using MATLAB. Design of experiments and Kriging method were used to reduce the number of sample calculations and improve the modeling accuracy. An appropriate selection of the multi-objective optimization problem(MOP) and the non-dominated sorting genetic algorithm helped to optimize the CVAR design. The non-dominated sorting genetic algorithm II was used to solve the Pareto frontier of the optimization model in order to provide decision makers with more choices for the optimization results. After optimizing the riser parameters, the geometry of the riser was smoother, and the stress and stress differences were greatly reduced; the maximum equivalent stresses at the top and bottom were reduced by 36.6% and 44%, respectively. In addition, the stress difference in the buoyancy block area was reduced by 20.9%, and the weight of the riser was increased significantly by 28.1%.  相似文献   

5.
随着顶管断面尺寸不断增大,管节的运输问题逐渐突显,拼装式顶管技术可以有效解决该问题。在现有拼装式结构接头基础上,提出了拼装式顶管管节横向接头的连接方式,并以螺栓拼装式管节为研究对象,建立了横向接头抗弯刚度计算模型,结合盾构管片梁-弹簧模型,提出了拼装式管节结构计算方法。其内力计算结果表明:拼装式和整体式管节内力分布规律基本一致;拼装式管节的侧壁弯矩小于整体式管节,顶部和底部弯矩大于整体式管节,二者内力无急剧变化;从内力分布与大小看,拼装式管节是可用的。   相似文献   

6.
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.  相似文献   

7.
Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating platform. Many studies have tackled the problem of parametric instability of a riser with constant tension. However, tension in the riser actually varies linearly from the top to the bottom due to the effect of gravity. This paper presents the parametric instability analysis of deepwater top-tensioned risers(TTR) considering the linearly varying tension along the length. Firstly, the governing equation of transverse motion of TTR under parametric excitation is established. This equation is reduced to a system of ordinary differential equations by using the Galerkin method. Then the parametric instability of TTR for three calculation models are investigated by applying the Floquet theory. The results show that the natural frequencies of TTR with variable tension are evidently reduced, the parametric instability zones are significantly increased and the maximum allowable amplitude of platform heave is much smaller under the same damping; The nodes and antinodes of mode shape are no longer uniformly distributed along the axial direction and the amplitude also changes with depth, which leads to coupling between the modes. The combination resonance phenomenon occurs as a result of mode coupling, which causes more serious damage.  相似文献   

8.
In this paper, a formulation for shakedown analysis of elastic-plastic offshore structures under cyclic wave loading is presented. In this formulation, a fast numerical solution method is used, suitable for the Finite Element Method (FEM) analysis of large offshore structures on which shear effects in addition to bending and axial effects are taken into account. The Morison equation is adopted for converting the velocity and acceleration terms into resultant forces and it is extended to consider arbitrary orientations of the structural members. The theoretical methods of the shakedown analysis are discussed in detail and the formulation is applied to an offshore structure to verify the concept employed and its analytical capabilities.  相似文献   

9.
针对抗滑桩常因地质条件、地形地貌等原因导致受荷段底面与嵌固段顶面不在同一水平面的情况,将此段划为次受荷段,并推导了次受荷段桩后设计荷载大小计算公式和荷载分布公式,以及在弹性地基梁和悬臂梁模型下的适用于悬臂桩和锚索桩内力与挠度计算通用公式。以巴东县焦家湾移民安置点库岸防护工程预应力锚索桩为例,研究次受荷段对抗滑桩内力和挠度影响。结果表明:忽略次受荷段后土压力作用的传统计算方法会使桩身弯矩计算结果偏小,导致桩身配筋量不足,存在设计安全隐患。再以锚索排数、位置为控制变量,研究其对预应力锚索桩内力和挠度的影响,提出预应力锚索可有效地降低抗滑桩工程造价;增加预应力锚索的排数有利于调节抗滑桩内力分布,设计时应优先考虑将锚索设置为多排锚索。   相似文献   

10.
The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys-CFX and model tests.The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers.CFX was used to study the single riser and two parallel risers in 2–8D spacing considering the coupling effect.Because of the limited width of water channel,only three different riser spacings,2D,3D,and 4D,were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation.The results indicate that the lift force changes significantly with the increase in spacing,and in the case of 3D spacing,the lift force of the two parallel risers reaches the maximum.The vortex shedding of the risers in 3D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area,thus equalizing the period of drag force to that of lift force.It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased.The phase difference of lift force between the two risers is also different as the spacing changes.  相似文献   

11.
随着我国公路建设不断向山区深入, 在地质构造复杂区公路边坡遇到断层破碎带的情况日渐增多, 亟需开展阻滑能力强的抗滑桩结构加固边坡研究。传统的人工挖孔桩施工模式存在高风险、低效率等缺点, 而组合式圆截面抗滑桩具有施工效率高、安全便捷等特点, 为此, 探究其对含断层破碎带边坡的加固效果具有现实意义。采用自主设计的边坡物理试验系统, 设计了5种不同破碎带厚度与组合式圆截面抗滑桩组合的物理模型, 采用坡顶逐级加载的方式模拟加载, 监测桩身应变、桩顶位移和桩后土压力, 采用高速相机捕捉滑体变形破坏图像, 并使用粒子图像测速(PIV)技术对图像进行处理。研究结果表明: 组合式圆截面抗滑桩通过限制桩后滑体水平位移, 并将滑体限制在前、后排桩间来达到加固边坡的效果; 滑体演化分为变形压密、加速变形和破坏滑移3个阶段; 前、后排桩桩后土压力比值介于1/3~1/2之间; 随断层破碎带厚度增加, 滑体水平滑移速率增大, 组合式圆截面抗滑桩的桩顶位移增大, 桩身最大正弯矩减小。模型试验与数值模拟计算的弯矩及桩顶位移较为吻合, 研究成果可为边坡工程组合式圆截面抗滑桩设计提供一定借鉴与参考。   相似文献   

12.
In a two-dimensional and linear framework, a transformation was developed to derive eigensolutions of internal waves over a subcritical hyperbolic slope and to approximate the continental slope and shelf. The transformation converts a hyperbolic slope in physical space into a flat bottom in transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions are further used to study the evolution of linear internal waves as it propagates to subcritical continental slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become very large especially when the slope of internal wave rays approaches the topographic slope, which is consistent with the previous studies.  相似文献   

13.
This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a hydrate phase transition is established.The model first solves the flow parameters and subsequently obtains the natural frequencies of risers with different gas intake ratios.The stability charts of marine risers with different gas intake ratios are plotted by applying Floquet theory,and the effects of the gas intake ratio on the instability and vibration response of the risers are identified.The natural frequency increases with an increase in the gas intake ratio;thus,instability zones move to higher frequency ranges in the stability charts.As the increasing gas intake ratio reduces the damping effect of the Coriolis force,the critical amplitude of the heave in the unstable region decreases,especially when hydrodynamic damping is not considered.As a result,higher-order unstable regions are excited.When in an unstable region,the vibration response curve of a riser with a high gas intake ratio excited by parametric resonance diverges quickly due to parametric resonance.  相似文献   

14.
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea. The studied images show three nonlinear internal waves in a packet. A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images. Assuming that the ocean is a two-layer finite depth system, we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula. Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.  相似文献   

15.
Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers’ fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.  相似文献   

16.
针对圆走航定位声速剖面测量不准确引起水下控制点坐标解算存在偏差的问题,首先介绍了声速不确定性对测距误差的影响,并将声速测距误差分成背景声速剖面误差、随机误差、测距误差长周期项和测距误差短周期项,再通过分析坐标改正数方程得到不同声速测距误差项对控制点坐标定位的影响。最后,设计2组仿真实验对该理论进行验证,实验结果与理论推导的结论一致。  相似文献   

17.
瑞雷波法已在研究地球内部结构、近地表地球物理工程和超声无损检测等领域中获得了广泛应用,尤其是近年来瑞雷波法作为近地表场地表征新兴领域的前沿技术已成为国际学术研究与应用的热点。对国内外近地表弹性介质瑞雷波勘探的主要研究成果与进展进行了综述,通过对瑞雷波勘探现有的研究成果和进展密切追踪发现当前近地表瑞雷波勘探主要基于水平地表弹性水平层状介质模型,利用单分量瑞雷波相速度频散曲线单目标反演获得一维横波速度剖面和相关岩土力学参数。但是,该方法也存在着现有瑞雷波频散曲线反演极易出现模式误识别、现有单分量单目标瑞雷波反演未充分利用多分量信息、现有瑞雷波相速度反演未充分利用群速度传播特性、现有瑞雷波反演未充分利用质点椭圆极化振动特性等挑战性学术难题和不足。基于上述问题,建议未来近地表弹性介质瑞雷波勘探重点研究方向应集中在进行多模式表面波全速度谱反演研究、多站多分量表面波相速度多目标全速度谱反演研究、单站多分量表面波群速度多目标全速度谱反演研究和单站多分量表面波椭圆极化振动特性多目标反演研究。由此构建新的近地表多分量瑞雷波多目标全速度谱反演理论,引领多分量瑞雷波多目标反演学科前沿,拓展现有单分量瑞雷波单目标反演理论范畴,推动多分量瑞雷波高精度实用勘探技术的发展。   相似文献   

18.
In order to mitigate vortex-induced vibration (VIV) of marine risers, especially to eliminate the phenomenon of frequency ’lock-in’, a new suppression device of crescent-shaped flow spoiler was designed with seven different layout schemes. VIV model tests with six flow levels were conducted in a large wind-wave-current flume. In all cases, vibration responses in both in-line and cross-flow cases were measured. With the installation of suppression devices vibration frequency evolution of a riser was analyzed by Morlet wavelet transform. The principle of VIV suppression was interpreted through vibration characteristics. Fatigue life of the riser was calculated by the Palmgren-Miner rule. Compared with a bare riser, vibration of an outfitted riser with suppression devices disturbed the steady flow, the vibration amplitudes in the two flow directions were reduced, and the riser fatigue life was improved.  相似文献   

19.
利用时间跨度为5 a的GNSS短基线时间序列对噪声特性进行分析,发现长周期噪声分量(随机游走噪声)。选取最优噪声模型,评估不同噪声模型对测站周期振幅和线性速度估值的影响。结果表明,短基线时间序列中有色噪声应顾及闪烁噪声和随机游走噪声,对于表现出随机游走噪声的分量,可能与测站的真实运动有关;假设只有白噪声时求得的速度估值与最优噪声模型下求得的速度估值存在0.4~0.6 mm/a的偏差,对周期振幅的影响可以忽略。  相似文献   

20.
沿山脊走向的长输油气管道在我国西部山区常有分布,强震作用下其动力响应直接关系到管道的安全运营,实际管道工程建设中亟需相关研究结果提供指导。依托云南玉溪龙马槽村段此类输油管道工程,考虑山坡的工程地质特征,对管道与坡体进行整体三维数值建模,采用有限差分方法FLAC3D进行数值模拟,基于汶川地震波,计算得到了水平地震加速度峰值、震后等典型时刻的管道位移、轴力、剪力和弯矩及坡体稳定性等地震动力响应特征。结果表明,管道内力最大值出现于震后时刻,地震作用使管道轴力达到较高水平,而剪力与弯矩值的量级仅占最大轴力的约1%;竖向地震波对管道内力影响较小,管道受力的不利部位出现在其与断层交界附近。地震过程中管道水平方向存在较多的弹性变形,竖向则存在较多的塑性变形,管道累计变形是影响其内力的主要因素,管道内力最大值出现于震后时刻。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号