首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
天山乌鲁木齐河源1号冰川融水径流水化学特征研究   总被引:3,自引:2,他引:1  
冯芳  冯起  刘贤德  李忠勤  刘蔚  金爽 《冰川冻土》2014,36(1):183-191
2006年和2007年的整个消融期内,在天山乌鲁木齐河源1号冰川末端水文控制点逐日定时采集融水径流样品,对样品的主要可溶离子、pH、电导率EC、总溶解固体TDS和悬移质颗粒物SPM进行了分析. 结果表明:天山乌鲁木齐河源1号冰川融水径流离子类型为Ca2+-HCO3--SO42-,呈弱碱性. 融水径流中TDS变化受日径流量调节显著,表现为消融初期和末期浓度较高,消融强烈时浓度较低;SPM以细颗粒物质为主,各粒度组分含量变化幅度较大,且质量浓度SSC年内变化与TDS呈相反的变化趋势. 融水径流中离子组成主要受岩石风化作用影响,离子摩尔比值和Piper图分析表明,控制冰川径流离子组成的主要过程是碳酸盐、黄铁矿和长石类矿物风化作用.  相似文献   

2.
This study was carried out to analyze groundwater quality in selected villages of Nalbari district, Assam, India, where groundwater is the main source of drinking water. 40 groundwater samples collected from hand pumps and analyzed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, Cl and F. Chemical analysis of the groundwater showed that mean concentration of cations in (mg/L) is in the order Ca2+ > Mg2+ > Na+ > K+ while for anions it is HCO3  > Cl > SO4 2− > F. Fluoride concentration was recorded in the range of 0.02–1.56 mg/L. As per the desirable and maximum permissible limits for fluoride in drinking water recommended by WHO and by Bureau of Indian Standards (BIS), which is 1.5 mg/L, the groundwater of about 97% of the samples were found to be suitable for drinking purpose. The suitability of the groundwater for irrigation purpose was investigated by some determining factors such as sodium adsorption ratio, soluble sodium percentage, Kelly’s ratio and electrical conductivity. The value of the sodium absorption ratio and electrical conductivity of the groundwater samples were plotted in the US Salinity laboratory diagram for irrigation water. Most of the groundwater samples fall in the field of C2S1 and C3S1 indicating medium to high salinity and low sodium water, which can be used for irrigation on almost all types of soil with little doubt of exchangeable sodium. The hydrochemical facies shows that the groundwater is Ca-HCO3 type.  相似文献   

3.
In this study, the hydrochemical characteristics of shallow groundwater in a coastal region (Khulna) of southwest Bangladesh have been evaluated based on different indices for drinking and irrigation uses. Water samples were collected from 26 boreholes and analyzed for major cations and anions. Other physico-chemical parameters like pH, electrical conductivity (EC), and total dissolved solids were also measured. Most groundwater is slightly alkaline and largely varies in chemical composition, e.g. EC ranges from 962 to 9,370 μs/cm. The abundance of the major ions is as follows: Na+ > Ca2+ > Mg2+ > K+ = Cl > HCO3  > SO4 2− > NO3 . Interpretation of analytical data shows two major hydrochemical facies (Na+–K+–Cl–SO4 2− and Na+–K+–HCO3 ) in the study area. Salinity, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. Results suggest that the brackish nature in most of the groundwaters is due to the seawater influence and hydrogeochemical processes.  相似文献   

4.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

5.
Hydrochemical investigations were carried out in Damagh area, Hamadan, western Iran, to assess chemical composition of groundwater. Forty representative groundwater samples were collected from different wells to monitor the water chemistry of various ions. Chemical analysis of the groundwater showed that the mean concentration of the cations is in the order Na+ > Ca2+ > Mg2+ > K+, while that for anions was HCO3 > Cl > SO42 − > NO3. All of the investigated groundwaters present two different chemical facies (Ca–HCO3 and Na–HCO3) which is in relation with their interaction with the geological formations of the basin, cation exchange between groundwater and clay minerals and anthropogenic activities. The principal component analysis (PCA) performed on groundwater identified three principal components controlling their variability in groundwater. Electrical conductivity, Mg2+, Na+, SO42−, and Cl content were associated in the same component (PC1) (salinity), determined principally by anthropogenic activities. The pH, CO32 −, HCO3, and Ca2+ (PC2) content were related to the geogenic factor. Finally, the NO3, Cl and K+ (PC3) were controlled by anthropogenic activity as a consequence of inorganic fertilizers.  相似文献   

6.
The detailed hydro-chemical study of meltwater draining from Khangri glacier Arunachal Pradesh has been carried out to evaluate the major ion chemistry and weathering processes in the drainage basin. The investigative results shows that the meltwater is almost neutral to slightly acidic in nature with Mg–HCO3-dominated hydro-chemical facies. In glacial meltwater, Ca+?2 is the most dominated cation followed by Mg+2, Na+, and K+, while HCO3? is the most dominant anion followed by SO42?, NO3?, and Cl?. The dominant cations such as Ca+2 and Mg+2 show a good relation with the minerals abundance of the rocks. Calcite (CaCO3) and biotite [K(Mg,Fe)3AlSi3O10(F,OH)2] are the most abundant minerals in the deformed carbonate-rich metasedimentary rocks near to the snout with some K feldspar (KAlSi3O8) and quartz (SiO2). This suggests Ca+2 have definitely entered into the water due to the dissolution of calcite and Ca feldspar (CaAl2Si2O8), while one of the source of Mg+2 is biotite. Na feldspar (NaAlSi3O8) has contributed towards the availability of sodium ion, while potassium ion is derived from the chemical weathering of K feldspar and biotite. The chemical weathering is the foremost mechanism controlling the hydro-chemistry of the Khangri glacier because of the least anthropogenic interferences. The mineralogy of surrounding rocks is studied to understand better, the rock–water interaction processes, and their contribution towards ionic concentration of meltwater. The meltwater discharge and individual ion flux of the catchment area have also been calculated, to determine the ionic denudation rate for the ablation season. The high elemental ratio of (Ca?+?Mg)/(Na?+?K) (7.91?±?0.39 mg/l) and low elemental ratio of (Na?+?K)/total cations (0.11?±?0.004) indicate that the chemical composition of meltwater is mainly controlled by carbonate weathering and moderately by silicate weathering. The scatter plot result between (Ca?+?Mg) and total cations confirms that carbonate weathering is a major source of dissolved ions in Khangri glacier meltwater. In addition, the statistical analysis was also used to determine the correlation between physical parameters of glacier meltwater which controlled the solute dynamics.  相似文献   

7.
The hydrogeochemical study of surface and subsurface water of Mahi River basin was undertaken to assess the major ion chemistry, solute acquisition processes and water quality in relation to domestic and irrigation uses. The analytical results show the mildly acidic to alkaline nature of water and dominance of Na+ and Ca2+ in cationic and HCO3 and Cl in anionic composition. In general, alkaline-earth elements (Ca2+ + Mg2+) exceed alkalis (Na+ + K+) and weak acids (HCO3 ) dominate over strong acids (SO4 2+ + Cl) in majority of the surface and groundwater samples. Ca2+–Mg2+–HCO3 is the dominant hydrochemical facies both in surface and groundwater of the area. The weathering of rock-forming minerals mainly controlled the solute acquisition process with secondary contribution from marine and anthropogenic sources. The higher concentration of sodium and dissolved silica, high equivalent ratios of (Na+ + K+/TZ+), (Na+ + K+/Cl) and low ratio of (Ca2+ + Mg2+)/(Na+ + K+) suggest that the chemical composition of the water is largely controlled by silicate weathering with limited contribution from carbonate weathering and marine and anthropogenic sources. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of river water favors kaolinite formation. Assessment of water samples for drinking purposes suggests that the majority of the water samples are suitable for drinking. At some sites concentrations of TDS, TH, F, NO3 and Fe are exceeding the desirable limit of drinking. However, these parameters are well within the maximum permissible limit except for some cases. To assess the suitability for irrigation, parameters like SAR, RSC and %Na were calculated. In general, both surface and groundwater is of good to suitable category for irrigation uses except at some sites where high values of salinity, %Na and RSC restrict its uses.  相似文献   

8.
The main ions were measured seasonally during two years at 13 sampling stations in the Salado River and its main tributaries. The importance of each ion was assessed by standard methods used to examine ionic composition and by multivariate methods. The K-means clustering and Principal Component Analysis were applied to the percentages of the major ions. The concentration of the major cations are in the order Na+ > Mg2+ > Ca2+ > K+ and the major anions, Cl > SO42− > HCO3 > CO32−, and the salinity was high (mean TDS 2,691 mg l−1) due to sodium chloride. Using the proportions of the ions was possible to identify seven types of water within the basin related to discharges of different river sub-catchments and from endorheic catchments (in a sand dune region) actually connected with the basin by canals. The chemical composition of the basin is consequence of surface waters receiving salts from groundwater, evaporation and weathering of Post-Pampeano materials, and of anthropogenic impact by diversion between subcatchments for flood control. These results allowed us to test the marked effects on the ionic balance of basin at the base of a diversion management from endorheic catchments characterized by high salinity waters.  相似文献   

9.
This study focuses on the thermodynamics of diagenetic fluid from the Eogene Xingouzui Formation which represents the most important reservoir in Field Oil T in the Jianghan Basin. The measured homogenization temperatures (110–139 °C) of fluid inclusions in diagenetic minerals fell within the range of 67 –155 °C at the middle diagenetic stage. The pressure of diagenetic fluid is estimated at 10.2 –56 MPa. The activity of ions in the fluid shows a tendency of Ca2+ > Mg2+ > Na+ > K+ > Fe3+ > Fe2+ for cations, and HCO 3 > SO 4 2− > F > Cl > CO 3 2− for anions. For the gaseous facies, there is a tendency of CO2> CO> H2S> CH4> H2. According to the thermodynamic calculations, the pH and Eh of the fluid are 5.86–6.47 and −0.73–−0.64V, respectively. As a result of the interaction between such a diagenetic fluid and minerals in the sediments, feldspars were dissolved or alterated by other minerals. The clay mineral kaolinite was instable and hence was replaced by illite and chloritoid. This project was jointly funded by the National Natural Science Foundation of China (49133080) and the Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

10.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

11.
In this study, 92 groundwater samples were collected from the Attica region (Greece). Moreover, geographical information system database, geochemistry of groundwater samples and statistics were applied. These were used for studying the chemical parameters (NO3 , Mg2+, Ca2+, Cl, and Na+) and conductivity spatial distribution and for assessing their environmental impact. The ranges of chemical parameters of the water samples (in mg L−1) are: NO3 1–306, Mg2+ 2–293, Ca2+ 3–453, Cl 5–1,988, and Na+ 4–475. The elevated concentrations of sodium, Mg2+, Clare attributed to natural contamination (seawater intrusion). On the other hand, NO3 elevated concentrations are attributed to anthropogenic contamination (nitrate fertilizers). The results of the GIS analysis showed that elevated values of Na+, Mg2+, Clare related to shrubby and sparsely vegetated areas, while elevated values of NO3 are connected with urban and agricultural areas.  相似文献   

12.
Samples were collected from two snowpits in Baishui glacier no. 1, Mt Yulong, China, in May 2006. Snowpit chemistry was studied, using ion tracer techniques, HYSPLIT model, factor analysis, correlation and trend analysis. It indicated that total cation concentration is higher in 4,900-m snowpit than in 4,750-m snowpit, whereas total anion concentration is higher in 4,750-m snowpit. Cations, especially Ca2+, dominate ionic concentrations in Baishui glacier no. 1. According to correlation analysis and factor analysis, ions can be categorized as follows: Cl and NO3 as Group 1, SO4 2− as Group 2, Mg2+ and Ca2+ as Group 3, Na+ as Group 4, K+ as Group 5. Contribution made by terrestrial dust to ionic concentration accounts for 52.27, 100, 99.36, 98.91, 96.16 and 99.97% of Cl, NO3 , SO4 2−, K+, Mg2+ and Ca2+, respectively, in 4,900-m snowpit, and for 64.00, 100, 99.57, 98.63, 96.25 and 99.97% in 4,750-m snowpit. Local dust is the principal source of snowpit chemical components. Pollutants brought from industrial areas of South Asia, Southeast Asia and South China by monsoonal circulation also makes some contribution to anion concentrations, but pollution associated with human activities makes a very slight contribution in study area. The chemical characteristics of two snowpits are different owing to the difference of deposition mechanism and local environment in different altitudes.  相似文献   

13.
About 24 samples from hand-dug wells and boreholes were used to characterize concentrations of the main inorganic ions in a laterite environment under semi-arid climatic conditions in Tikaré, northern Burkina Faso. It was found that the most represented groundwater anion in groundwater was HCO3 with average levels of 49.1 mg/L in the dry season and 33.5 mg/L in the rainy season. The most represented cation was Ca2+ with mean concentrations of 13.7 and 9.5 mg/L, respectively. The main processes, which influence the concentrations of these ions, are evaporation (dry season), local enrichment of recharge water in some elements, ion exchange and fixation by clay minerals (in case of K+). The best correlations were found between Ca2+ and Mg2+ (r = 0.95), Cl and Na+ (r = 0.95), HCO3 and Mg2+ (r = 0.89), HCO3 and Ca2+ (r = 0.89), and between HCO3 and Na+ (r = 0.80). In general, the quality of the groundwater from the different wells sampled for this study was good enough to serve as drinking water. However, there were situations where the quality of water was polluted because of anthropogenic contaminants (mainly NO3 , K+, Cl) from septic tanks and manure pits located in the vicinity of some sampled wells. In addition, application of fertilizers also represents a potential anthropogenic contamination source with regard to SO4 2−, Ca2+, K+, Na+, and Mg2+. Considering the high concentrations of SO4 2−, Mg2+, Na+ and Ca2+ found in one borehole, the deeper, fractured aquifers were also likely to be enriched in these elements. In contrast, the shallow aquifers are likely to be contaminated with Cl, NO3 and K+. Cl and K+ seem to be locally present in recharge water as shown by their relative higher mean concentrations in the rainy season samples.  相似文献   

14.
Sources of deep groundwater salinity in the southwestern zone of Bangladesh   总被引:2,自引:2,他引:0  
Twenty groundwater samples were collected from two different areas in Satkhira Sadar Upazila to identify the source of salinity in deep groundwater aquifer. Most of the analyzed groundwater is of Na–Cl–HCO3 type water. The trends of anion and cation are Cl > HCO3  > NO3  > SO4 2− and Na+ > Ca2+ > Mg2+ > K+, respectively. Groundwater chemistry in the study area is mainly governed by rock dissolution and ion exchange. The dissolved minerals in groundwater mainly come from silicate weathering. The salinity of groundwater samples varies from ~1 to ~5%, and its source is possibly the paleo-brackish water which may be entrapped during past geologic periods.  相似文献   

15.
Groundwater composition in the Kulpawn basin is largely controlled by aluminosilicates dissolution and cation exchange resulting in mainly Ca-Mg-HCO3 and NaHCO3 water types. Principal component analysis, Piper graphical classification, and stable isotope (18O and 2H) of groundwater and surface-water samples were used to delineate geochemical processes and groundwater facies. The groundwater is mildly acid to neutral and low in conductivity. Chemical constituents except HCO3 and SiO2 have low concentration. No cation shows clear majority, however, the order of relative abundance is Na+ > Ca2+ > Mg2+ > K+. HCO3 is the predominant anion and the order of abundance is HCO3  > NO3  > SO4 2− > Cl. SiO2 concentration is high compared with the major cations. Dissolution of plagioclase, pyroxene and biotite and cation exchange are responsible for groundwater composition. Isotopic data suggest integrative, smooth and rapid recharge from meteoric origin. The groundwater quality is generally good for domestic usage; however, 18 and 47% of boreholes respectively have NO3 and F levels outside WHO recommended limits suggesting potential physiological problems in some localities. The groundwater has low sodium absorption ratio and low to moderate salinity hazard but significant magnesium hazard partially limiting its use for irrigation.  相似文献   

16.
This paper reports original data on the physical and chemical parameters of precipitation, river water and groundwater in and around the Longhushan Nature Reserve Area, located in southwestern China karst region, and provides a preliminary characterization of the hydrogeochemical process governing the natural water evolution in this area. The rainfall and river water mainly pertain to the HCO3 –Ca2+ type and groundwater mainly pertain to the HCO3 –Ca2+ + Mg2+ type. The HCO3 was the predominant anion and Ca2+ was the predominant cation in all waters, respectively. The Gibbs Boomerang Envelop model, the 1:1 relationship of Na+ plus K+ versus Cl as well as the 1:1 relationship of Ca2+ plus Mg2+ versus HCO3 all suggested geochemical weathering is the main controlling factor for the geochemical compositions of this natural water. In surface water, the Mg2+/Ca2+ ratios ranged from 0.32 to 0.42 and the Na+/Ca2+ varied between 0.04 and 0.05. In the groundwater, the Mg2+/Ca2+ ratios varied from 0.37 to 0.62 and were below the ideal ratio of 0.8. These ratios showed the presence of a dolomite source. Analysis of trace elements showed that As, B, Pb, Se, Sr, V and Zn elements were abundant in the natural water during summer in this region.  相似文献   

17.
The Markandeya River Basin stretches geographically from 15o56′ to 16o08′ N latitude and 74o37′ to 74o58′ E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. The groundwater quality of 54 pre-monsoon samples in the Markandeya River Basin was evaluated for its suitability for drinking and irrigation purposes by estimating pH, EC, TDS, hardness and alkalinity besides major cations (Na+, K+, Ca2+, Mg2+) and anions (HCO3–, Cl–, SO42–, PO43-, F-, NO3–), boron, SAR, % Na, RSC, RSBC, chlorinity index, SSP, non-carbonate hardness, Potential Salinity, Permeability Index, Kelley’s ratio, Magnesium hazard and Index of Base Exchange. Negative Index of Base Exchange indicates the chloro-alkaline disequilibrium in the study area and the majority of water samples fall in the rock dominance field based on Gibbs’ ratio. Permeability indices of classes I and II suggest suitability of groundwater for irrigation. Based on Cl, SO4, HCO3 concentrations, water samples can be classified as normal chloride (96.3%) and normal sulfate (94.4%) and normal bicarbonate (44.4%) water types.  相似文献   

18.
This study assessed the levels of selected inorganic contaminants in streams and stream sediments in the effluent areas relating to the pyrometallurgical and hydrometallurgical treatment of gold ores in the Obuasi gold mine, Ghana. Water and stream sediment samples were taken from specific locations during the consecutive rainy and dry seasons, and concentrations of phosphate (PO4 3−), nitrate (NO3 ), chloride (Cl), sulphate (SO4 2−), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), arsenic (As), copper (Cu), iron (Fe), zinc (Zn) and lead (Pb), were determined. Alkalinity, pH, temperature and specific electrical conductivity were also measured. In the water samples, the average pH range for both the seasons is 6.9–7.4, most anions and metals have relatively higher concentrations in the wet season than in the dry season at both the metallurgical sites. Trace metals concentrations were comparatively low (<0.01–5.00 mg/l), higher in the dry season at the pyrometallurgical sites. Irrespective of seasons, SO4 2− (0.80–949.50 mg/l) and PO4 3− (<0.01–6.30 mg/l) were pronounced at the pyrometallurgical sites, while NO3 (0.01–98.45 mg/l) and Cl (1.88-49.05 mg/l) were higher at the hydrometallurgical sites. In water samples, Ca2+ and SO4 2+ were the dominant cation and anion, respectively. In the stream sediments, except pH, NO3 , Cl, Na+ and Mg2+, all other parameter values were relatively higher at the hydrometallurgical areas. The average concentrations of Ca2+, Mg2+, As and Fe are remarkably high at both metallurgical sites (3,217–46,026 mg/kg). Overall, the level of parameters in the water samples are pronounced at pyrometallurgical sites, whereas the levels in sediments are higher at the hydrometallurgical sites.  相似文献   

19.
We have investigated the geochemistry of supraglacial streams on the Canada Glacier, Taylor Valley, Antarctica during the 2001–2002 austral summer. Canada Glacier supraglacial streams represent the link between primary precipitation (i.e. glacier snow) and proglacial Lake Hoare. Canada Glacier supraglacial stream geochemistry is intermediate between glacier snow and proglacial stream geochemistry with average concentrations of 49.1 μeq L−1 Ca2+, 19.9 μeq L−1 SO42−, and 34.3 μeq L−1 HCO3. Predominant west to east winds lead to a redistribution of readily soluble salts onto the glacier surface, which is reflected in the geochemistry of the supraglacial streams. Western Canada Glacier supraglacial streams have average SO42−:HCO3 equivalent ratios of 1.0, while eastern supraglacial streams average 0.5, suggesting more sulfate salts reach and dissolve in the western supraglacial streams. A graph of HCO3 versus Ca2+ for western and eastern supraglacial streams had slopes of 0.87 and 0.72, respectively with R2 values of 0.84 and 0.83. Low concentrations of reactive silicate (> 10 μmol L−1) in the supraglacial streams suggested that little to no silicate weathering occurred on the glacier surface with the exception of cryoconite holes (1000 μmol L−1). Therefore, the major geochemical weathering process occurring in the supraglacial streams is believed to be calcite dissolution. Proglacial stream, Anderson Creek, contains higher concentrations of major ions than supraglacial streams containing 5 times the Ca2+ and 10 times the SO42−. Canada Glacier proglacial streams also contain higher concentrations (16.6–30.6 μeq L−1) of reactive silicate than supraglacial streams. This suggests that the controls on glacier meltwater geochemistry switch from calcite and gypsum dissolution to both salt dissolution and silicate mineral weathering as the glacier meltwater evolves. Our chemical mass balance calculations indicate that of the total discharge into Lake Hoare, the final recipient of Canada Glacier meltwater, 81.9% is from direct glacier runoff and 19.1% is from proglacial Andersen Creek. Although during a typical, low melt ablation season Andersen Creek contributes over 40% of the water added to Lake Hoare, its overall chemical importance is diluted by the direct inputs from Canada Glacier during high flow years. Decadal warming events, such as the 2001–2002 austral summer produce supraglacial streams that are a major source of water to Lake Hoare.  相似文献   

20.
The chemistry of the rainwater indirectly reflects the composition of the ions in the atmosphere. The study of the rainwater gains its own importance as it forms the basis for the agricultural, domestic and drinking water. Twelve rainwater samples were collected along the southeastern coast of India during southwest monsoon. The samples were analyzed for the major anions (Cl?, SO4 2?, PO4 3? and HCO3 ?) and cations (Na+, K+, Ca2+ and Mg2+). The majority of the samples reflect acidic pH. The general dominance of the cations is in the order of Na+ > Ca2+ > K+ > Mg2+ and that of anions is HCO3 ? > Cl? > SO4 2? > PO4 3?. The water is classified as calcium bicarbonate to sodium bicarbonate type. The decrease of pH value also increases the pCO2. In order to study the impact of acidic and alkaline species on rainwater, correlation coefficients were determined for establishing the relationship between different ions. Good correlation was established between cations, and sulfate has no correlation with other ions and pH. Factor analysis reveals that land use pattern, marine source and methanogenesis from the tidal influenced mangroves play a major role in determining the rainwater chemistry of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号