首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several plants across taxonomic hierarchy have evolved heavy metal tolerance strategies and detoxification mechanisms that enable them to survive, grow and reproduce in metal contaminated and polluted sites. Plants growing on the abandoned Portuguese mines, highly contaminated with arsenic (As), antimony (Sb) and tungsten (W), have been studied for their biogeochemical prospecting and mine stabilization potential. The results of soil analysis show relevant anomalies of As, Sb and W. We have observed that the plant species accumulating tungsten are Digitalis purpurea, Chamaespartium tridentatum, Cistus ladanifer, Pinus pinaster, Erica umbellata, and Quercus ilex subsp. ballota. Accumulators of antimony are D. purpurea, E. umbellata, Calluna vulgaris and C. ladanifer. Accumulations of arsenic are found in the old needles of P. pinaster, Calluna vulgaris and C. tridentatum and leaves of C. ladanifer, E. umbellate and Q. ilex subsp. ballota. These are the key stone species allowing biogeochemical delineation of areas of anomalous soil composition.  相似文献   

2.
Coastal wetlands, among the most productive ecosystems, are important global reservoirs of carbon (C). Accelerated sea level rise (SLR) and saltwater intrusion in coastal wetlands increase salinity and inundation depth, causing uncertain effects on plant and soil processes that drive C storage. We exposed peat-soil monoliths with sawgrass (Cladium jamaicense) plants from a brackish marsh to continuous treatments of salinity (elevated (~?20 ppt) vs. ambient (~?10 ppt)) and inundation levels (submerged (water above soil surface) vs. exposed (water level 4 cm below soil surface)) for 18 months. We quantified changes in soil biogeochemistry, plant productivity, and whole-ecosystem C flux (gross ecosystem productivity, GEP; ecosystem respiration, ER). Elevated salinity had no effect on soil CO2 and CH4 efflux, but it reduced ER and GEP by 42 and 72%, respectively. Control monoliths exposed to ambient salinity had greater net ecosystem productivity (NEP), storing up to nine times more C than plants and soils exposed to elevated salinity. Submersion suppressed soil CO2 efflux but had no effect on NEP. Decreased plant productivity and soil organic C inputs with saltwater intrusion are likely mechanisms of net declines in soil C storage, which may affect the ability of coastal peat marshes to adapt to rising seas.  相似文献   

3.
Effects of soil factors on physiological indicators ofSpartina patens and live standing crop of the macrophyte community were investigated in a brackish marsh. Three distinct physiognomic zones were studied along a transect perpendicular to a tidal creek: the marsh edge, which was directly adjacent to the creek; the levee berm, 6 to 8 m from the creek; and the inland zone, which extended through the marsh interior. Soil physicochemical factors (soil moisture, redox potential, interstitial pH, salinity, and ammonium and sulfide concentrations) were compared to physiological indicators ofSpartina patens (leaf adenine nucleotides, root alcohol dehydrogenase (ADH) activity, and levels of ethanol, lactate, alanine and malate in the roots). In correlation matrices of soil and plant factors, increases in soil moisture and decreases in redox potential were associated with depressed leaf adenylate energy charge ratios (AEC, an integrative measure of plant stress) and elevated ADH activities and metabolite levels in the roots. ADH activity was greatest in roots from the inland zone where soil waterlogging was greatest and exhibited seasonal increases that followed seasonal declines in soil redox potential. Leaf AEC was greatest in the berm and generally lowest in the inland plants. End of season live standing crop was also greatest on the berm, but did not closely follow any edaphic trends across the three zones. This suggests that several factors, (i.e., soil aeration, and sulfide and nitrogen levels) may be of greater importance to standing crop than any single factor, as is thought for salt marshes dominated byS. alterniflora.  相似文献   

4.
5.
Conventional methods that assessed the mercury (Hg) levels were not only an outcome of atmospheric pollution, but also the possibility of Hg contamination from the sample collection to laboratory analyses. Our studies used the direct mercury analyzer that measured Hg rapidly and precisely at ultra-trace concentrations with detection limit of 0.0015 ng g?1 on six favored desert plants and their surrounding soil in Kuwait. Analysis revealed elevated Hg concentrations in Tamarix chinensis Lour., and Salsola imbricate Forssk., among the chosen desert plants, especially during summer than in winter, thus labeling the qualities of a bio-indicator to Hg pollution. The overall parts-wise analysis on the six selected plants showed the elevated mean Hg concentrations in the leaves (0.89 ng g?1) followed by root (0.51 ng g?1) and stem (0.39 ng g?1) in the desert plants. Reasons attribute to the capability of these plant parts to absorb, accumulate, and assimilate Hg at varying concentrations. The overall mean Hg concentration was high in soil (2.24 ng g?1) in comparison with the mean Hg concentrations in the desert plants (0.60 ng g?1) irrespective of the two seasons. Translocation and bioaccumulation factors indicated low uptake of Hg translocation in the plant parts from the soil. Furthermore, the mean Hg concentration was found high in samples collected from Governorates (GIII) in comparison with the samples collected from other Governorates indicating the effect of pollution from various sources. The present study characterizes the selected plants as bio-indicators and also validates the impact of regional and seasonal variations to Hg pollution at ultra-trace levels in the arid ecosystem.  相似文献   

6.
Despite the increasing environmental threat of cobalt in the modern era, less is known as its phytotoxicity behavior. Therefore, the present study was undertaken to assess the toxicity effects of cobalt and to understand the associated physio-biochemical response in Brassica napus, an economically important plant crop species. Five-day-old seedlings of four cultivars (Zheda 619, Zheda 622, ZS 758, and ZY 50) were exposed to five different levels of cobalt under hydroponic conditions. Results showed a concentration-dependent inhibition of plant growth, accompanied by notable chlorophyll loss, protein degradation, and accumulation of reactive oxygen species and malondialdehyde. Further, Co contents in different plants parts were found to be higher in Zheda 622 than all other cultivars. In all cultivars, the contents of enzymatic activities (SOD, POD, GR, and GSH) were markedly increased following cobalt exposure; by contrast, catalase and ascorbate peroxidase activities declined with increased cobalt concentration in medium, which was also, echoed by the pattern of enzymes-related mRNA levels. Morphological observations, supported by ultrastructural analysis revealed clear differences in cobalt sensitivity among cultivars, with ZS 758 identified as less sensitive cultivar, and Zheda 622 the most sensitive one. In addition to revealing genotypic differences in cobalt sensitivity in B. napus, findings suggest the mechanisms of cobalt tolerance in this specie could, at least partially, in relation with the ability of plant to sustain the activity of superoxide dismutase and guaicol peroxidase and to maintain glutathione reduced pool through the action of glutathione reductase.  相似文献   

7.
Arsenic and Antimony in Groundwater Flow Systems: A Comparative Study   总被引:3,自引:0,他引:3  
Arsenic (As) and antimony (Sb) concentrations and speciation were determined along flow paths in three groundwater flow systems, the Carrizo Sand aquifer in southeastern Texas, the Upper Floridan aquifer in south-central Florida, and the Aquia aquifer of coastal Maryland, and subsequently compared and contrasted. Previously reported hydrogeochemical parameters for all three aquifer were used to demonstrate how changes in oxidation–reduction conditions and solution chemistry along the flow paths in each of the aquifers affected the concentrations of As and Sb. Total Sb concentrations (SbT) of groundwaters from the Carrizo Sand aquifer range from 16 to 198 pmol kg−1; in the Upper Floridan aquifer, SbT concentrations range from 8.1 to 1,462 pmol kg−1; and for the Aquia aquifer, SbT concentrations range between 23 and 512 pmol kg−1. In each aquifer, As and Sb (except for the Carrizo Sand aquifer) concentrations are highest in the regions where Fe(III) reduction predominates and lower where SO4 reduction buffers redox conditions. Groundwater data and sequential analysis of the aquifer sediments indicate that reductive dissolution of Fe(III) oxides/oxyhydroxides and subsequent release of sorbed As and Sb are the principal mechanism by which these metalloids are mobilized. Increases in pH along the flow path in the Carrizo Sand and Aquia aquifer also likely promote desorption of As and Sb from mineral surfaces, whereas pyrite oxidation mobilizes As and Sb within oxic groundwaters from the recharge zone of the Upper Floridan aquifer. Both metalloids are subsequently removed from solution by readsorption and/or coprecipitation onto Fe(III) oxides/oxyhydroxides and mixed Fe(II)/Fe(III) oxides, clay minerals, and pyrite. Speciation modeling using measured and computed Eh values predicts that Sb(III) predominate in Carrizo Sand and Upper Floridan aquifer groundwaters, occurring as the Sb(OH)30 species in solution. In oxic groundwaters from the recharge zones of these aquifers, the speciation model suggests that Sb(V) occurs as the negatively charged Sb(OH)6 species, whereas in sufidic groundwaters from both aquifers, the thioantimonite species, HSb2S4 and Sb2S4 2−, are predicted to be important dissolved forms of Sb. The measured As and Sb speciation in the Aquia aquifer indicates that As(III) and Sb(III) predominate. Comparison of the speciation model results based on measured Eh values, and those computed with the Fe(II)/Fe(III), S(-II)/SO4, As(III)/As(V), and Sb(III)/Sb(V) couples, to the analytically determined As and Sb speciation suggests that the Fe(II)/Fe(III), S(-II)/SO4 couples exert more control on the in situ redox condition of these groundwaters than either metalloid redox couple.  相似文献   

8.
Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient?+?340?ppm) and soil N (ambient and ambient?+?25?g?m?2?year?1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3?CC4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P?<?0.0001), but did not under either added N or elevated CO2 alone. C3 fine root production decreased with added N (P?<?0.0001), but fine roots increased under elevated CO2 (P?=?0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.  相似文献   

9.
Annual plants that coexist among perennial dominants might persist in microsites that are stressful to their competitors. In Californian salt marshes, where cover of annual and perennial Salicornia species are negatively correlated, we hypothesized that waterlogged depressions support the annual (Salicornia bigelovii) but not the region’s dominant perennial (Salicornia virginica). In a large restoration site, S. virginica cover was low in naturally formed pools, and our 10-cm depressions decreased its cover by approximately 30% compared to the controls. S. bigelovii grew taller and produced more flowers in waterlogged sites with low soil redox potential, and it completed its life cycle in the 5-cm-deep depressions that we created. Experimentally reducing S. virginica canopy cover in shallow depressions also increased the survival of the annual. In the greenhouse, rhizosphere oxidation was indicated as a mechanism for tolerating waterlogging, as S. bigelovii elevated the soil redox potential by 50 mV more than S. virginica did. Also, in the greenhouse, S. bigelovii seedlings actually suppressed the growth of S. virginica seedlings under increased flooding. We conclude that waterlogged microsites help sustain S. bigelovii in Californian salt marshes and that this increasingly rare plant could be managed by adding shallow depressions to restoration sites.  相似文献   

10.
锑属亲铜元素,易与硫结合。锑在地核(0. 14×10~(-6))、地幔(0. 006×10~(-6))和地壳(0. 02×10~(-6))中的丰度均很低,而在黑色页岩(5. 0×10~(-6))中明显富集。锑是一种典型的低温成矿元素。我国华南地区低温成矿域拥有世界60%的锑探明储量。研究结果显示锑的成矿主要经历两阶段富集过程:一是与风化和沉积作用有关的表生过程;二是地球内部热驱动过程。寒武纪时华南位于赤道附近,受冈瓦纳大陆的造山带的影响,是全球地表风化最强烈的地区之一。在新元古代氧化事件的驱动下,锑在表生风化过程中被氧化为更易迁移的水溶性的SbO_3~-。因埃迪卡拉生物群所产生的有机质,有利于萃取水体中的锑并沉淀在还原性沉积物(黑色页岩)中。华南中生代岩浆活动烘烤表层富锑的寒武纪黑色页岩,产生的成矿流体向上迁移,淋滤黑色页岩中的Sb或与黑色页岩变质脱水或熔融产生成矿流体混合;而后搬运至远离岩体的有利位置沉淀,最终形成大规模的华南锑矿带。  相似文献   

11.
Effect of soil salinity on physico-chemical and biological properties renders the salt-affected soils unsuitable for soil microbial processes and growth of the crop plants. Soil aggregation around roots of the plants is a function of the bacterial exo-polysaccharides (EPS), however, such a role of the EPS-producing bacteria in the saline environments has rarely been investigated. Pot experiments were conducted to observe the effects of inoculating six strains of EPS-producing bacteria on growth of primary (seminal) roots and its relationship with saccharides, cations (Ca2+, Na+, K+) contents and mass of rhizosheath soils of roots of the wheat plants grown in a salt-affected soil. A strong positive relationship of RS with different root growth parameters indicated that an integrated influence of various biotic and abiotic RS factors would have controlled and promoted growth of roots of the inoculated wheat plants. The increase in root growth in turn could help inoculated wheat plants to withstand the negative effects of soil salinity through an enhanced soil water uptake, a restricted Na+ influx in the plants and the accelerated soil microbial process involved in cycling and availability of the soil nutrients to the plants. It was concluded that inoculation of the EPS-producing would be a valuable tool for amelioration and increasing crop productivity of the salt-affected soils.  相似文献   

12.
In many southern California salt marshes, increased freshwater inflows have promoted the establishment of exotic plant species. A comparative study showed that a native, perennial, high marsh dominant,Salicornia subterminalis, and an invasive, exotic annual grass,Polypogon monspeliensis, responded differently to soil salinity and saturation.Salicornia subterminalis seeds and young plants were more salt tolerant, and the native grew best at high salinities (23 g 1?1 and 34 g 1?1) in greenhouse experiments. In contrast, the exotic had reduced growth at high salinities relative to nonsaline controls. The native,S. subterminalis, grew poorly as the duration of soil saturation increased from 2 wk to 32 wk, butP. monspeliensis grew equally well for all durations tested. The response ofS. subterminalis andP. monspeliensis to increased salinity indicated that salt applications might be used to protect native vegetation in salt marshes where salt-sensitive exotics are a problem. A field experiment verified that a salt application of 850 g m?2 mo?1 for 3 mo was sufficient to control the exotic, while not noticeably affecting the native. Thus, salt applications may be a practical method for controllingP. monspeliensis invasions in areas receiving urban runoff or other unwanted freshwater inflows.  相似文献   

13.
Organic materials such as compost are often proposed as suitable materials for the remediation of contaminated brownfield sites intended for soft end-use. In addition to vitalising the soil, they are also believed to immobilise metals thereby breaking contaminant-receptor pathways and reducing the ecotoxicity of the contaminants. However, some research has demonstrated contradictory effects between composts on metal immobilisation. In the present study, four different composts and a liming product containing organic matter (LimeX70) were tested to examine both their metal retention and toxicity reduction capabilities on three different metal contaminated soils. Leaching tests, a plant growth test with Greek cress (Lepidium sativum), an earthworm (Eisenia fetida) survival and condition test and a bacterial toxicity test using Vibrio fischeri were carried out. The leaching test results showed that spent mushroom compost caused an increase in metal concentration in the leachates, while LimeX70 caused a decrease. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. Toxicity tests showed significant reduction of metal bioavailability and toxicity for Greek cress, earthworms and bacteria. The results also suggest that more research should be undertaken to understand the mechanisms involved in metal complexation using different types of organic matter, in order to optimise the use of organic materials like compost for soil remediation.  相似文献   

14.
A soil-based geochemical survey was carried out in an area of about 350 km2 in northern Kosovo around the Zve?an Pb-Zn smelter. The concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Tl, Th, U, Zn were determined in 452 topsoil and 82 subsoil samples. High contents of Pb, Cd, As, Sb, Zn and Cu were found in topsoil over a vast area including the Ibar and Sitnica river valleys. The highest concentrations were usually measured close to the Zve?an smelter. In some zones, the lead contents in surface soils exceeded 5000 mg/kg. Arsenic and antimony levels were usually more than 200 and 50 mg/kg, respectively, while cadmium contents were in the range 5-20 mg/kg. South of the Zve?an area, lead, antimony and cadmium pollution was strong in the densely populated urban area of Kosovska Mitrovica and along the agricultural alluvial plain of the Sitnica River. Depending on the chemical element, the pollution extended 15-22 km north and south of the Zve?an smelter. There was a progressive decrease of heavy element concentrations with increasing distance from the smelting plant. The contents of Pb, Zn, Cu, As, Cd, Sb significantly decreased with soil depth; in fact, the pollution only affected the upper 50 cm of soil. Crops were affected by soil pollution and many food-stuffs exceeded the EU standards. Suggestions for soil remediation are given.  相似文献   

15.
Bioavailability and toxicity of antimony   总被引:1,自引:0,他引:1  
Antimony (Sb) is a toxic trace element widely distributed in the lithosphere and mainly associated with arsenic. Sb compounds are considered to be pollutants of high interest, however, the biogeochemical behaviour of Sb is still largely unknown, especially compared to other well-known toxic elements. In particular, questions remain about the availability of Sb to vascular plants. In this work, we focused on the following problems: (i) Sb uptake by plants; (ii) the availability of Sb to plants and (iii) variations in uptake and distribution of essential plant nutrients and trace elements resulting from bioaccumulation of Sb in Triticum aestivum (wheat) seedlings. The seedlings were either germinated or grown in media enriched with Sb. By the end of germination, concentrations of Sb in the seedlings germinated in Sb-amended media increased significantly. Sb content was highest in the roots and lowest in the leaves of the seedlings. After transfer of the seedlings germinated in an Sb-free medium to Sb-enriched media, Sb concentration in the seedlings increased with time, especially in the roots. Bioaccumulation of Sb influenced concentrations of different macro- and trace elements in all parts of the plants. The least variations were observed in the leaves, probably because the increase of Sb concentration in leaves was not as significant as in the seeds and roots.  相似文献   

16.
The effects of in situ light reductions on two species of subtropical seagrasses, Thalassia testudirum (reduced to 14% and 10% of surface irradiance; SI) and Halodule wrightii (reduced to 16% and 13% SI) were examined over a 10-mo period (October 1992-September 1993) in relation to leaf elongation rates, sediment pore-water ammonium, and blade chlorophyll concentrations. No significant changes in pore-water ammonium levels were noted among treatments with time, but blade chlorophyll concentrations in both species were higher in plants exposed to the darkest treatments (10% and 13% SI) relative to controls exposed to 50% SI. In all treatments, blade chlorophyll concentrations were highest and chlorophyll a:b ratios lowest during the warner months, coincident with higher water temperatures. Leaf elongation rates in T. testudinum plants decreased relative to unshaded controls after 1 mo of treatment in autumn, but no significant differences in leaf elongation were noted among treatments for H. wrightii in late autumn or winter when very low growth rates (<0.1 cm shoot?1 d?1) were recorded. There were no differences between treatments during the spring growth period for T. testudinum (no data are available for H. wrightii), suggesting that growth (ca. 1 cm shoot?1 d?1) was probably not related to available light but was supported by belowground reserves. After 10 mo of treatment, all H. wrightii plants at 13% SI (1,600 mol m?2 yr?1) and 16% SI (2,000 mol m?2 yr?1) disappeared from experimental plots; similarly, no T. testudinum plants exposed to 10% SI (1,300 mol m?2 yr?1) remained, although 4% of the plants at 14% SI (1,800 mol m?2 yr?1) survived nearly 12 mo of reduced irradiance. In neither species were leaf elongation rates, which showed little change among treatments, a reliable indicator of the underwater light environment.  相似文献   

17.
Removal of antimony, classified as a pollutant of priority importance, is a challenge due to its presence in various forms in solution and the low concentration in which it is to be removed. In this study, sorption profile and the sorption mechanisms associated with the removal of antimony in its two oxidation states (+3 and +5) have been investigated in detail through batch studies involving titania sorbents, strong base anion resin, a chelating resin, and a biosorbent. Significant sorption-associated change in solution pH was observed with all the sorbents, which revealed the nature of respective sorption equilibrium involved. The results have shown that Sb(V) is removed only as anionic species, while Sb(III) is removed either as an anionic species or as cationic species according to the functional groups present in the sorbent and the solution conditions. Titania-based sorbents were found to be effective sorbents for Sb(III) and Sb(V) within a narrow pH range, while anion resin was found to be superior for removing Sb(V) as Sb(OH) 6 ? under a wide range of solution conditions. The suitability of the sorbents for column mode of operation has also been investigated. This report is a first attempt at a rational comparison of promising sorbents for antimony, and the results demonstrate the complexity involved in antimony sorption and give an understanding of the available options for handling the antimony removal problem in large-scale applications.  相似文献   

18.
C. Mizota   《Applied Geochemistry》2009,24(11):2027-2033
Two currently breeding colonies (Matsushima Bay and Rishiri island; northern Japan) of predominant Black-tailed Gull (Larus crassiostris) were studied for N isotopic patterns of flora, which is affected by increased supply of inorganic soil N derived from the microbial transformation of feces. Coupled samples of feces, topsoil and flora were collected in early to mid July (2008), when input of fecal N onto soils was at its maximum. As bird migration and breeding continued, native Japanese red-pine (Pinus densiflora), junipers (Juniperus chinensis and Juniperus rigita; Matsushima Bay colony) and Sasa senanensis (Rishiri colony) declined, while ornithocoprophilus exotic plants succeeded. Among tree species on the islands, P. densiflora with ectomycorrizal colonization appears highly susceptible to elevated concentrations of NH4–N in the topsoil. A mechanism for best explaining the plant succession associated with the breeding activity of Black-tailed Gull was evidenced by two parameters: first, concomitant elevation of N content in the flora and second, inorganic soil N content, along with changes in N isotopic composition (δ15N). Earlier isotopic data on the foliar N affected by breeding activity were compiled and reviewed. Emphasis was put on isotopic information for inorganic N in soils that controls plant succession.  相似文献   

19.
Nickel speciation in a nickel hyperaccumulating plant (Sebertia acuminata) and its associated soil of southern New Caledonia was studied using various analytical methods. The soil is formed of iron oxides (goethite, hematite), which contain almost all the nickel. The available nickel is probably linked to the organic matter in the litter. Sebertia acuminata, acts as a nickel pump, and concentrates the metal in its leaves. It partitions nickel and silica; nickel is concentrated in the cells (probably in the vacuoles) as organometallic complexes, whereas silica forms the framework of the cells, and the phytolithes. A thorough study of these plants seems essential in order to define the soil–plant relations, and to propose appropriate ways for ecological restoration. To cite this article: N. Perrier et al., C. R. Geoscience 336 (2004).  相似文献   

20.
Terrestrial ecosystems near breeding/roosting colonies of piscivorous seabirds can receive a large amount of marine-derived N in the form of bird feces. It has been well demonstrated that N input from seabirds strongly affects plant communities in forests or coastal grasslands. The effects of nutrient input on plant communities in agricultural ecosystems near seabird colonies, however, have rarely been evaluated. This relationship was examined in rice-paddy fields irrigated by a pond system located near a colony of the Great Cormorant Phalacrocorax carbo in Aichi, central Japan. In the present study, spatial variations in N content (N %) and N stable isotope composition (δ15N) of soils and wild grass species together with the growth height of plants in paddy fields in early spring (fallow period) were examined. Soils had a higher N % and δ15N values in fields associated with an irrigation pond that had N input from cormorants. The δ15N values tended to be higher around the inlet of irrigation waters, relative to the outlet. These results indicate that cormorant-derived N was input into the paddy fields via the irrigation systems. Plants growing in soil with higher δ15N had higher δ15N in the above-ground part of the plants and had luxurious growth. A positive correlation in plant height and δ15N of NO3–N was observed in soil plough horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号