首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nabi Musa located at the northern tip of the Dead Sea at 31°48′ N, 35°25′ E is one of fifteen complexes of the Hatrurim Formation or the so-called “Mottled Zone” (MZ) which are fossil mud volcanoes. Self ignition of methane during their eruptions in the Middle–Late Pleistocene caused combustion metamorphism of sediments. Melting foci have been discovered in two craters of Nabi Musa volcano, with numerous veins of paralavas having particular calcic-silicic compositions (Ca2SiO4- and CaSiO3-normative). Their major- and trace-element spectra bear signature of a mixed sedimentary protolith consisting of Cretaceous marine carbonates, marl, and quartz sand. The paralavas inherit high Sr, P, and U enrichments, positive La/La* and Y anomalies, and a negative Ce/Ce* anomaly from calcareous marine sediments, including bituminous and apatite-rich chalks. The presence of quartz arenite in the protolith is responsible for relatively high Ti, Nb, Zr, and Hf while the marl pelitic component accounts for MREE and LREE depletion. The suggested mixing models predict that the Nabi Musa paralavas result from combustion metamorphism of a sediment mixture with 53–60 wt.% chalk, 5–14 wt.% marl, and 27–44 wt.% quartz arenite. The history of mud volcanism at Nabi Musa began with small eruptions that mobilized gas and water from shallow (within 300 m) Turonian carbonate aquifers, and later explosive activity triggered violent gas blowouts from the older terrigenous reservoir of Aptian–Albian Nubian-type sandstone lying as deep as 1300–1500 m.  相似文献   

2.
The paper presents mineralogical and geochemical data on clinkers and paralavas and on conditions under which they were formed at the Nyalga combustion metamorphic complex, which was recently discovered in Central Mongolia. Mineral and phase assemblages of the CM rocks do not have analogues in the world. The clinkers contain pyrogenically modified mudstone relics, acid silicate glass, partly molten quartz and feldspar grains, and newly formed indialite microlites (phenocrysts) with a ferroindialite marginal zone. In the paralava melts, spinel microlites with broadly varying Fe concentrations and anorthite–bytownite were the first to crystallize, and were followed by phenocrysts of Al-clinopyroxene ± melilite and Mg–Fe olivine. The next minerals to crystallize were Ca-fayalite, kirschsteinite, pyrrhotite, minerals of the rhönite–kuratite series, K–Ba feldspars (celsian, hyalophane, and Ba-orthoclase, Fe3+-hercynite ± (native iron, wüstite, Al-magnetite, and fresnoite), nepheline ± (kalsilite), and later calcite, siderite, barite, celestine, and gypsum. The paralavas contain rare minerals of the rhönite–kuratite series, a new end-member of the rhönite subgroup Ca4Fe 8 2+ Fe 4 3+ O4 [Si8Al4O36], a tobermorite-like mineral Ca5Si5(Al,Fe)(OH)O16 · 5H2O, and high- Ba F-rich mica (K,Ba)(Mg,Fe)3(Al,Si)4O10F2. The paralavas host quenched relics of microemulsions of immiscible residual silicate melts with broadly varying Si, Al, Fe, Ca, K, Ba, and Sr concentrations, sulfide and calcitic melts, and water-rich silicate–iron ± (Mn) fluid media. The clinkers were formed less than 2 Ma ago in various parts of the Choir–Nyalga basin by melting Early Cretaceous mudstones with bulk composition varies from dacitic to andesitic. The pyrogenic transformations of the mudstones were nearly isochemical, except only for volatile components. The CM melt rocks of basaltic andesitic composition were formed via melting carbonate–silicate sediments at temperatures above 1450°C. The Ca- and Fe-enriched and silicaundersaturated paralavas crystallized near the surface at temperatures higher than 900–1100°C and oxygen fugacity \(f_{O_2 }\) between the IW and QFM buffers. In local melting domains of the carbonate–silicate sedimentary rocks and in isolations of the residual melts among the paralava matrix the fluid pressure was higher than the atmospheric one. The bulk composition, mineral and phase assemblages of CM rocks of the Nyalga complex are very diverse (dacitic, andesitic, basaltic andesitic, basaltic, and silica-undersaturated mafic) because the melts crystallized under unequilibrated conditions and were derived by the complete or partial melting of clayey and carbonate–silicate sediments during natural coal fires.  相似文献   

3.
Sodic alteration is widespread in Palaeoproterozoic greenstone and schist belts of the northern Fennoscandian shield. In the Misi region that forms the easternmost part of the Peräpohja schist belt, several small magnetite deposits show intimate spatial relationships with intensely albitised gabbros, raising the possibility that regional sodic alteration released iron, which was subsequently accumulated into deposits. Two of these magnetite deposits, Raajärvi and Puro display a typical paragenesis as follows (from oldest to youngest): (1) diopside, (2) actinolite/tremolite-magnetite ± chlorite, biotite, and (3) serpentine ± hematite, chlorite. Mass balance calculations suggest that significant amounts of Fe, Ca, Mg, K, Cu, V, and Ba were lost, and Na and Si gained during the albitisation of the gabbro, at near-constant Al, Ga, Ti, and Zr. Significant amounts of Si, Ca, Fe, and Na were enriched in the formation of skarn related to magnetite deposits. Fe and V leached from country rocks deposited during the skarn-alteration and formed the vanadium rich iron deposits while Cu passed through the system without significant precipitation due to low sulphur fugasity. Variations in Na, Ca, Mg, K, and Ba contents reflect the composition of the infiltrating fluid during alteration. Conventional heating-freezing measurements and proton-induced X-ray emission (PIXE) analyses of the fluid inclusions related to actinolite/tremolite-magnetite stage alteration indicate that the fluids that caused the alteration and the Fe-mineralisation were complex, oxidised, highly saline H2O ± CO2 fluids that contained high amounts of Na, Ca, K, Fe, and Ba as well as elevated concentrations of Cu, Zn, and Pb. The oxygen isotope thermometry suggest that temperature during the Fe-mineralisation stage was between 390 and 490°C. Calculated δ18Ofluid values of 6.1–9.8‰ SMOW and δ13C values of calcites in the ores and skarns were between ?7.7 and 10.9‰ PDB and most likely reflect admixture of 13C depleted, possibly magmatic fluids with the marble wall rocks that show δ13Ccalcite values of 13‰ PDB. The SIMS U–Pb data on the zircons in the albitised gabbro next to the Raajärvi and Puro deposits suggest that intrusion of the gabbro took place at 2123±7 Ma and was accompanied by the formation of diopside skarn. The TIMS data on the metasomatic titanites related to sodic alteration yielded ages of 2062±3 and 2017±3 Ma. Iron was probably stripped from the mafic country rocks by sodic alteration between 2123 and 2017 Ma, driven by repeated brine influxes. Subsequently, the metal-rich brine was focused by a fault system and the iron was precipitated from this fluid by a combination of wall rock reaction, fluid mixing, and a drop in the temperature.  相似文献   

4.
The role of methane clathrate hydrates in the global methane budget is poorly understood because little is known about how much methane from decomposing hydrates actually reaches the atmosphere. In an attempt to quantify the role of water column methanotrophy (microbial methane oxidation) as a control on methane release, we measured water column methane profiles (concentration and δ13C) and oxidation rates at eight stations in an area of active methane venting in the Eel River Basin, off the coast of northern California. The oxidation rate measurements were made with tracer additions of 3H-CH4.Small numbers of instantaneous rate measurements are difficult to interpret in a dynamic, advecting coastal environment, but combined with the concentration and stable isotope measurements, they do offer insights into the importance of methanotrophy as a control on methane release. Fractional oxidation rates ranged from 0.2 to 0.4% of ambient methane per day in the deep water (depths >370 m), where methane concentration was high (20–300 nM), to near-undetectable rates in the upper portion of the water column (depths <370 m), where methane concentration was low (3–10 nM). Methane turnover time averaged 1.5 yr in the deep water but was on the order of decades in the upper portion of the water column. The depth-integrated water column methane oxidation rates for the deep water averaged 5.2 mmol CH4 m−2 yr−1, whereas the upper portion of the water column averaged only 0.14 mmol CH4 m−2 yr−1; the depth-integrated oxidation rate for deep water in the 25-km2 area encompassing the venting field averaged 2 × 106 g CH4 yr−1. Stable isotope values (δ13C-CH4) for individual samples ranged from −34 to −52‰ (vs. PDB, Peedee belemnite standard) in the region. These values are isotopically enriched relative to hydrates in the region (δ13C-CH4 about −57 to −69‰), further supporting our observations of extensive methane oxidation in this environment.  相似文献   

5.
《International Geology Review》2012,54(11):1391-1408
ABSTRACT

Rocks of the early Neoproterozoic age of the world have remained in discussion for their unique identity and evolutionary history. The rocks are also present in Sindh province of Pakistan and have been in debate for a couple of years. Yet, these igneous rocks have been studied very poorly regarding U-Pb and Lu-Hf age dating. The early Neoproterozoic rocks located in Nagarparkar town of Sindh have been considered as shoulder of Malani Igneous Suite (MIS) discovered in Southwest of India. The Nagarparkar Igneous Complex (NPIC) rocks are low-grade metamorphosed, mafic and silicic rocks. These rocks are accompanied by felsic and mafic dikes. Two types of granite from NPIC have been identified as peraluminous I-type biotite granites (Bt-granites), of medium-K calc-alkaline rocks series and A-type potash granites (Kfs-granites) of high-K calc-alkaline rocks series. Geochemical study shows that these Kfs-granites are relatively high in K and Na contents and low MgO and CaO. The Bt-granites have positive Rb, Ba, and Sr with negative Eu anomalies rich with HFSEs Zr, Hf, and slightly depleted HREEs, whereas Kfs-granites have positive Rb with negative Ba, Sr, and Eu anomalies and have positive anomalies of Zr and Hf with HREEs. In addition, these rocks possess crustal material, which leads to the enrichment of some incompatible trace elements and depletion of Sr and Ba in Kfs-granites and relatively high Sr and Ba in Bt-granites, indicating a juvenile lower continental crust affinity. Zircon LA-ICP-MS U-Pb dating of these granites yielded weighted mean 206Pb/238U ages ranging from 812.3 ± 14.1 Ma (N = 18; MSWD = 3.7); and 810 ± 7.4 Ma (N = 16; MSDW = 0.36) for the Bt-granites, and 755.3 ± 7.1 Ma (N = 21; MSDW = 2.0); NP-GG-01 and 736.3 ± 4.3 Ma (N = 24; MSWD = 1.05) for Kfs-granites, respectively. The Bt-granites and Kfs-granites have positive zircon εHf(t) values, which specify that they are derived from a juvenile upper and lower continental crust. Based on the geochemical and geochronological data, we suggest that the Bt-granites were formed through lower continental crust earlier to the rifting time, whereas the Kfs-granites were formed via upper continental crust, during crustal thinning caused by Rodinia rifting. These zircon U-Pb ages 812 to 736 Ma, petrographic, and geochemical characteristics match with those of the adjacent Siwana, Jalore, Mount Abu, and Sirohi granites of MIS. Thus, we can suggest that NPIC granites and adjacent MIS can possibly be assumed as a missing link of the supercontinent Rodinia remnants.  相似文献   

6.
7.
A new occurrence of Mn-rich rocks was discovered within the high-pressure/low-temperature metamorphic rocks on the Palos peninsula of Syros (Greece). Near the summit of Mount Príonas, a meta-conglomerate consists of calcite (~63 wt%), pink manganian phengite, blue–purple manganian aegirine–jadeite, microcline, albite and quartz. In addition, it contains abundant braunite-rich aggregates (up to ~1.5 cm in diameter) that include hollandite [(Ba0.98–1.02K<0.01Na<0.02Ca<0.03) (Mn 1.02–1.52 3+ Fe 0.38–0.88 3+ Ti0.29–0.92Mn 5.11–5.76 4+ )O16], barite and manganian hematite. Due to metamorphic recrystallization and deformation, the contacts between clasts and matrix are blurred and most clasts have lost their identity. In back-scattered electron images, many aegirine–jadeite grains appear patchy and show variable jadeite contents (Jd10–67). These pyroxenes occur in contact with either quartz or albite. Manganian phengite (3.41–3.49 Si per 11 oxygen anions) is of the 3T type and contains 1.4–2.2 wt% of Mn2O3. At the known PT conditions of high-pressure metamorphism on Syros (~1.4 GPa/ 470 °C), the mineral sub-assemblage braunite + quartz + calcite (former aragonite) suggests high oxygen fugacities relative to the HM buffer (+7 ≤ ?fO2 ≤ + 17) and relatively high CO2 fugacities. The exact origin of the conglomerate is not known, but it is assumed that the Fe–Mn-rich and the calcite-rich particles originated from different sources. Braunite has rather low contents of Cu (~0.19 wt%) and the concentrations of Co, Ni and Zn are less than 0.09 wt%. Hollandite shows even lower concentrations of these elements. Furthermore, the bulk-rock compositions of two samples are characterized by low contents of Cu, Co and Ni, suggesting a hydrothermal origin of the manganese ore. Most likely, these Fe–Mn–Si oxyhydroxide deposits consisted of ferrihydrite, todorokite, birnessite, amorphous silica (opal-A) and nontronite. Al/(Al + Fe + Mn) ratios of 0.355 and 0.600 suggest the presence of an aluminosilicate detrital component.  相似文献   

8.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

9.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

10.
We present high-precision iron and magnesium isotopic data for diverse mantle pyroxenite xenoliths collected from Hannuoba, North China Craton and provide the first combined iron and magnesium isotopic study of such rocks. Compositionally, these xenoliths range from Cr-diopside pyroxenites and Al-augite pyroxenites to garnet-bearing pyroxenites and are taken as physical evidence for different episodes of melt injection. Our results show that both Cr-diopside pyroxenites and Al-augite pyroxenites of cumulate origin display narrow ranges in iron and magnesium isotopic compositions (δ57Fe = ?0.01 to 0.09 with an average of 0.03 ± 0.08 (2SD, n = 6); δ26Mg = ? 0.28 to ?0.25 with an average of ?0.26 ± 0.03 (2SD, n = 3), respectively). These values are identical to those in the normal upper mantle and show equilibrium inter-mineral iron and magnesium isotope fractionation between coexisting mantle minerals. In contrast, the garnet-bearing pyroxenites, which are products of reactions between peridotites and silicate melts from an ancient subducted oceanic slab, exhibit larger iron isotopic variations, with δ57Fe ranging from 0.12 to 0.30. The δ57Fe values of minerals in these garnet-bearing pyroxenites also vary widely (?0.25 to 0.08 in olivines, ?0.04 to 0.25 in orthopyroxenes, ?0.07 to 0.31 in clinopyroxenes, 0.07 to 0.48 in spinels and 0.31–0.42 in garnets). In addition, the garnet-bearing pyroxenite shows light δ26Mg (?0.43) relative to the mantle. The δ26Mg of minerals in the garnet-bearing pyroxenite range from ?0.35 for olivine and orthopyroxene, to ?0.34 for clinopyroxene, 0.04 for spinel and ?0.68 for garnet. These measured values stand in marked contrast to calculated equilibrium iron and magnesium isotope fractionation between coexisting mantle minerals at mantle temperatures derived from theory, indicating disequilibrium isotope fractionation. Notably, one phlogopite clinopyroxenite with an apparent later metasomatic overprint has the heaviest δ57Fe (as high as 1.00) but the lightest δ26Mg (as low as ?1.50) values of all investigated samples. Overall, there appears to be a negative co-variation between δ57Fe and δ26Mg in the Hannuoba garnet-bearing pyroxenite and in the phlogopite clinopyroxenite xenoliths and minerals therein. These features may reflect kinetic isotopic fractionation due to iron and magnesium inter-diffusion during melt–rock interaction. Such processes play an important role in producing inter-mineral iron and magnesium isotopic disequilibrium and local iron and magnesium isotopic heterogeneity in the subcontinental mantle.  相似文献   

11.
Whiteschists appear in numerous high- and ultrahigh-pressure rock suites and are characterized by the mineral assemblage kyanite + talc (+-quartz or coesite). We demonstrate that whiteschist mineral assemblages are well stable up to pressures of more than 4 GPa but may already form at pressures of 0.5 GPa. The formation of whiteschists largely depends on the composition of the protolith, which requires elevated contents of Al and Mg as well as low Fe, Ca, and Na contents, as otherwise chloritoid, amphibole, feldspar, or omphacite are formed instead of kyanite or talc. Furthermore, the stability field of the whiteschist mineral assemblage strongly depends on XCO2 and fO2: already at low values of XCO2, CO2 binds Mg to carbonates strongly reducing the whiteschist stability field, whereas high fO2 enlarges the stability field and stabilizes yoderite. Thus, the scarcity of whiteschist is not necessarily due to unusual P–T conditions, but to the restricted range of suitable protolith compositions and the spatial distribution of these protoliths: (1) continental sedimentary rocks and (2) hydrothermally and metasomatically altered felsic to mafic rocks. The continental sedimentary rocks that may produce whiteschist mineral assemblages typically have been deposited under arid climatic conditions in closed evaporitic basins and may be restricted to relatively low latitudes. These rocks often contain large amounts of the clay minerals palygorskite and sepiolite. Marine sediments generally do not yield whiteschist mineral assemblages as marine shales commonly have too high iron contents. Sabkha deposits may have too high CO2 contents. Protoliths of appropriate geochemical composition occur in and on continental crust. Therefore, whiteschist assemblages typically are only found in settings of continental collision or where continental fragments were involved in subduction. Our calculations demonstrate that whiteschists can form by closed-system metamorphism, which implies that the chemical and isotopic composition of these rocks provide constraints on the development of the protoliths.  相似文献   

12.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

13.
Nanoscale zero-valent iron flakes for groundwater treatment   总被引:1,自引:0,他引:1  
Even today the remediation of organic contaminant source zones poses significant technical and economic challenges. Nanoscale zero-valent iron (NZVI) injections have proved to be a promising approach especially for source zone treatment. We present the development and the characterization of a new kind of NZVI with several advantages on the basis of laboratory experiments, model simulations and a field test. The developed NZVI particles are manufactured by milling, consist of 85 % Fe(0) and exhibit a flake-like shape with a thickness of <100 nm. The mass normalized perchloroethylene (PCE) dechlorination rate constant was 4.1 × 10?3 L/g h compared to 4.0 × 10?4 L/g h for a commercially available reference product. A transport distance of at least 190 cm in quartz sand with a grain size of 0.2–0.8 mm and Fe(0) concentrations between 6 and 160 g/kg (sand) were achieved without significant indications of clogging. The particles showed only a low acute toxicity and had no longterm inhibitory effects on dechlorinating microorganisms. During a field test 280 kg of the iron flakes was injected to a depth of 10–12 m into quaternary sand layers with hydraulic conductivities ranging between 10?4 and 10?5 m/s. Fe(0) concentrations of 1 g/kg (sand) or more [up to 100 g/kg (sand)] were achieved in 80 % of the targeted area. The iron flakes have so far remained reactive for more than 1 year and caused a PCE concentration decrease from 20.000–30.000 to 100–200 µg/L. Integration of particle transport processes into the OpenGeoSys model code proved suitable for site-specific 3D prediction and optimization of iron flake injections.  相似文献   

14.
Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl–oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17–57 %) and Mg/(Mg + Fe) ratios (0.19–0.50 in two-mica granitic rocks, and 0.05–0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (?78.2 ± 4.7 ‰) and δ11B (?10.7 to ?9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31–0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = ?29.5 ‰, and δ11B = ?9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26–0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1–13.3 ‰), though wider-ranging δD (?58.5 to ?36.5 ‰) and δ11B (?10.2 to ?8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35–0.78] and oxydravite [Mg/(Mg + Fe) = 0.51–0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in granitic melts, implying loss of B and other volatiles to the surrounding host-rocks during the late-magmatic stages. This process was responsible for tourmalinization at the exocontact of the Penamacor-Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the pluton margin (vein/breccia tourmalinites), or as replacement of mafic minerals (chlorite or biotite) in the host-rocks (replacement tourmalinites) along the exocontact of the granite. Thermometry based on 18O equilibrium fractionation between tourmaline and fluid indicates that a late, B-enriched magmatic aqueous fluid (av. δ18O ~12.1 ‰, at ~600 °C) precipitated the vein/breccia tourmaline (δ18O ~12.4 ‰) at ~500–550 °C, and later interacted with the cooler surrounding host-rocks to produce tourmaline at lower temperatures (400–450 °C), and an average δ18O ~13.2 ‰, closer to the values for the host-rock. Although B-metasomatism associated with some granitic plutons in the Iberian Peninsula seems to be relatively confined in space, extending integrated studies such as this to a larger number of granitic plutons may afford us a better understanding of Variscan magmatism and related mineralizations.  相似文献   

15.
ABSTRACT

Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.% SiO2), with low MgO (4.7–10.2 wt. %) and high Al2O3 (3.5–8.6 wt.%). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.  相似文献   

16.
The Toongi Deposit, located in central NSW, Australia, hosts significant resources of Zr, Hf, Nb, Ta, Y and REE within a small (ca. 0.3 km2), rapidly cooled trachyte laccolith. Toongi is part of regional Late Triassic to Jurassic alkaline magmatic field, but is distinguished from the other igneous bodies by its peralkaline composition and economically significant rare metal content that is homogenously distributed throughout the trachyte body. The primary ore minerals are evenly dispersed throughout the rock and include lueshite/natroniobite and complex Na–Fe–Zr–Nb–Y–REE silicate minerals dominated by a eudialyte group mineral (EGM). The EGM occurs in a unique textural setting in the rock, commonly forming spheroidal or irregular-shaped globules, herein called “snowballs”, within the rock matrix. The snowballs are often protruded by aegirine and feldspar phenocrysts and contain swarms of fine aegirine and feldspar grains that often form spiral or swirling patterns within the snowball. Secondary ore minerals include REE carbonates, Y milarite, catapleiite and gaidonnayite that fill fractures and vesicles in the rock. Based on bulk-rock geochemical and Nd isotope data, and thermodynamic modelling of magma fractionation, the alkaline rocks of the region are interpreted to represent extrusive to hyperbyssal products of mantle-derived magma that ponded at mid-crustal levels (ca. 0.3 GPa) and underwent extensive fractionation under low-oxygen fugacity conditions. The high Na2O, peralkaline nature of the Toongi Deposit trachyte developed via extensive fractionation of an alkali olivine basalt parental magma initially in the mid-crust and subsequently at shallow levels (ca. 0.1 GPa). This extended fractionation under low fO2 and relatively low H2O-activity conditions limited volatile release and allowed build-up of rare metal contents to ore grades. We speculate that the ore minerals may have originally formed from rare metal-rich sodic-silicate melt that formed immiscible globules (subsequently crystallized to EGM) in the magma shortly before emplacement and rapid cooling. Subsequent hydrothermal alteration caused relatively limited and localized remobilization of some ore metals into fractures and vesicles in the rock.  相似文献   

17.
Abstract

A newly discovered, shoshonitic lava-hosted Pb deposit at Nariniya in central Tibet provides an excellent example to help improve our understanding of the linkage between post-collisional potassic magmatism and ore formation in Tibet. The Pb ores exist as veins or veinlets in NWW-striking fracture zones within the potassic lava (trachyte). The veins contain quartz, galena, pyrite, and sericite (muscovite) as well as minor chalcopyrite, sphalerite, calcite, and dolomite with sericitization, pyritization, and minor silicification. The 40Ar–39Ar plateau age of the hydrothermal muscovite is 37.95 ± 0.30 Ma, which represents the Pb mineralization age. This obtained age is indistinguishable, within analytical error, from the zircon U–Pb age of 37.88 ± 0.22 Ma for potassic lava. Therefore, the ore formation can be genetically linked to potassic magmatism. Galena has similar Pb isotopic composition to magmatic feldspar from the host lava, suggesting the derivation of Pb from the magmatic system. Previous studies have suggested that S- and ore-forming fluids are of magmatic origin. Published data show that the Nariniya volcanic rocks are acidic, shoshonitic, akakitic, peraluminous, and enriched in Sr–Nd–Pb isotopes. Thus, they are geochemically different from other potassic volcanic rocks (no adakitic affinity) in the North Qiangtang terrane, but similar to the 46–38 Ma high-K calc-alkaline peraluminous adakitic rocks in this terrane and the late Eocene Cu-generating potassic porphyries from the Sanjiang region of eastern Tibet. As such, the Nariniya potassic magma likely originated from melting of subducted continental crust, with or without interaction with the overlying enriched mantle. Such post-collisional potassic rocks in Tibet are thought to be potential targets for prospecting of both Pb–Zn and porphyry Cu ores. Note that other ore styles (in addition to the Nariniya ore style) may exist in the potassic volcanic districts of Tibet.  相似文献   

18.
《International Geology Review》2012,54(10):1246-1275
The Maçka subvolcanic intrusions (MSIs) in the eastern part of the Sakarya zone, northeastern Turkey, play a critical role in understanding the petrogenetic and geodynamic processes that took place during the growth of Late Cretaceous arc crust of this region. U–Pb zircon (79.97 ± 0.97 Ma) and two 40Ar–39Ar amphibole ages (average 81.37 ± 0.5 Ma) indicate that the MSIs were emplaced in Late Cretaceous (Campanian) time into the coeval volcanic rocks. A slightly younger zircon fission track (FT) age (73 ± 9 Ma) points to a rapid exhumation and cooling after crystallization. The intrusions are observed in areas less than 1 km2 in the field and contain abundant mafic microgranular enclaves (MMEs). The host rocks (HRs) are entirely composed of tonalite (SiO2 = 63–65 wt.%, Mg# = 43–52), and the MMEs are gabbro-diorite in composition (SiO2 = 53–57 wt.%, Mg# = 45–48). Both the HRs and the MMEs are I-type, high-K calc-alkaline in composition and display a metaluminous character. They are characterized by geochemical features typical for magmas of subduction-related environments. Chondrite-normalized REE patterns are moderately fractionated [(La/Yb)N = 6–11] and display slightly negative Eu anomalies (Eu/Eu* = 0.7–0.9), with weak concave-upward REE patterns, suggesting that amphibole fractionation played a role during their evolution. The MMEs have slightly different ISr (0.7081–0.7085) and εNd (?5.0 to ?5.4) values compared with those of their HRs (ISr = 0.7084–0.7087 and εNd = ?5.7 to ?6.9), indicating that variable amounts of crustal and mantle components were involved in the generation of parental magma to these rocks. All of these data, combined with those of previous regional studies, suggest that the MSIs are hybrid in origin, produced by the mixing of enriched lithospheric mantle- and lower crust-derived melts in an extensional arc setting that was caused by slab rollback.  相似文献   

19.
The Qimantagh area of Northwest China lies in the western part of the East Kunlun Orogenic Belt and is characterized by extensive magmatism, particularly in the Triassic. However, recent research has shown that Devonian magmatism was also widespread in this area and has a genetic relationship with mineralization. This article presents a detailed study of three types of Early Devonian intrusions: high-K calc-alkaline granites, A-type granites, and mafic intrusions, all from the Qimantagh region. These rocks were subjected to precise zircon U–Pb dating, major and trace element analyses, and Sr–Nd isotope measurements, focusing on the Lalingzaohuo (eastern Qimantagh) and Yemaquan (central Qimantagh) monzogranites, as well as the coeval Tanbeixuefeng (western Qimantagh) mafic dike swarm. To better understand the Early Devonian igneous activity in the Eastern Kunlun, data for other coeval granitoids were compared with our data. The Yemaquan monzogranite yielded a mean zircon U–Pb age of 400.5 ± 1.4 Ma. These rocks are metaluminous to slightly peraluminous, with Al2O3 contents of 13.10–14.16 wt.%, high alkali contents (total K2O + Na2O) of 6.89–7.68 wt.%, relatively low Sr contents (79–192 ppm), and high (La/Yb)N ratios, all of which indicate an I-type granite affinity. The Lalingzaohuo monzogranites yielded mean zircon U–Pb ages of 396.2–402.2 Ma. These rocks have higher SiO2 and alkali contents than the Yemaquan monzogranite, with high 10,000 Ga/Al ratios, high Zr + Nb + Ce + Y contents, high Fe2O3T/MgO ratios, and high Y contents, indicating an A-type granite affinity. These two monzogranites have initial 87Sr/86Sr ratios of 0.703–0.706 and εNd(t) values of –0.1 to –0.7. The Sr–Nd isotopic data require a significant input of a mantle component in the petrogenesis of these granites. The Tanbeixuefeng diabase dikes formed at ~396 Ma and have a continental tholeiitic affinity, as evident from small Ti–Nb–Ta anomalies and high contents of light rare earth and large-ion lithophile elements. We propose that post-collisional slab break-off was responsible for the generation of these Early Devonian intrusions in the Qimantagh area.  相似文献   

20.
Giant plagioclase basalts (GPBs) reflect the storage of flood basalt magma in subvolcanic magma chambers at crustal depths. In this study of the Late Permian Emeishan large igneous province in southwest China, we focus on understanding the plumbing system and ascent of large-volume basaltic magma. We report a quantitative textural analysis and bulk-rock geochemical composition of clustered touching crystals (CT-type) and single isolated crystal (SI-type) GPB samples from 5- to 240-m-thick flows in the Daqiao section. Both types of GPBs are evolved (<6 MgO wt%), but have high Ti/Y ratios (>500) and high total FeO content (11.5–15.2 wt%). The mineral chemistry of the two types of plagioclase displays a small range of anorthite content (<5 mol%), which is consistent with their unzoned characteristics. The two types of GPBs have S-type crystal size distributions but have quite different slopes, intercepts, and characteristic lengths. The characteristic lengths of the five flows are 1.54, 2.99, 1.70, 3.22, and 1.86 mm, respectively. For plagioclase growth rates of 10?11 to 10?10 mm/s, steady-state magma chamber models with simple continuous crystal growth suggest that CT-type plagioclase megacrysts have the residence time of about 500–6,000 years, whereas the residence time for SI-type plagioclase is significantly longer, about 1,000–10,000 years. By combining field geology, quantitative textural data with geochemistry, we suggest that CT- and SI-type crystals grew and were coarsened in the outer part and inner part of a magma chamber, respectively. Magma evolution during storage is controlled by crystallization, crystal growth, and magma mixing, and pulsating eruptions occur in response to the continuous supply of hot magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号