首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SHRIMP U-Pb zircon age, geochemical and Nd isotopic data are reported for the Neoproterozoic Guandaoshan pluton in the Yanbian region, SW Sichuan. This pluton is of typical I-type granite and emplaced at (857±13) Ma. Geochemical and Nd isotopic characters suggest that the pluton was generated by partial melting of pre-existing, young (late Mesoproterozoic to early Neoproterozoic) low-K tholeiitic protolith within an intraplate anorogenic setting. The Guandaoshan pluton probably records the earliest magmatism induced by the proposed ca. 860-750 Ma mantle superplume beneath the supercontinent Rodinia.  相似文献   

2.
Based on petrological and geochemical characteristics such as rock assemblage, petrogeochemistry, Sr-Nd isotope, zircon U-Pb age, and Hf isotope, we studied geochronological framework, magma types, source characters, and petrogenesis of different stages of magmatism of the granitic rocks from the Gangdese batholith in southern Tibet. The magmatic activities of the Gangdese batholith can be divided into three stages. The Mesozoic magmatism, induced by northern subduction of Neotethyan slab, was continuously ...  相似文献   

3.
SHRIMP U-Pb zircon age, geochemical and Nd isotopic data are reported for the Neo-proterozoic Guandaoshan pluton in the Yanbian region, SW Sichuan. This pluton is of typical I-type granite and emplaced at (857 ± 13) Ma. Geochemical and Nd isotopic characters suggest that the pluton was generated by partial melting of pre-existing, young (late Mesoproterozoic to early Neo-proterozoic) low-K tholeiitic protolith within an intraplate anorogenic setting. The Guandaoshan pluton probably records the earliest magmatism induced by the proposed ca. 860–750 Ma mantle superplume beneath the supercontinent Rodinia.  相似文献   

4.

SHRIMP U-Pb zircon age, geochemical and Nd isotopic data are reported for the Neo-proterozoic Guandaoshan pluton in the Yanbian region, SW Sichuan. This pluton is of typical I-type granite and emplaced at (857 ± 13) Ma. Geochemical and Nd isotopic characters suggest that the pluton was generated by partial melting of pre-existing, young (late Mesoproterozoic to early Neo-proterozoic) low-K tholeiitic protolith within an intraplate anorogenic setting. The Guandaoshan pluton probably records the earliest magmatism induced by the proposed ca. 860–750 Ma mantle superplume beneath the supercontinent Rodinia.

  相似文献   

5.
The history of convergence between the India and the Asia plates, and of their subsequent collision which triggered the Himalayan orogeny is recorded in the Yarlung Zangbo suture zone. Exposed along the southern side of the suture, turbidites of the the Jiachala Formation fed largely from the Gangdese arc have long been considered as post-collisional foreland-basin deposits based on the reported occurrence of Paleocene-early Eocene dinoflagellate cysts and pollen assemblages. Because magmatic activity in the Gangdese arc continued through the Late Cretaceous and Paleogene, this scenario is incompatible with U-Pb ages of detrital zircons invariably older than the latest Cretaceous. To solve this conundrum, we carried out detailed stratigraphic, sedimentological, paleontological, and provenance analyses in the Gyangze and Sajia areas of southern Tibet,China. The Jiachala Formation consists of submarine fan deposits that lie in fault contact with the Zongzhuo Formation.Sandstone petrography together with U-Pb ages and Hf isotope ratios of detrital zircons indicate provenance from the Gangdese arc and central Lhasa terrane. Well preserved pollen or dinoflagellate cysts microfossils were not found in spite of careful research, and the youngest age obtained from zircon grain was ~84 Ma. Based on sedimentary facies, provenance analysis and tectonic position, we suggest that the Jiachala Formation was deposited during the Late Cretaceous(~88–84 Ma) in the trench formed along the southern edge of Asia during subduction of Neo-Tethyan oceanic lithosphere.  相似文献   

6.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

7.
Rapakivi granite is a very rare and special type of rocks in the crust. Nearly all the typical Proterozoic rapakivi occurred in stable craton, and was regarded as representing special anorogenic settings and rifting events of the supercontinents. Therefore, rapakivi has constantly been attracting the attention of researchers from various countries[15]. For example, the Protero- zoic rapakivi granites occurring in Miyun, Beijing, has been studied in detail by the researchers both at home and …  相似文献   

8.
新疆库鲁克塔格新元古代花岗岩年龄和地球化学   总被引:3,自引:0,他引:3  
本文报道了新疆塔里木北缘库鲁克塔格地区新元古代孤山岩体(或太阳岛岩体)的岩石学、锆石U-Pb年龄及地球化学组成。研究表明:该岩体主要由英云闪长岩、奥长花岗岩及正长花岗岩组成,结晶的时间为795 Ma。其地球化学特征表现为富Na、LREE、LILE及亏损HREE、HFSE,因此具有高的(La/Yb)N及Sr/Y比值,与现代的艾达克岩相似。然而该岩体具有低的Nd初始值及太古代的Nd模式年龄,因此推测其岩浆来自太古代基性下地壳的重熔。鉴于在库鲁克塔格地区发育有800 Ma左右的蛇绿岩,因此我们推测该岩体是碰撞造山引起的加厚的下地壳重熔的结果,代表了塔里木地块前寒武纪基底的最终形成。  相似文献   

9.
LA-ICPMS zircon U-Pb dating has been greatly advanced and widely applied in the past decade because it is a cheap and fast technique.The internal error of LA-ICPMS zircon U-Pb dating can be better than 1%,but reproducibility(accuracy)is relatively poor.In order to quantitatively assess the accuracy of this technique,zircons from two dioritic rocks,a Mesozoic dioritic microgranular enclave(FS06)and a Neoproterozoic diorite(WC09-32),were dated independently in eight laboratories using SIMS and LA-ICPMS.Results of three SIMS analyses on FS06 and WC09-2 are indistinguishable within error and give a best estimate of the crystallization age of 132.2 and 760.5 Ma(reproducibility is~1%,2RSD),respectively.Zircon U-Pb ages determined by LA-ICPMS in six laboratories vary from 128.3±1.0 to 135.0±0.9 Ma(2SE)for FS06 and from 742.9±3.1 to777.8±4.7 Ma(2SE)for WC09-32,suggesting a reproducibility of~4%(2RSD).Uncertainty produced during LA-ICPMS zircon U-Pb analyses comes from multiple sources,including uncertainty in the isotopic ratio measurements,uncertainty in the fractionation factor calculation using an external standard,uncertainty in the age determination as a result of common lead correction,age uncertainty of the external standards and uncertainty in the data reduction.Result of our study suggests that the uncertainty of LA-ICPMS zircon U-Pb dating is approximately 4%(2RSD).The uncertainty in age determination must be considered in order to interpret LA-ICPMS zircon U-Pb data rationally.  相似文献   

10.
皖南谭山岩体的锆石定年及地质意义   总被引:1,自引:0,他引:1  
皖南地区广泛分布燕山期岩浆岩,但其年代学方面的工作较为薄弱。为厘定该地区燕山期岩浆岩年代学格架,本文利用LA-ICP-MS锆石U-Pb定年方法对皖南谭山岩体的正长花岗岩进行了锆石U-Pb年代学研究,两个样品的206Pb/238U加权平均年龄分别为128.5±1.7Ma和128.3±1.5Ma,基本一致,为早白垩世岩浆活动的产物。结合本地区高精度年代学数据,皖南地区中生代岩浆岩可划分为三个峰期:第一峰期为142~139Ma;第二峰期为133~130Ma;第三峰期为128~125Ma。  相似文献   

11.
Baotoudong syenite pluton is located to the east of Baotou City, Inner Mongolia, the westernmost part of the Triassic alkaline magmatic belt along the northern margin of the North China Craton(NCC). Zircon U-Pb age, petrological, mineralogical and geochemical data of the pluton were obtained in this paper, to constrain its origin and mantle source characteristics. The pluton is composed of nepheline-clinopyroxene syenite and alkali-feldspar syenite, with zircon U-Pb age of 214.7±1.1 Ma. Diopside(cores)-aegirine-augite(rims), biotite, orthoclase and nepheline are the major minerals. The Baotoudong syenites have high contents of rare earth elements(REE), and are characterized by enrichment in light rare earth elements(LREE) and large ion lithophile elements(LILE; e.g., Rb, Ba, Sr), depletion in heavy rare earth elements(HREE) and high field strength elements(HFSE). They show enriched Sr-Nd isotopic compositions with initial ~87Sr/~86Sr ranging from 0.7061 to 0.7067 and ε_Nd(t) values from –9.0 to –11.2. Mineralogy, petrology and geochemical studies show that the parental magma of the syenites is SiO_2-undersaturated potassic-ultrapotassic, and is characterized by high contents of Ca O, Fe_2O_3, K_2O, Na_2O and fluid compositions(H_2O), and by high temperature and high oxygen fugacity. The syenites were originated from a phlogopite-rich, enriched lithospheric mantle source in garnet-stable area(80 km). The occurrence of the Baotoudong syenites, together with many other ultrapotassic, alkaline complexes of similar ages on the northern margin of the NCC in Late Triassic implies that the lithospheric mantle beneath the northern margin of the NCC was previously metasomatized by melts/fluids from the subducted, altered paleo-Mongolian oceanic crust, and the northern margin of the craton has entered into an extensively extensional regime as a destructive continental margin in Late Triassic.  相似文献   

12.
SHRIMPP U-Pb zircon age and geochemical and Nd isotopic data are reported for the Aoyitake plagiogranite in western Tarim Block, NW China. The plagiogranite intruded the Middle Pro- terozoic and Lower Carboniferous with an exposure area of ca. 60 km2 and crystallized at 330.7±4.8 Ma. Rock types mainly include tonalite, trondhjemite and minor amounts of diorite and quartz-diorite. Feldspars in the rocks are dominated by oligoclase-andesine, and minor perthite observed locally. The granites are sodic with Na/K ratios (molar) between 4 and 87. Total REE (50-220 ppm) show a clear positive correlation with SiO2. There is no LRRE/HREE fractionation (LaN/YbN=0.5-1.5), me- dium negative Eu anomalies (δ Eu=0.3-0.6), high Y content and low Sr/Y ratio (~1.0). These granites exhibit relatively juvenile Nd T2DM model ages of 470 to 580 Ma and positive εNd(331 Ma) values of 6.23 to 7.65. The aforementioned characteristics are similar to those of ocean island or ocean ridge plagiogranites. However, the regional geology, especially its scale, precludes that the plagiogranite pluton was derived directly from fractionational crystallization of mantle-derived basaltic magma. We interpreted that the primary magma of the pluton might be tonalitic in composition generated by ca. 50% partial melting of the juvenile basaltic crust. The primary magma experienced intensive frac- tionational crystallization, and intruded into the middle to upper crusts to form the granite pluton. In combination with the previous regional geological data, it is concluded that the plagiogranite pluton was emplaced within the Tarim Block in respond to the Carboniferous continental rifting along the Tianshan orogenic belt.  相似文献   

13.
By dating detrital zircon U-Pb ages of deposition sequence in foreland basins, we can analyze the provenance of these zircons and further infer the tectonic history of the mountain belts. This is a new direction of the zircon U-Pb chronology. The precondition of using this method is that we have to have all-around understanding to the U-Pb ages of the rocks of the orogenic belts, while the varied topography, high altitude of the zircon U-Pb ages of the orogenic belts are very rare and uneven. This restricts the application of this method. Modern river deposits contain abundant geologic information of their provenances, so we can probe the zircon U-Pb ages of the geological bodies in the provenances by dating the detrital zircon U-Pb ages of modern rivers' deposits. We collected modern river deposits of 14 main rivers draining from Pamir, South Tian Shan and their convergence zone and conducted detrital zircon U-Pb dating. Combining with the massive bed rock zircon U-Pb ages of the magmatic rocks and the detrital zircon U-Pb ages of the modern fluvial deposit of other authors, we obtained the distribution characteristics of zircon U-Pb ages of different tectonic blocks of Pamir and South Tian Shan. Overlaying on the regional geological map, we pointed out the specific provenance geological bodies of different U-Pb age populations and speculated the existence of some new geological bodies. The results show that different tectonic blocks have different age peaks. The main age peaks of South Tian Shan are 270~289Ma and 428~449Ma, that of North Pamir are 205~224Ma and 448~477Ma, Central Pamir 36~40Ma, and South Pamir 80~82Ma and 102~106Ma. The Pamir syntaxis locates at the west end of the India-Eurasia collision zone. The northern boundary of the Pamir is the Main Pamir Thrust(MPT)and the Pamir Front Thrust(PFT). In the Cenozoic, because of the squeezing action of the India Plate, the Pamir thrust a lot toward the north and the internal terranes of the Pamir strongly uplifted. For the far-field effect of the India-Eurasia collision, the Tian Shan on the north margin of the Tarim Basin also uplifted intensely during this period. Extensive exhumation went along with these upliftings. The material of the exhumation was transported to the foreland basin by rivers, which formed the very thick Cenozoic deposition sequence. These age peaks can be used as characteristic ages to recognize these tectonic blocks. These results lay a solid foundation for tracing the convergence process of Pamir and South Tian Shan in Cenozoic with the help of detrital zircon U-Pb ages of sediments in the foreland basin.  相似文献   

14.
Besides Pb and U loss and mixing of crystals of different age, U gain is considered a possible cause of discordant U-Pb ages of zircons. However, whether U gain without new zircon growth occurs in nature had not been proven, so far. In order to test this possibility, two detrital zircon populations were studied for which the absence of later zircon overgrowth after deposition could be demonstrated. The samples were separated from a metaquartzite near a large pegmatite body and from metaquartzite inclusions found in the pegmatite (Martell Valley, Italian Alps). The distribution of neutron-induced fission tracks reveals distinct accumulation of U in the rims of more than 90% of the zircon grains of the inclusions (total U in the crystals: 540–850 ppm), whereas in the country rock only some of the grains show similar but weaker patterns (total U: 155–320 ppm). From the isotopic data and from additional U-Pb and Rb-Sr analyses of minerals and whole-rock samples of the pegmatite, the marginal accumulation and the higher concentration of U in the zircon grains of the inclusions are interpreted as the result of episodic U gain during the intrusion of the pegmatite and/or during a later metamorphism. From the concentration levels of common Pb, an addition of Pb - and possibly other elements - to the zircon grains is inferred.  相似文献   

15.
Abstract Prior work has defined a two-stage history for Yakuno ophiolite petrogenesis consisting of older oceanic basement, and younger island-arc rocks and subordinate elastic rocks. First-stage Yakuno rocks have transitional-type M orb or oceanic plateau affinities, and second-stage Yakuno rocks are more similar to immature island-arc settings. Zircon U-Pb isotopic dates of plagiogranite from the Asago district of Southwest Japan yield crystallization ages of 285 ± 2 Ma for the first-stage ophiolite component, and 282 ± 2 Ma for the second-stage component of the ophiolite. These results indicate that the two petrologi-cally distinct components of the Yakuno ophiolite in this area formed in a short time interval in the Early Permian. The zircon U-Pb crystallization ages provide a maximum age for the base of the stratigraphically overlying Maizuru Group.  相似文献   

16.
Zircon U-Pb thermal ionization mass-spectrometer (TIMS) and secondary ion mass-spectrometer (SIMS) dating, mica and amphibole 40Ar-39Ar dating and mineral Sm-Nd isotopic compositions of Huangzhen Iow temperature eclogite and country granitic gneiss are carried out. The zircon U-Pb weighted average SIMS age is (231.6±9.7) Ma for one eclogite.The mica 40Ar-39Ar isochron age is (232.6±2.1) Ma and the lowest plateau age is (221.7±2.4)Ma from same sample. U-Pb TIMS concordant ages from other eclogite zircons are from (221.3± 1.4) Ma to (222.5±2.3) Ma. U-Pb SIMS low intercept age from country granitic gneiss is (221±35) Ma. The retrograde amphibole 40Ar-39Ar isochron age is (205.9± 1.0) Ma. Except for mica,which may contain excess 40Ar, all the ages represent peak and retrograde metamorphism of low temperature eclogites. It is indicated that the Huangzhen low temperature eclogites differ from Xiongdian low temperature eclogites of north of the Northern Dabie Terrain in metamorphic ages.Huangzhen low temperature eclogites share one coherent HP-UHP terrain with high temperature eclogites from Southern Dabie Terrain and they may have differences in subduction depth and cooling rates during exhumation.  相似文献   

17.
We report an imaging method of zircon U-Pb dating with NanoSIMS 50 L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irregular small grains or heterogeneous areas of zircon. The U-Pb and Pb-Pb ages can be acquired simultaneously for 2 μm×2 μm(for small grains) or 1 μm×9 μm(for zoned grains), together with Zr, Y and other trace elements distributions. Using zircon M257 as standard, the U-Pb ages of other zircon standards, including Qinghu, Plesovice, Temora and 91500, were measured to(2σ) as158.8±0.8, 335.9±3.4, 412.0±12 and 1067±12 Ma, respectively, consistent with the recommended values within the analytical uncertainties. Tiny zircon grains in the impact melt breccia of the lunar meteorite SaU 169 were also measured in this study,with a Pb-Pb age of 3912±14 Ma and a U-Pb age of 3917±17 Ma, similar to previous results reported for the same meteorite.The imaging method was also applied to determine U-Pb age of the thin overgrowth rims of Longtan metamorphic zircon, with a Pb-Pb age of 1933±27 Ma and a U-Pb age of 1935±25 Ma, clearly distinct from the Pb-Pb age of 2098±61 Ma and the U-Pb age of 2054±40 Ma for detrital cores.  相似文献   

18.
湘西南兰蓉岩体为一加里东期小侵入体,由黑云母二长花岗岩和二云母二长花岗岩组成.(443.5±8.1)Ma的锆石SHRIMP U Pb年龄表明花岗岩形成于早志留世早期.主量元素组成表明岩体总体属钙碱性高钾钙碱性系列强过铝质花岗岩类.该侵入体Ba、(Ta+Nb)、Sr、P、Ti强烈亏损,Rb、(Th+U+K)、(La+Ce)、Nd、(Zr+Hf+Sm)、(Y+Yb+Lu)等相对富集;稀土元素含量较高、轻稀土富集明显、Eu显著亏损;Isr值为0.71299,εSr(t)值为120,εNd (t)值为 8.11和-8.89,t2DM为1.82和1.84Ga.C/MF-A/MF图解显示其源岩为泥质岩和砂屑岩.上述地球化学特征表明兰蓉岩体为陆壳碎屑岩石部分熔融形成的S型花岗岩.基于岩石成因、构造环境判别以及区域构造演化过程,推断兰蓉岩体的具体形成机制为:奥陶纪末志留纪初的北流运动(板内造山运动)导致地壳增厚、升温,尔后在挤压减弱、应力松弛的后碰撞减压构造环境下,中、上地壳酸性岩石发生部分熔融并向上侵位而形成兰蓉岩体.  相似文献   

19.
20.
Although a number of petrographic observations and isotopic data suggest that magma mixing is common in genesis of many granite plutons, it is still controversial whether the mantle-derived magmas were involved in granites. We carried out in this study a systematic analysis of in situ zircon Hf-O isotopes for three early Yanshanian intrusions dated at ca. 160 Ma from the Nanling Range of Southeast China. The Qinghu monzonite has very homogeneous zircon Hf-O isotopic compositions, εHf(t) =11.6±0.3 and δ18O=5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号