首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Plio‐Pleistocene non‐marine sequence in the northeast Guadix–Baza Basin (southern Spain) comprises alluvial and lacustrine deposits (Baza Formation). The results of a revised lithostratigraphical correlation between sections from the middle and upper members of the Baza Formation in the northeast part of the basin, supported by detailed mapping, is presented. The position of micromammal sites in the lithostratigraphical scheme, together with the results of intensive palaeontological sampling for small mammal remains, has allowed us to develop a high‐resolution biostratigraphical framework for the area. This provides an opportunity to refine the biozonation for the Plio‐Pleistocene micromammal faunas, and to define faunal events from the late Villanyian (late Pliocene) to the early Pleistocene. On the basis of the lithostratigraphical and biostratigraphical approaches we obtain the following sequence of biozones for the late Pliocene to early Pleistocene: Kislangia gusii, Mimomys cf. reidi, M. oswaldoreigi, Allophaiomys pliocaenicus and A. burgondiae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The depositional environments and bivalve assemblages are determined for the Upper Cretaceous Hinoshima Formation of the Himenoura Group, Kamishima, Amakusa Islands, Kyushu, Japan. The Hinoshima Formation is characterized by a thick transgressive succession that varies from incised-valley-fill deposits to submarine slope deposits with high aggradation rates of depositional systems. The incised valley is filled with fluvial, bayhead delta, brackish-water estuary, and marine embayment deposits, and is overlain by thick slope deposits.Shallow marine bivalves are grouped into five fossil assemblages according to species composition: Glycymeris amakusensis (foreset beds of a bayhead delta), Nippononectes tamurai (foreset beds of a bayhead delta), Ezonuculana mactraeformisNucula formosa (central bay), Glycymeris amakusensisApiotrigonia minor (slope), and Inoceramus higoensisParvamussium yubarensis (slope). These bivalve assemblages all represent autochthonous and parautochthonous conditions except for a Glycymeris amakusensisApiotrigonia minor assemblage found in debris flow and slump deposits. The life habitats of these bivalves and the compositions of the assemblages are discussed in terms of the ecological history of fossil bivalves of the mid- to Late Cretaceous.  相似文献   

3.
青海省南部侏罗纪地层问题讨论   总被引:9,自引:1,他引:8  
青海省南部侏罗纪海相双壳类异常丰富.根据近年来新测制的地层剖面和化石资料,本文分析了该区双壳类动物群的时代意义,从而确立了本区侏罗系应包括中,上侏罗统;海相侏罗纪沉积大致自巴柔阶到基末里阶.东特提斯区北缘的弧形地带,诸如青海南部、藏东、藏北、滇西,缅甸掸邦和泰国呵叻等地在中,晚侏罗世基本上属于同一个生态环境较特殊的双壳类生物地理分区,双壳类动物群表现出强烈的地方性色彩,特别是淡水双壳类动物群cuneopsis—Psilunio—Lamprotula组合,半咸水动物群Corbula—Neomindon组合以及淡水(微咸水)动物群Peregrinococha组合完全是该区特有的土著分子,从时代对比意义上来说,它们之间可对比度更高.云南和平乡组双壳类动物群和本区相比较后表明,和平乡组沉积时代大致相当于巴柔期(含早巴通期).缅甸南瑶系中的双壳类动物群时代不应晚于巴通期.藏东和青海南部产出的奇异蛤动物群时代则应不早于基末里期.  相似文献   

4.
华北地台北部晚石炭世古植被演替及其古气候解释   总被引:2,自引:0,他引:2  
拴马桩煤系植物化石研究结果表明,华北地台北部晚石炭世的古植被在维斯发期和斯蒂芬期之交发生了重要变化:斯蒂芬期以前,种子蕨类占主导地位,随后是以Pecopteris为代表的树蕨真蕨类植物和有节类成了植被的主要类群。这种型式的古植被改变不仅与华北晚古生代植物群成分在本溪组与太原组界线上出现的真蕨类、有节类"新生峰点"相一致,而且与欧美基本植被在维斯发D期-斯蒂芬期的改组大体吻合。据叶相及煤中的碳同位素分析,晚石炭世晚期存在一个古气候升温事件。上述古植被的改组可能是这个升温事件的正反馈。  相似文献   

5.
The Upper Carboniferous, coal-bearing sequence of the Intrasudetic Basin (SW Poland) includes coals ranging from high-volatile bituminous to anthracitic rank. The lowest values of reflectance are recorded around the basin margins (0.6% R0 max), the highest ones appear in the center of the basin (exceeding 4% R0 max). Reflectance gradients are very high, reaching 0.6%/100 m in the centre of the basin.A comparison of the isoreflectance maps for three lithostratigraphical units—the Walbrzych, Bialy Kamien and Zacler Formations, with the present-day burial depth and the depth of burial during the Westphalian B/C—indicates that there is a strong relationship between reflectance and the sediment cover during the Westphalian B/C, particularly in the vicinity of Walbrzych and Lubawka. This suggests that the increase in coal rank is related to the increase in cover which permitted the temperature to build-up to high values.In the eastern and central parts of the basin and the Nowa Ruda area, higher reflectance than that derived from burial depth is observed which is believed to result from higher heat flow from the basement. The volcanic rocks of the Intrasudetic Basin appear to have little effect on coal rank and are not considered to be a significant contributor to the heat flow of the region.During coalification, the oldest Westphalian coal seams were buried to about 700 m and the youngest seams of the Walbrzych Formation to 900 m. Around the basin margins the coals had reached their present-day rank by the Westphalian B/C and in the central part probably by the end of the Stephanian. Most effective coalification took place during the Westphalian A,B occupying a period of less than 20 million years. The coalification temperature is calculated to be 160–170°C with a geothermal gradient of 8–10°C/100 m. These geothermal conditions support the suggestion of a volcanic origin for the Intrasudetic Basin.  相似文献   

6.
A study of clay mineral and calcareous nannofossil abundances in late Jurassic–early Cretaceous sediments from the Volga Basin, SE Russia, is presented. From these results, we are able to compare some general patterns of mineralogical and palaeontological change for the Volga Basin to the palaeoclimate models developed for northern Europe and beyond. The two successions examined comprise calcareous mudstones with black organic‐rich shale horizons, overlain by a series of phosphatic silty sands. Clay mineralogical results show a progressive decrease in kaolinite and the concomitant increase of smectite and illite through the middle Volgian, followed by an abrupt increase in kaolinite in the late Volgian. The clay mineral evidence suggests increasing aridity at the end of the Jurassic, similar, in part, to many western European successions. Because of differential settling of clay minerals, superimposed upon this possible climatic signature is likely to be the effect of relative sea‐level change. Calcareous nannofossil analysis from a single section reveals a shift through the middle Volgian from low nutrient, warm water assemblages dominated by Watznaueria to cooler surface water and high nutrient assemblages dominated by Biscutum constans. These observations suggest that increased aridity is also associated with climatic cooling. Black shales are associated with increased productivity, higher sea levels and increases in smectite content. Hence, periods of low (chemical) hinterland weathering during semi‐arid conditions are paradoxically associated with relatively nutrient‐rich waters, and organic‐rich shales. Comparison of published carbon and oxygen stable isotope results from this and other sections to the clay mineral and nannofossil data confirms the palaeoclimatic interpretation. This study significantly improves the published biostratigraphically constrained clay mineral database for this time period, because other European and North American successions are either non‐marine (and thus poorly dated), absent (through penecontemporaneous erosion) or condensed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The crystallographic fabric of siderite in siderite concretions has been determined for upper Carboniferous (Westphalian‐A) non‐marine concretions and lower Jurassic (Pliensbachian) marine concretions. Compositional zoning indicates that individual siderite crystals grew over a period of changing pore water chemistry, consistent with the concretions being initially a diffuse patch of cement, which grew progressively. The siderite crystallographic fabric was analysed using the anisotropy of magnetic susceptibility, which is carried by paramagnetic siderite. The siderite concretions from marine and non‐marine formations exhibit differences in fabric style, although both display increases in the degree of preferred siderite c‐axis orientation towards the concretion margins. The Westphalian non‐marine siderites show a preferred orientation of siderite c‐axes in the bedding plane, whereas the Pliensbachian marine siderites have a preferred orientation of c‐axes perpendicular to the bedding. In addition, a single marine concretion shows evidence of earlier formed, inclined girdle‐type fabrics, which are intergrown with later formed vertical c‐axis siderite fabrics. The marine and non‐marine fabrics are both apparently controlled by substrate processes at the site of nucleation, which was probably clay mineral surfaces. Siderite nucleation processes on the substrate were most probably controlled by the (bio?) chemistry of the pore waters, which altered the morphology and crystallographic orientation of the forming carbonate. The preferred crystallographic orientation of siderite results from the orientation of the nucleation substrate. Fabric changes across the concretions partially mimic the progressive compaction‐induced alignment of the clay substrates, while the concretion grew during burial.  相似文献   

8.
In this initial systematic study of Carboniferous spores from New South Wales, Australia, fifteen species (all but one of them new) are formally described and are distributed among eight established genera and two new genera (Rattiganispora, a distally annulate trilete form, and Psomospora, an inaperturate or proximally hilate form). The species were selected as being the most characteristic and distinctive forms found in the Italia Road Formation at its well‐exposed type section in the Hunter Valley, east‐central New South Wales. The formation is a cyclical non‐marine unit, over 300 metres (1,000 ft) thick, consisting of lithic arenites together with carbonaceous shales, claystones, and siltstones; its age is regarded as West‐phalian‐Stephanian. The microfiora is compared with those known from sediments of similar age elsewhere and its place in the Australian Palaeozoic palynostratigraphic record is discussed.

New specific institutions are as follows: Punctatisporites lucidulus, P. sub‐tritus, Verrucosisporites aspratilis, V. italiaensis, Raistrickia accincta, R. radiosa, Reticulatisporites asperidictyus, R. magnidictyus, Foveosporites pellucidus, Rattiganispora apiculata (type species), Kraeuselisporites kuttungensis, Grandispora maculosa, Psomospora detecta (type species), and Wilsonites australiensis.  相似文献   

9.
The Magoffin marine unit is a Middle Pennsylvanian age interval of marine strata that directly overlies the Taylor, Copeland, and correlative coal zones in the Appalachian Basin. For this study the Magoffin was measured, described, and sampled at 17 localities along a northeast to southwest transect in the center of the Middle Pennsylvanian outcrop belt in eastern Kentucky and West Virginia. Throughout the study area the base of the Magoffin is characterized by a thin, dark, highly fossiliferous limestone with a brachiopod-dominated fossil assemblage. The limestone base is usually overlain by a fining-upward sequence consisting of fossiliferous dark shales or mudstones with mollusk-dominated assemblages. These dark mudstones include a fissile black shale with a distinctive Posidonia fauna deposited over part of the study area. The lower, fining sequence is overlain by a thicker, coarsening sequence bearing brachiopod-dominated fossil assemblages. The lower beds of the Magoffin, particularly the basal limestone, are persistent and relatively uniform throughout the study area. In contrast, strata in the upper part of the Magoffin sequence show a high degree of geographic variability, with localities in the southwestern half of the study area showing two successive, thick, coarsening-upward sequences of strata, while those to the northeast record a single thinner coarsening-upward sequence.The widespread, uniform nature of the basal Magoffin limestone appears to indicate rapid transgressive flooding of the coal-swamp and associated environments accompanied by a hiatus in clastic influx into the Magoffin seaway. Nearshore brachiopod faunas were replaced by deeper-water, possibly dysaerobic-adapted mollusk faunas as transgression progressed, culminating in the fissile black shales and monotaxic Posidonia fauna deposited beneath a localized pycnocline during maximum transgression. The onset of regression is indicated by the reverse of the stratigraphic sequence of faunas observed during transgression, and by the return of rapid clastic influx into the basin.  相似文献   

10.
In order to get detailed information about the facies and genesis of Upper Carboniferous coal seams of Northwest Germany, maceral analyses of complete seam profiles (Westphalian B-D, mainly Westphalian C) were carried out. Four main facies and twelve subfacies could be distinguished. The main facies are:
1. (1) The sapropelic-coal facies, consisting of fine-grained inertinite and liptinite, which forms from organic sediments deposited at the bottom of moor lakes.
2. (2) The densosporinite facies which is high in inertinite and liptinite and low in vitrinite. Syngenetic pyrites, clastic layers, thick vitrains and fusains do not occur. This facies originates from peats of ‘open mires’ with higher groundwater table and herbaceous vegetation. The ‘open mire’ was situated in the centre of extensive swamps. Consequently, clastic sedimentation did not affect this swamp type and nutrient supply and pH values were low.
3. (3) The vitrinite-fusinite facies, which is high in vitrinite. This is the result of abundant vitrains. Under the microscope, fusains were mostly identified as fusinite. The vitrinite-fusinite facies originates from a forest mire. More or less abundant seam splits and clastic layers show that rivers flowed in the neighbourhood of this area.
4. (4) The shaly-coal facies, which represents the most marginal part of the former swamp frequently affected by clastic sedimentation.
Within the Carboniferous of the Ruhr Region it seems unlikely that the thin coal seams of the Namurian C and Westphalian A1 contain a densosporinite facies. The swamps were situated in the lower delta plain where they were often affected by marine influences. Consequently, coals are high in minerals and sulfur and they are thin and discontinous. The best conditions for the formation of extensive swamps, with open mires (densosporinite facies) in their central parts, prevailed during Westphalian A2 and B1 times. Low contents of sulfur and minerals and high content of inertinite are typical for these coals. Sedimentation mainly took place in the transitional zone from the lower to the upper delta plain. During the Westphalian B2 and C fluvial sedimentation dominated. Within the coal seams minerals, sulfur and pseudovitrinite increase while inertinite decreases. This is the consequence of coal of the densosporinite facies occurring with increased rarity. The coal seams of the Westphalian C2 contain no densosporinite facies because peat formation was restricted by increasing fluvial sedimentation and by a better drainage. As a consequence, extensive swamps with ‘open mires’ in the centre were no longer formed after the formation of the “Odin” seams. Above the “Odin” seams coal of the vitrinite-fusinite facies contains thick-walled torisporinites. Variations and lowering of the groundwater table caused mild oxidative influences during peat formation. This is documented by an increase in pseudovitrinite, the occurrence of torisporinites and the absence of spheroidal sideritic concretions. Sulfur content increases in the absence of the low-ash and low-sulfur coal of the densosporinite facies.In Upper Carboniferous coal seams of the Ibbenbüren Region the inertinite and telocollinite contents are higher than in those of the Ruhr Region. Therefore, variations of the groundwater table have been more pronounced and resulting oxidative influences must have been more severe. Seldom occurring marine and brackish horizons and a higher fusinite (fusain) content indicate a slight elevation of this area. From Early Westphalian D times onward, peat formation was no longer possible because of the better drainage. This resulted in severe oxidative conditions which excluded peat formation.  相似文献   

11.
From a fresh field investigation, it has been ascertained that the Late Palaeozoic Yu'erhong (Yuernhung) flora from Yu'erhong, Yumen, Gansu, northwestern China, studied by Bohlin in 1971 includes plants from the Westphalian Yangfukou Formation and the Stephanian to Sakmarian Taiyuan Formation. The Yu'erhong flora from the Yanghukou Formation is dominated by Euramerican elements with a few elements of the Cathaysian flora. No Angarian elements have be found in this section for lack of Late Permian strata. The specimens studied by Bohlin might possibly come from the upper part of the Upper Permian at tne southeastern corner . of the Yu'erhong basin. Those fossils from different horizons and localities might be mixed with each other during collection ;so they fail to reflect the exact horizon of certain plant fossils.  相似文献   

12.
A new fossil‐bearing, Upper Carboniferous (lower Westphalian) locality in Doncaster, South Yorkshire, UK, is reported and an account of the fossils is presented. The diverse flora and fauna consists of plants, bivalves, arthropods (primarily xiphosurans), tentaculitids (microconchids), fish scales, shark egg capsules and coprolites. Fossils are preserved in siderite nodules and shales, and display excellent preservation and detail. Previous collecting of Carboniferous fossils in the Doncaster area has been minimal. The discovery of this locality addresses this deficit and is of further importance as such localities in the UK are diminishing in number with the cessation of coal‐mining and the reclamation of mine dumps, further demonstrating the importance and recognition of the Edlington site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The shoreline of the Taganrog Gulf of the Azov Sea at the mouth of Don River provides a series of extended Upper Pliocene and Quaternary sections that have been actively studied in the last century. This extraglacial region had a complex sedimentary history combining subaerial aggradation with marine, fluvial, and deltaic sedimentation. The well-exposed stratigraphical sequence and abundant palaeontological record continuously attract geologists and highlight the region as one of international importance for the addressing of numerous problems of Late Pliocene and Quaternary stratigraphy and palaeogeography. Fossil mammalian faunas of the region include important Eurasian biostratigraphical markers such as Stenocranius ex gr. hintoni-gregaloides, Lagurini spp., and Mimomys savini. For many years, fossil remains of mammals provide decisive clues to the geological history of the region. Recent geological studies of reference sections have provided data on small mammals, palaeomagnetism and palaeogeographical reconstructions in the northeastern part of the Azovian Region. Mammalian assemblages indicate the presence of the Late Pliocene, late Early Pleistocene, Middle Pleistocene and Late Pleistocene levels and, in addition, provide a clear biostratigraphical context for the Early Middle Pleistocene transition.  相似文献   

14.
The Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian Series, Duckmantian Stage]–a kaolinized, volcanic-ash deposit occurring in Kentucky, West Virginia, Tennessee, and Virginia–is the most widespread bed in the Middle Pennsylvanian of the central Appalachian basin, USA. A concordant single-crystal U–Pb zircon datum for this tonstein gives a 206Pb/238U age of 314.6 ± 0.9 Ma (2σ). This age is in approximate agreement with a mean sanidine plateau age of 311.5 ± 1.3 Ma (1σ, n = 11) for the Fire Clay tonstein. The difference between the two ages may be due to bias between the 40K and 238U decay constants and other factors. The age of the Fire Clay tonstein has important implications for Duckmantian Stage (Westphalian Series) sedimentation rates, correlations with the Westphalian Series of Europe, Middle Pennsylvanian volcanic events, and the late Paleozoic time scale.  相似文献   

15.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

16.
Peat mires retain a sensitive record of water‐table (base‐level) fluctuations throughout their accumulation. On this basis, coals provide one of the best opportunities to interpret high‐resolution base‐level change in ancient non‐marine deposits. The petrographic composition of 275 samples collected from 11 localities along a 100 km south‐west to north‐east transect across the regionally extensive (>37 000 km2) Pennsylvanian (Upper Carboniferous) Fire Clay coal of the Central Appalachian Basin, USA was analysed to determine its internal stratigraphy. The coal is positioned within the late lowstand/early transgressive systems tract of a fourth‐order depositional sequence. The results of the petrographic analyses reveal a cyclicity in the composition of the Fire Clay coal, which defines six units that are correlated over more than 100 km. Each coal cycle is characterized by a gradual upward transition from vitrinite‐dominated to inertinite‐dominated coal, which represents a ‘drying‐up’ succession. Increased concentrations of resistant peat components at the top of the drying‐up successions indicate reduced peat accumulation rates associated with slowing rate of water‐table rise, and may represent a residue of peat remaining from a phase of exposure and erosion resulting from a falling water table. These drying‐up successions are bound by surfaces that display an abrupt coal facies shift from inertinite‐rich to vitrinite‐rich coal, representing a rapid water‐table rise. Each cycle represents markedly different mire conditions with different aerial distributions, which supports the notion of temporal disconnection between each unit of coal, and suggests that considerable time may be ‘locked‐up’ in unit bounding exposure surfaces. Recognition that the rate of peat accumulation in a mire may vary considerably through time, has important implications for studies which assume that peat and coal successions provide continuous and time‐invariant records of base‐level fluctuations or palaeoecological change.  相似文献   

17.
In eastern Heilongjiang, the Upper Jurassic is marine and restricted to the Suibin and Dong’an areas, where it is characterized faunally by Callovian–Volgian (Tithonian) bivalves and florally by dinoflagellates. The Lower Cretaceous is widely distributed in eastern Heilongjiang, and characterized faunally by Berriasian–Valanginian bivalves, Barremian–Albian ammonites and Aucellina, and florally by dinoflagellates. To the west, the marine facies grade into non-marine beds. Thus, in the east, for example in the Dong’an and Dajiashan areas, near the northwestern Palaeo-Pacific, the Lower Cretaceous is marine; westward, in the Yunshan, Longzhaogou, Peide, and Zhushan areas, marine and non-marine deposits alternate, whereas further west still, e.g. in the Jixi Basin, non-marine facies are intercalated with marine beds. This regional distribution is indicative of a large, shallow embayment opening eastwards to the Palaeo-Pacific; during the Early Cretaceous successive transgressive-regressive events influenced the climate and biota of eastern Heilongjiang and northeastern China. Many of the Lower Cretaceous sections contain abundant coals, demonstrating that in this region the Early Cretaceous was an important coal-forming period. Some non-marine bivalve species are common to the Lower Cretaceous Jixi Group of eastern Heilongjiang, the Jehol Group of western Liaoning and the Transbaikalian Group of Siberia, suggesting that these groups are of comparable Early Cretaceous age.  相似文献   

18.
We present the first study of micro‐crustaceans (ostracods) associated with microbial crusts in the aftermath of the most devastating extinction, the end‐Permian extinction (EPE). These post‐extinction microbialites dominated shallow shelf marine environments and were traditionally considered as devoid of any associated fauna. We present a micro‐palaeontological analysis of a large record from microbial and non‐microbial settings following the EPE. This dataset documents the proliferation of ostracods strictly associated with microbialites. Based on the diet of extant ostracods and uniformitarianism, we propose that the abundant microbes in the mats served as an unlimited food supply. Photosynthetic cyanobacteria may also have locally provided oxygen under low oxygen conditions interpreted by others for the microbialites. Microbialites provided a specialised environment that may have acted as refuge for ostracods in the immediate aftermath of the EPE. The surviving faunas may have been progenitors for the starting of the latter radiation.  相似文献   

19.
Spencer Gulf is a large (ca 22 000 km2), shallow (<60 m water depth) embayment with active heterozoan carbonate sedimentation. Gulf waters are metahaline (salinities 39 to 47‰) and warm‐temperate (ca 12 to ?28°C) with inverse estuarine circulation. The integrated approach of facies analysis paired with high‐resolution, monthly oceanographic data sets is used to pinpoint controls on sedimentation patterns with more confidence than heretofore possible for temperate systems. Biofragments – mainly bivalves, benthic foraminifera, bryozoans, coralline algae and echinoids – accumulate in five benthic environments: luxuriant seagrass meadows, patchy seagrass sand flats, rhodolith pavements, open gravel/sand plains and muddy seafloors. The biotic diversity of Spencer Gulf is remarkably high, considering the elevated seawater salinities. Echinoids and coralline algae (traditionally considered stenohaline organisms) are ubiquitous. Euphotic zone depth is interpreted as the primary control on environmental distribution, whereas seawater salinity, temperature, hydrodynamics and nutrient availability are viewed as secondary controls. Luxuriant seagrass meadows with carbonate muddy sands dominate brightly lit seafloors where waters have relatively low nutrient concentrations (ca 0 to 1 mg Chl‐a m?3). Low‐diversity bivalve‐dominated deposits occur in meadows with highest seawater salinities and temperatures (43 to 47‰, up to 28°C). Patchy seagrass sand flats cover less‐illuminated seafloors. Open gravel/sand plains contain coarse bivalve–bryozoan sediments, interpreted as subphotic deposits, in waters with near normal marine salinities and moderate trophic resources (0·5 to 1·6 mg Chl‐a m?3) to support diverse suspension feeders. Rhodolith pavements (coralline algal gravels) form where seagrass growth is arrested, either because of decreased water clarity due to elevated nutrients and associated phytoplankton growth (0·6 to 2 mg Chl‐a m?3), or bottom waters that are too energetic for seagrasses (currents up to 2 m sec?1). Muddy seafloors occur in low‐energy areas below the euphotic zone. The relationships between oceanographic influences and depositional patterns outlined in Spencer Gulf are valuable for environmental interpretations of other recent and ancient (particularly Neogene) high‐salinity and temperate carbonate systems worldwide.  相似文献   

20.
Climate changes affect marine ecosystems and the survival, growth, reproduction and distribution of species, including those targeted by commercial fisheries. The impact of climate change has been reported for many fish species, but studies focusing on the effects of climate on bivalve resources are lacking. In Portugal, the harvesting of bivalves is an old and artisanal activity, of special importance along the Algarve coast (South of Portugal). This study aims to evaluate the influence of climatic, environmental and fisheries factors on the landings of intertidal coastal lagoon and coastal bivalve species (subtidal nearshore species). The environmental and fisheries parameters considered to affect the landings of bivalves in the eastern Algarve were: fishing effort (number of fishing events), sea surface temperature, North Atlantic Oscillation (NAO) index, upwelling index, wind magnitude and direction and river discharges. Analysis of time series data using min/max autocorrelation factor analysis and dynamic factor analysis showed that, for most species, fishing effort was positively related with landings per unit effort trends in the following year. Lagoon bivalve species (Cerastoderma edule and Ruditapes decussatus) responded to different environmental variables than the coastal bivalve species (Chamelea gallina, Pharus legumen, Donax spp. and Spisula solida). Upwelling index had a significant effect on the lagoon bivalves while the NAO index, wind magnitude and direction, and river discharges only affected the coastal species. This study highlighted the need to adapt fishing effort regimes, while considering the background effects of environmental variability, in order to improve fisheries management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号